◇荀升亮(江蘇:漣水縣五港鎮中心小學)
增加數學課堂的深度是老師追求的目標之一。采用深度學習方法,可以有效促進這一目標的實現。通過注重關聯性,挖掘知識點潛藏的思想;通過注重過程,讓學生參與知識的組合轉化;通過開放課堂,鼓勵學生進行實踐和探索:這些措施可有力地推動數學深度課堂的建構。
運用深度學習方法進行深度數學課堂的建構,首先要在教學過程中注重知識點之間的關聯性,讓學生通過知識點之間的關聯進行邏輯鏈條的探索,從而挖掘潛藏在數學知識中的思想,促進學生的數學深度學習。
如,在《多邊形的面積》這一節課中,學生要學習與平面幾何圖形面積相關的數學知識,老師就可以深度挖掘不同圖形面積公式之間的關聯性。老師首先帶領學生閱讀課本,然后提問學生:“三角形的面積公式是什么?”學生會寫出S=a×h÷2。老師可挖掘其中字母的意義:“a 和h 分別代表什么?”學生此時會根據課本的定義回答:“a 是其中一條邊,在面積的計算中叫作底邊,h 是這條底邊上的高。”老師再提問學生平行四邊形的面積公式:“平行四邊形的面積公式是什么?它和三角形的面積公式有什么區別和聯系?”學生此時就會回答S=a×h,并開始思考:在平行四邊形和三角形面積公式中,a都指的是其中一條底邊,h 都是指底邊上的高,不同點就在于平行四邊形的面積不需要÷2。老師此時繼續挖掘:“那么為什么三角形面積需要÷2,而平行四邊形不需要呢?”學生此時就會思考:底乘高其實是一個矩形的面積,三角形面積是矩形的一半,因此需要÷2,而平行四邊形通過平移分割后,面積和同底同高的矩形相等,因此不需要÷2。通過這樣的過程,學生就對其中的關聯性有了一個較為清晰的認知。
通過這種注重關聯性的深度學習方法,可以有效挖掘數學知識中隱含的思想,從而讓學生進行有效的知識汲取,促進學生數學學習深度的增加,有效助力數學深度課堂的建構。
建構數學深度課堂,不僅需要學生注重知識點之間的關聯性,更要讓學生參與到知識形成的具體過程中,注重知識獲取的過程性,從而促進學生參與知識之間的組合和轉化,促進學生實現深度學習。
如,在《小數的加法和減法》這一節課中,老師首先帶領學生閱讀課本,然后給學生講解:“小數的加減法和整數的加減法其實是同樣的原理。”接著讓學生解答具體題目:“7.5-3.24=?”學生看到這一問題時,首先會感到困難,老師此時引導學生:“大家先看整數部分,整數部分的7和3 應當如何計算?”學生會回答:“7-3等于4。”老師:“是的,整數的計算規則就是相同數位的數字進行計算,那么我們再來看后面的小數部分,它們所遵循的規則也是相同數位的數字進行計算,大家看一下,0.5-0.2 如何計算?”學生此時就會解答:“0.5-0.2=0.3。”此時,學生發現,3.24 的最后還有一位0.04 這一數字,就會詢問老師這一數位如何進行計算。老師可繼續提示學生:“我們剛才說過,小數的計算規則和整數相同,7.5 如果保留小數點后兩位結果就是7.50,那么現在這一數位上的數字為0,就應當向前一位借數,因此前一位的結果就變成了多少?”學生此時就會開始計算:前一位結果變為了0.2,借過來的0.1減去這一位上的0.04就剩下了0.06,就計算出了結果為4.26。通過這樣的過程,學生實現了知識的組合轉化。
通過讓學生直接參與解題過程,能夠讓學生了解知識形成的具體過程,通過對整數知識的組合和轉化,可以使學生對小數的知識融會貫通,有效提升了學生學習小數的效果,助力深度課堂的打造。
深度課堂必須具備開放性,深度課堂應當給予學生開闊的思維環境和視野,通過開放的問題和探究情境,讓學生在其中進行深度探索,從而有效促進學生對知識的理解和吸收,助推深度課堂的構建。
如,在《負數的初步認識》這一節課中,學生要學習與負數相關的數學知識。這是學生首次接觸相關知識,因此,老師要通過開放性問題引導學生對負數知識進行深度探索,促進學生的思維拓展。老師首先提問學生:“我們之前學到的數字,例如1,2,3,這些在我們的生活中叫作正數,那么大家思考一下,與正數相對的是什么呢?”學生開始思考:生活中與正相對的詞匯是負,因此與正數相對的應當是負數。老師繼續為學生展現問題情境:“在我們的生活中其實已經多次見過負數了,比如說,夏天很暖和,一般我們會說,今天的氣溫是26 度,但是到了冬天,一般氣溫比較低,我們會說,今天的氣溫在零下5 度,這個就是指的-5℃,-5就是負數。”通過這樣開放性情境的設置,學生就對負數的知識有了初步探索。
通過這種開放課堂的打造,可以活躍學生的思維,促進學生參與課堂積極性的提高,助力學生不斷深入知識內核進行探究,有效實現了深度學習。
通過深度學習的策略,可以有效助力深度課堂的打造。未來期待有更多學者針對這一領域展開研究,探索出更加高效可行的方法,促進學生的數學學習,提高學生的學習深度和探索興趣。