周英奕 周夢(mèng)玲 田金洲 魏明清 倪敬年 時(shí)晶



摘要 目的:探究不同月齡APP/PS1雙轉(zhuǎn)基因模型小鼠的腸道菌群特點(diǎn)及補(bǔ)腎法對(duì)其腸道菌群失衡的影響。方法:將8只6個(gè)月齡雄性APP/PS1小鼠隨機(jī)分為模型組和補(bǔ)腎組;4只6個(gè)月齡雄性C57BL/6小鼠作為正常對(duì)照組。補(bǔ)腎組小鼠給予補(bǔ)腎法中藥灌胃3個(gè)月,模型組和正常對(duì)照組小鼠均予以等體積羧甲基纖維素(CMC)溶液灌胃。留取小鼠灌胃干預(yù)前后的糞便,運(yùn)用16SrDNA技術(shù)檢測(cè)各組腸道菌群的組成結(jié)構(gòu)。從腸道微生態(tài)方面,探討補(bǔ)腎中藥對(duì)APP/PS1雙轉(zhuǎn)基因小鼠腸道菌群構(gòu)成的影響。結(jié)果:6個(gè)月齡時(shí)模型組和正常對(duì)照組小鼠的腸道菌群差異無(wú)統(tǒng)計(jì)學(xué)意義;與9個(gè)月齡正常組比較,模型組小鼠腸道內(nèi)芽孢桿菌綱豐度明顯升高。與模型組比較,補(bǔ)腎組腸道內(nèi)芽孢桿菌綱豐度明顯下降,疣微菌門豐度呈上升趨勢(shì)。結(jié)論:APP/PS1小鼠體內(nèi)均存在腸道菌群失衡的情況,主要與芽孢菌綱、疣微菌門的豐度水平的變化相關(guān)。補(bǔ)腎法可以通過降低芽孢菌綱、升高疣微菌門的豐度來進(jìn)一步改善AD小鼠腸道菌群失衡狀態(tài)。
關(guān)鍵詞 阿爾茨海默病;APP/PS1轉(zhuǎn)基因小鼠;細(xì)菌;腸道菌群;菌群失調(diào);16SrDNA技術(shù);補(bǔ)腎法;中藥
Abstract Objective:To explore the characteristics of gut microbiota in APP/PS1 transgenic mice at different ages and the effect of tonifying spleen method on its intestinal flora imbalance.Methods:Eight 6-month-old male APP/PS1 mice were randomly divided into a model group and a kidney-tonifying group,and four 6-month-old male C57BL/6 mice were served as normal control group.The mice in the kidney-tonifying group were treated with Chinese medicinal for kidney-tonifying spleen for 3 months,and the mice in the model group and normal control group were given CMC solution.The feces of mice before and after gavage intervention were collected,and the composition and structure of gut microbiota in each group were detected by 16S rDNA technology.From the aspect of intestinal microecology,the effects of kidney-tonifying Chinese medicinal on gut microbiota of APP/PS1 transgenic mice were investigated.Results:At the age of 6 months,there was no significant difference in gut microbiota between the model group and the normal control group.Compared with the normal group at the age of 9 months,the abundance of Bacilli in the intestinal tract of the model group was significantly higher than normal group.Compared with the model group,the abundance of Bacilli was significantly decreased,and the abundance of Verrucomicrobia in the kidney-tonifying group was increased.Conclusion:The imbalance of gut microbiota was found in APP/PS1 mice,which was mainly related to the changes of the abundance of Bacilli and Verrucomicrobia.Kidney-tonifying method can improve the imbalance of gut microbiota by reducing the abundance of Bacilli and increasing the abundance of Verrucomicrobia.
