周德勝
中圖分類號:G4 文獻標識碼:A
教材是經國家、地方教育部門許可的向每一代學生呈現人類知識和文化的權威版本,是課程的物化載體,是教與學的重要媒介,是教師組織學生學習活動的重要思路與策略參考,在學校課堂教學中具有不可替代的作用。
《數學課程標準(2011年版)》指出“數學教材為學生的數學學習活動提供了學習主題、基本線索和知識結構,是實現數學課程目標、實施數學教學的重要資源?!苯滩氖菐熒n堂交流的共用資源,教師在課前對教材分析,是落實課程標準提出的精神和要求,以及促進學生數學核心素養發展的前提。
一、把握教材結構,溝通知識聯系
著名心理學家,教育學家皮亞杰把兒童的思維發展劃分成四個階段:感知運動階段、前運算階段、具體運算階段和形式運算階段。他認為兒童認知發展過程中各階段出現的一般年齡特征可能有一定程度的個體差異,但各個階段出現的先后順序是固定不變的,同時這四個階段是一個連續不斷的發展過程,后一階段是前一階段的延伸,前一階段是后一階段的前提和條件。數學學習是一個不斷優化的過程,是文化繼承的過程。編者根據兒童的思維發展規律開發了教材,教材的內容前后有著緊密的聯系。課堂教學中教師要找準學生的認知起點,挖掘本節課學生需要的知識經驗。分析教材時要明白,本節課學生學習知識的基礎是什么?本節課的知識是學生今后學習哪些知識的鋪墊?找到教材中前后知識的聯系。
1.熟悉全套教材的知識體系
教材在編排體系上突出了如下特點:①注重知識的縱向聯系,便于形成系統的認知結構;②注意知識的橫向聯系,做好知識的前孕后伏;③注意知識的內在聯系,利于培養學生的類推能力。教師應該通讀全套教材,對小學階段的知識體系有一個整體把握,對教材的指導思想,編排意圖,編寫思路做到心中有數。如,西師版小學數學教材的編寫都遵循循序漸進的原則,同一個知識點,根據學生的年齡特點和知識結構分成幾個部分來實施教學。分散在不同的年級,是由易到難,由淺入深,螺旋上升。例如,西師版教材《小數》的教學。小數是學生認知由整數范疇向小數范疇的擴展,對于小學階段的學生來說是比較抽象的,學生對小數的由來、意義、價值和作用的理解比較困難。對于小數運算的掌握也有一定的難度。所以在教材的編寫上分成了幾個階段來學習。第一階段,三年級下期安排了《小數的初步認識》,這一階段主要是讓學生初步感知小數的概念,能正確地讀寫小數,能進行簡單的小數運算。第二階段,四年級下期安排了《小數的加法和減法》,這一階段是在第一階段的簡單運算基礎上,讓學生利用整數加法的運算律和整數減法的性質來計算,并能用小數解決簡單的問題。第三階段,五年級上期安排了《小數乘除法,小數混合運算》,這一階段是在前兩個階段的基礎上,對小數運算的進一步擴展,并讓學生能用小數解決較為復雜的問題。再如,西師版教材《長方形和正方形》的教學中,教材安排了三個階段的教學。第一階段,二年級下期《認識圖形》,讓學生從生活中抽象出長方形和正方形,并了解它們的特征。第二階段,三年級上冊《長方形,正方形周長的計算》,這一階段,在學生已經知道長方形,正方形特征的基礎上探究長方形,正方形的周長計算公式,并能用公式解決生活中的實際問題。第三階段,四年級下期《長方形和正方形的面積》,這一階段又將學生的認知建立在前面兩個階段的基礎上。
2.讀懂各部分知識之間的內在聯系
有些知識看起來不是同一知識點,但他們之間還是有聯系的。教師在進行材分析的時候,弄清出它們之間的聯系,在教學中才能有意識地滲透這些聯系,從而使學生無意識的領悟這些聯系。例如,教材中的整數和小數。他們從讀、寫、意義、價值和運算方面都有著緊密的聯系。他們都是十進制位值制,有著相同的運算律。他們對于培養學生的符號意識和數感都很重要。他們在生活中和解決問題中又密不可分。再如,在小學階段學習圖形的時候。我們通常從圖形的認識、測量、位置和運動這四個方面學習。認識是看圖形的表象,較為直觀的進行描述,重點在理解圖形的特征。測量是從數據的量化來認識圖形,重點放在測量單位和測量方法上。位置是從空間的角度去認識,培養學生的空間觀念。運動是實踐到思想的一個認識,通過動靜的結合,加深對圖形的理解和空間觀念的形成,更有利于培養孩子應用意識。實際上圖形的認識是從點、線、面、體的一個過程。也體現了一維空間、二維空間、三維空間之間的聯系。我們在進行教材分析的時候,要清楚這些聯系,才能在課堂教學中更好地引導學生從運動的角度認識圖形,刻畫圖形,描述位置,變換形態。
二、深入研讀教材,挖掘思想文化
《數學課程標準(2011年版)》指出:通過義務教育階段的數學學習,學生能獲得適應社會生活和進一步發展所必需的數學基本知識,基本技能,基本思想,基本活動經驗。教材中蘊含著很多的數學思想。我們要通過對教材的分析,用心去思考、發現隱藏在教材背后的思想、文化,以及有利于培養學生核心素養的一些因素。例如,西師版教材四年級下冊《三角形》教學中,三角形按照角可以分為銳角三角形、直角三角形、鈍角三角形,按照邊可以分為等腰三角形和三邊互不相等的三角形,其中等腰三角形又可以分為等邊三角形和只有兩邊相等的三角形。這些知識把分類思想體現的淋漓盡致,教師在教學過程中要向學生滲透這樣的思想方法。又如,西師版教材五年級上冊《多邊形的面積》,平行四邊形的面積公式S=ah,三角形的面積公式S=ah÷2,梯形的面積公式S=(a+b)h÷2。引導學生探索這些數學模型,這是模型思想在教學中的運用。再如,西師版教材三年級上冊《分數的初步認識》中。分數是比較抽象的概念,為了讓學生能夠初步理解分數的含義,教材中運用了大量的圖形作為直觀手段及操作學具(如:方格圖、線段圖等),學生理解十分之一,十分之幾,分數的大小比較,分數的加法和減法,用分數解決實際問題,體會以形助數的方法,這是數行結合思想的應用。還如,西師版教材六年級上冊《圓的周長》中,向學生介紹祖沖之,介紹圓周率的數學文化。諸如這些思想及文化的滲透,讓學生的綜合素質在不知不覺中提升。
我們通常說教學設計三對話:與課標對話、與教材對話、與學生對話??梢娊滩姆治鰧τ谛W數學教學的重要性。作為小學教師,我們應在透徹理解教材編寫意圖的基礎上,結合學生實際情況因地制宜地靈活使用教材,創造性的開展教學,實現課堂教學的高效。
(該文章是銅梁區教育科學“十三五”規劃2020年度課題《基于小學數學課程標準的課堂教學教學評一致性研究》的研究成果)