Keywords Alzheimer′s disease; APP/PS1 transgenic mice; Bacteria; Gut microbiota; Dysbacteriosis; 16srDNA detection; Kidney-tonifying method; Chinese medicinal
中圖分類號(hào):R242;R741文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.14.011
阿爾茨海默病(Alzheimer Disease,AD)是癡呆最常見的類型,占癡呆總?cè)丝诘?0%~80%[1]。流行病學(xué)研究發(fā)現(xiàn),現(xiàn)今在中國(guó)65歲以上的人群中該病的患病率為3.21%[2],有700多萬(wàn)人罹患此病。而隨著社會(huì)老齡化問題的逐漸加劇,預(yù)計(jì)2050年患病數(shù)將會(huì)增長(zhǎng)至2 000萬(wàn)[3]。迄今為止,AD的發(fā)病機(jī)制尚未完全清楚,研究發(fā)現(xiàn)腸道微生物群的動(dòng)態(tài)平衡對(duì)維持機(jī)體功能活動(dòng)正常至關(guān)重要,且與中樞神經(jīng)系統(tǒng)(Central Nervous System,CNS)具有相互調(diào)節(jié)作用[4-5]。近年來,針對(duì)AD患者腸道菌群情況及其機(jī)制的探討越來越受到關(guān)注[6-7]。
中醫(yī)自古就有對(duì)“癡呆”“健忘”癥狀的認(rèn)識(shí),認(rèn)為其發(fā)病與腎虛關(guān)系密切。補(bǔ)腎法中藥復(fù)方可通過多靶點(diǎn)、多途徑對(duì)AD起到一定的延緩、治療作用[8]。臨床研究發(fā)現(xiàn)補(bǔ)腎中藥可以改善AD患者的認(rèn)知功能[9-10];實(shí)驗(yàn)研究進(jìn)一步證實(shí)了補(bǔ)腎中藥可以改善AD轉(zhuǎn)基因小鼠的認(rèn)知功能[11],并對(duì)其神經(jīng)元[12]和腸道菌群[13]具有保護(hù)作用。本研究是觀察不同月齡AD轉(zhuǎn)基因小鼠的腸道菌群情況,并探究補(bǔ)腎法對(duì)其腸道菌群失衡的影響。
1 材料與方法
1.1 材料
1.1.1 動(dòng)物 本研究采用6個(gè)月齡SPF級(jí)雄性APP/PS1雙轉(zhuǎn)基因小鼠8只,同月齡雄性C57小鼠8只(由北京華阜康生物科技股份有限公司提供[SCXK(京)2014-0004]),飼養(yǎng)于北京中醫(yī)藥大學(xué)東直門醫(yī)院藥理實(shí)驗(yàn)中心屏障環(huán)境實(shí)驗(yàn)動(dòng)物室,實(shí)驗(yàn)期間動(dòng)物自由飲水、攝食。實(shí)驗(yàn)已通過北京中醫(yī)藥大學(xué)東直門醫(yī)院的倫理審查(倫理審批號(hào):2018-34)。
1.1.2 藥物 中藥材由北京中醫(yī)藥大學(xué)東直門醫(yī)院制劑中心制備,鹽酸多奈哌齊片[衛(wèi)材(中國(guó))藥業(yè)有限公司,生產(chǎn)批號(hào):140635]購(gòu)于北京中醫(yī)藥大學(xué)東直門醫(yī)院。
1.1.3 試劑與儀器 TIANamp糞便提取試劑盒(天根生化科技有限公司,批號(hào):DP328);MiSeq測(cè)序平臺(tái)(Illuminam,美國(guó),型號(hào):PE250)。
1.2 方法
1.2.1 分組與模型制備 將8只6個(gè)月齡雄性APP/PS1小鼠隨機(jī)平均分為模型組和補(bǔ)腎組;4只6個(gè)月齡雄性C57BL/6小鼠作為正常對(duì)照組。
1.2.2 干預(yù)方法 補(bǔ)腎組按照1.2 g/kg(臨床等效量)劑量予以補(bǔ)腎法中藥溶液灌服,每只小鼠10 mL/(kg·d),連續(xù)灌服3個(gè)月;模型組、正常對(duì)照組均給予等體積0.5%羧甲基纖維素(Sodium Carboxymethyl Cellulose,CMC)鈉灌胃,每只小鼠10 mL/(kg·d),連續(xù)灌服3個(gè)月。
1.2.3 糞便采集及DNA提取 補(bǔ)腎組、模型組及正常對(duì)照組于干預(yù)第1天及第90天時(shí),留取新鮮的糞便。留取糞便量均大于200 g,將其迅速裝入無(wú)菌凍存管中放入液氮中速凍,于-80 ℃低溫冰箱中保存。使用TIANamp糞便提取試劑盒提取糞便中菌群的DNA用于高通量測(cè)序。
1.2.4 腸道菌群檢測(cè) 對(duì)所獲得的DNA進(jìn)行文庫(kù)質(zhì)檢合格后,用16S特定引物對(duì)V3-V4可變區(qū)進(jìn)行擴(kuò)增;使用Illuminam MiSeq測(cè)序平臺(tái)進(jìn)行細(xì)菌16S rDNA高通量測(cè)序及數(shù)據(jù)轉(zhuǎn)化。得到有效序列數(shù)據(jù)后,使用Mothur v1.34.4在97%相似水平下對(duì)所有序列進(jìn)行操作分類單元(Operational Taxonomic Units,OTU)歸類。使用Mothur1.33.3軟件對(duì)所得有效數(shù)據(jù)的序列質(zhì)量進(jìn)行過濾,將相似水平在97%以上的序列進(jìn)行OUT歸類。利用RDPclassifer v2.2軟件,對(duì)照數(shù)據(jù)庫(kù)對(duì)每個(gè)OUT代表序列進(jìn)行物種注釋和分類。
1.3 統(tǒng)計(jì)學(xué)方法 采用SPSS 22.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。對(duì)腸道菌群數(shù)據(jù)結(jié)果進(jìn)行OTU聚類和物種分類分析,計(jì)量資料使用均數(shù)±標(biāo)準(zhǔn)差(±s)表示。對(duì)符合正態(tài)分布、方差齊的數(shù)據(jù),采用獨(dú)立樣本t檢驗(yàn);對(duì)不符合正態(tài)分布的數(shù)據(jù),采用非參數(shù)檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 APP/PS1小鼠與C57BL/6小鼠腸道菌群的豐度組成比較 1)門水平:2組小鼠在6個(gè)月齡時(shí)腸道內(nèi)平均豐度水平最高的菌群為Bacteroidetes(擬桿菌門)、其后為Firmicutes(厚壁菌門)。9個(gè)月齡時(shí),2組小鼠的Firmicutes(厚壁菌門)相對(duì)豐度上升,超過Bacteroidetes(擬桿菌門),成為門水平豐度最高的腸道菌群。分別對(duì)2組不同月齡小鼠的腸道菌群豐度進(jìn)行組間差異性檢驗(yàn)分析,發(fā)現(xiàn)小鼠在門水平內(nèi)差異均無(wú)統(tǒng)計(jì)學(xué)意義。見表1,表2,圖1。2)綱水平:2組小鼠在6個(gè)月齡和9個(gè)月齡的腸道菌群豐度水平由高到低均為Bacteroidia(擬桿菌綱)、Clostridia(梭菌綱)、Bacilli(芽孢桿菌綱)。分別對(duì)2組不同月齡小鼠的腸道菌群豐度進(jìn)行組間差異性檢驗(yàn)分析,發(fā)現(xiàn)綱水平下,6個(gè)月齡2組小鼠腸道菌群差異均無(wú)統(tǒng)計(jì)學(xué)意義;當(dāng)2組小鼠成長(zhǎng)至9個(gè)月齡時(shí),Bacilli(芽孢桿菌綱)的豐度在模型組中高于正常對(duì)照組(P<0.05)。見表1,表2,圖2A。3)目水平:2組小鼠在6個(gè)月齡時(shí)腸道內(nèi)平均豐度水平最高為Bacteroidales(擬桿菌目)、其后為Clostridiales(梭菌目)。當(dāng)正常對(duì)照組C57BL/6小鼠成長(zhǎng)至9個(gè)月齡時(shí),腸道菌群中Clostridiales(梭菌目)相對(duì)豐度上升,超過Bacteroidales(擬桿菌目),成為目水平豐度最高的腸道菌群;而模型組APP/PS1小鼠的優(yōu)勢(shì)菌群排序未發(fā)生改變,Bacteroidales(擬桿菌目)仍為目水平豐度最高的腸道菌群。分別對(duì)2組不同月齡小鼠的腸道菌群豐度進(jìn)行組間差異性檢驗(yàn)分析,發(fā)現(xiàn)小鼠在目水平內(nèi)差異均無(wú)統(tǒng)計(jì)學(xué)意義。見表1,表2,圖1。4)科水平:6個(gè)月齡時(shí),2組小鼠在科水平下平均豐度水平最高的菌群為Porphyromonadaceae(紫單孢菌科),其次為L(zhǎng)achnospiraceae(毛螺菌科)。當(dāng)小鼠成長(zhǎng)至9個(gè)月齡時(shí),正常對(duì)照組小鼠腸道菌群中Lachnospiraceae(毛螺菌科)的豐度升高,超過Porphyromonadaceae(紫單孢菌科)成為豐度水平最高的菌群。分別對(duì)2組不同月齡小鼠的腸道菌群相對(duì)豐度進(jìn)行組間差異性檢驗(yàn)分析,發(fā)現(xiàn)小鼠在目水平內(nèi)差異均無(wú)統(tǒng)計(jì)學(xué)意義。見表1,表2,圖1。
2.2 不同月齡APP/PS1小鼠腸道菌群情況
6個(gè)月齡和9個(gè)月齡APP/PS1小鼠比較,腸道菌群情況存在差異。見表3。與6個(gè)月齡比較,9個(gè)月齡時(shí)小鼠腸道內(nèi)門水平下Bacteroidetes(擬桿菌門)相對(duì)豐度降低(P<0.05),F(xiàn)irmicutes(厚壁菌門)相對(duì)豐度升高(P<0.01);綱水平下,Bacteroidia(擬桿菌綱)相對(duì)豐度降低(P<0.05);目水平下,Bacteroidales(擬桿菌目)相對(duì)豐度降低(P<0.05);科水平下,Porphyromonadaceae(紫單胞菌科)相對(duì)豐度降低(P<0.05)。
2.3 補(bǔ)腎法干預(yù)對(duì)腸道菌群的影響 對(duì)補(bǔ)腎組及模型組小鼠的腸道內(nèi)細(xì)菌組成進(jìn)行差異性分析,提示部分腸道菌群之間存在差異。見表4。在門水平,2組菌群豐度未見明顯差異,但Verrucomicrobia(疣微菌門)的豐度補(bǔ)腎組較模型組有上升趨勢(shì)。在綱水平,補(bǔ)腎組小鼠Bacilli(芽孢桿菌綱)的水平較模型組下降(P<0.05)。在目水平和科水平下,2組小鼠2組菌群豐度未見明顯差異。
3 討論
“腦-腸軸”假說近年來受到了廣泛關(guān)注,該假說認(rèn)為在腦、腸以及腸道菌群微生物間存在一個(gè)相互作用的網(wǎng)絡(luò),可通過調(diào)節(jié)內(nèi)分泌、影響免疫系統(tǒng)及控制迷走神經(jīng)等多種方式對(duì)彼此產(chǎn)生影響[14-16]。人體內(nèi)寄居的腸道菌群種類繁多,門水平主要包括擬桿菌門、厚壁菌門、變形菌門、放線菌門、梭桿菌門及疣微菌門等[17]。流行病學(xué)研究發(fā)現(xiàn)人體嬰幼兒階段與老年階段的腸道菌群組成不同,老年人較嬰幼兒階段腸道內(nèi)擬桿菌門及變形菌門的相對(duì)豐度增加[18]。隨著研究的進(jìn)一步深入,發(fā)現(xiàn)腸道內(nèi)菌群微生物的改變與AD的發(fā)生發(fā)展密切相關(guān)[19]。臨床研究證實(shí)了AD患者腸道菌群組成與正常對(duì)照組比較存在差異,發(fā)現(xiàn)AD患者腸道內(nèi)擬桿菌門的相對(duì)含量增加[20]。動(dòng)物研究也證實(shí)了AD模型鼠APP/PS1小鼠的腸道菌群豐度在8個(gè)月齡開始與對(duì)照組小鼠存在差異[21-22],并隨著月齡的增長(zhǎng)逐漸加重。為了分析AD小鼠腸道菌群的情況,本研究通過16SrDNA測(cè)序技術(shù)對(duì)小鼠糞便中的腸道菌群進(jìn)行測(cè)定,從微生物群落多樣性、組成結(jié)構(gòu)及物種差異等多個(gè)角度研究模型組及正常對(duì)照組小鼠腸道菌群的組成。
比較分析模型組以及正常對(duì)照組2組小鼠腸道菌群隨月齡增長(zhǎng)的變化特征發(fā)現(xiàn),模型組腸道菌群伴隨增齡的特異性變化以芽孢菌綱豐度的上升為主,疣微菌門的豐度有下降的趨勢(shì),但是因?yàn)闃颖玖枯^少,差異無(wú)統(tǒng)計(jì)學(xué)意義,需在今后的研究中加大樣本量進(jìn)一步觀察其變化情況。經(jīng)研究證實(shí),芽孢菌綱可以通過影響體內(nèi)營(yíng)養(yǎng)代謝,從而影響疾病的進(jìn)展[23]。Plaza-Díaz等[24]研究還發(fā)現(xiàn)腸道內(nèi)的芽孢桿菌會(huì)分泌神經(jīng)毒素,造成腹瀉或?qū)ι窠?jīng)的侵害。而疣微菌門可以通過參與調(diào)節(jié)機(jī)體的免疫應(yīng)答,維持體內(nèi)的代謝平衡等方式,影響宿主健康[25]。其中的AKK菌為一種已知的益生菌,其通過與腸道黏膜層中的黏蛋白相互作用,修復(fù)受損的上皮屏障完整性并改善內(nèi)毒素血癥[26-27]。動(dòng)物實(shí)驗(yàn)也證實(shí)了其可以延緩AD模型小鼠的腦部病理變化,緩解空間學(xué)習(xí)和記憶障礙[28]。
對(duì)AD腸道菌群失衡進(jìn)行調(diào)節(jié)符合中醫(yī)理論中整體觀念,補(bǔ)腎法干預(yù)又滿足了對(duì)AD疾病辨證論治多為腎虛證型的歸納[29]。本研究發(fā)現(xiàn)經(jīng)補(bǔ)腎法干預(yù)后,補(bǔ)腎組小鼠較模型組小鼠腸道內(nèi)芽孢桿菌綱相對(duì)豐度明顯下降,疣微菌門的相對(duì)豐度呈上升趨勢(shì)。推測(cè)補(bǔ)腎法主要是通過降低腸道內(nèi)芽孢桿菌綱及升高疣微菌門的豐度,從而改善AD模型小鼠的腸道菌群失衡。目前,針對(duì)AD腸道菌群微生物對(duì)于認(rèn)知功能的影響研究尚不充分,本實(shí)驗(yàn)的結(jié)果提示9個(gè)月齡時(shí)AD模型鼠的腸道菌群發(fā)生了紊亂,但樣本量較少,并未探討其變化的機(jī)制。在今后的研究中,將增加樣本量及對(duì)其他月齡小鼠腸道內(nèi)菌群情況的觀察,并探討其菌群變化的內(nèi)在機(jī)制。
參考文獻(xiàn)
[1]Alzheimer′s Association.2020 Alzheimer′s Disease Facts and Figures[J].Alzheimers Dement,2020,16(3):391.
[2]Jia J,Wang F,Wei C,et al.The prevalence of dementia in urban and rural areas of China[J].Alzheimers Dement,2014,10(1):1-9.
[3]賈建平,侯婷婷.阿爾茨海默病發(fā)病機(jī)制及治療進(jìn)展[J].中華醫(yī)學(xué)雜志,2018,98(29):2351-2356.
[4]Lukiw WJ,Bazan NG.Survival signalling in Alzheimer′s disease[J].Biochem Soc Trans,2006,34(Pt 6):1277-1282.
[5]Bagyinszky E,Giau VV,Shim K,et al.Role of inflammatory molecules in the Alzheimer′s disease progression and diagnosis[J].J Neurol Sci,2017,376:242-254.
[6]Cammarota G,Ianiro G,Bibbò S,et al.Gut microbiota modulation:probiotics,antibiotics or fecal microbiota transplantation?[J].Intern Emerg Med,2014,9(4):365-373.
[7]Giau VV,Wu SY,Jamerlan A,et al.Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer′s Disease[J].Nutrients,2018,10(11):1765.
[8]婁艷芳,張秀君,都文淵,等.補(bǔ)腎健脾方治療輕、中度阿爾茨海默病的療效及對(duì)血清IL-1β、IL-6、TNF-α水平的影響[J].現(xiàn)代中西醫(yī)結(jié)合雜志,2017,26(15):1646-1649.
[9]邱海鵬,張曉璇,申興斌,等.補(bǔ)腎益智方聯(lián)合丁苯酞對(duì)阿爾茨海默病患者Aβ,GSH-Px,SOD及MDA水平的影響[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2016,22(14):187-191.
[10]李晨萌,田金洲,魏明清,等.補(bǔ)腎平肝方聯(lián)合鹽酸多奈哌齊治療阿爾茨海默病精神行為癥狀的有效性觀察[J].天津中醫(yī)藥,2019,36(10):951-954.
[11]Shi J,Zhang X,Yin L,et al.Retraction Note:Herbal formula GAPT prevents beta amyloid deposition induced Ca2+/Calmodulin-dependent protein kinase Ⅱ and Ca2+/Calmodulin-dependent protein phosphatase 2B imbalance in APPV717I mice[J].BMC Complement Med Ther,2021,21(1):157.
[12]劉盼興,高媛媛,任璐,等.補(bǔ)腎活血方對(duì)SAMP8小鼠學(xué)習(xí)記憶及海馬神經(jīng)干細(xì)胞影響實(shí)驗(yàn)研究[J].中華中醫(yī)藥學(xué)刊,2020,38(2):7.
[13]Wang J,Ye F,Cheng X,et al.The Effects of LW-AFC on Intestinal Microbiome in Senescence-Accelerated Mouse Prone 8 Strain,a Mouse Model of Alzheimer′s Disease[J].J Alzheimers Dis,2016,53(3):907-919.
[14]Montiel-Castro AJ,González-Cervantes RM,Bravo-Ruiseco G,et al.The microbiota-gut-brain axis:neurobehavioral correlates,health and sociality[J].Front Integr Neurosci,2013,7:70.
[15]Shen L,Liu L,Li XY,et al.Regulation of gut microbiota in Alzheimer′s disease mice by silibinin and silymarin and their pharmacological implications[J].Appl Microbiol Biotechnol,2019,103(17):7141-7149.
[16]Wang Y,Kasper LH.The role of microbiome in central nervous system disorders[J].Brain Behav Immun,2014,38:1-12.
[17]Alam MZ,Alam Q,Kamal MA,et al.A possible link of gut microbiota alteration in type 2 diabetes and Alzheimer′s disease pathogenicity:an update[J].CNS Neurol Disord Drug Targets,2014,13(3):383-390.
[18]Odamaki T,Kato K,Sugahara H,et al.Age-related changes in gut microbiota composition from newborn to centenarian:a cross-sectional study[J].BMC Microbiol,2016,16:90.
[19]Mayer EA,Tillisch K,Gupta A.Gut/brain axis and the microbiota[J].J Clin Invest,2015,125(3):926-938.
[20]Vogt NM,Kerby RL,Dill-McFarland KA,et al.Gut microbiome alterations in Alzheimer′s disease[J].Sci Rep,2017,7(1):13537.
[21]Harach T,Marungruang N,Duthilleul N,et al.Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J].Sci Rep,2017,7:41802.
[22]Zhang L,Wang Y,Xiayu X,et al.Altered Gut Microbiota in a Mouse Model of Alzheimer′s Disease[J].J Alzheimers Dis,2017,60(4):1241-1257.
[23]李玉波,郝改梅,賈海驊,等.從腸道菌群多樣性探討越鞠丸對(duì)ApoE~(-/-)小鼠血脂的影響[J].中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志,2017,23(11):1559-1563.
[24]Plaza-Díaz J,Gómez-Fernández A,Chueca N,et al.Autism Spectrum Disorder(ASD) with and without Mental Regression is Associated with Changes in the Fecal Microbiota[J].Nutrients,2019,11(2):337.
[25]Everard A,Belzer C,Geurts L,et al.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J].Proc Natl Acad Sci U S A,2013,110(22):9066-9071.
[26]Shin NR,Lee JC,Lee HY,et al.An increase in the Akkermansia spp.population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J].Gut,2014,63(5):727-735.
[27]孫英新,黃洋,曾妙,等.基于“腸道菌群-炎癥”通路探討丹蔞片防治ApoE-/-小鼠動(dòng)脈粥樣硬化的作用及機(jī)制[J].中草藥,2020,51(9):2492-2500.
[28]Ou Z,Deng L,Lu Z,et al.Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer′s disease[J].Nutr Diabetes,2020,10(1):12.
[29]陳欣欣,金鑫瑤,龐穩(wěn)泰,等.復(fù)方丹參注射液聯(lián)合西藥治療血管性癡呆有效性及安全性的系統(tǒng)評(píng)價(jià)[J].中國(guó)中藥雜志,2021,46(1):247-252.
(2020-09-01收稿 責(zé)任編輯:張雄杰)