999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

“勾股定理小結(jié)與思考”教學(xué)設(shè)計(jì)與反思

2022-03-01 08:02:08陳冠軍
初中生世界 2022年8期
關(guān)鍵詞:思維教學(xué)學(xué)生

■陳冠軍

一、教學(xué)目標(biāo)

熟識勾股定理及勾股定理的逆定理,能將實(shí)際問題建模轉(zhuǎn)化為數(shù)學(xué)問題,能靈活應(yīng)用所學(xué)知識解決問題,同時滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想,進(jìn)一步發(fā)展“有條理地思考”和“有條理地表達(dá)”的能力,體會數(shù)學(xué)的應(yīng)用價值。

二、教學(xué)重點(diǎn)

將知識點(diǎn)形成鏈,建立相互關(guān)聯(lián)的知識結(jié)構(gòu),掌握科學(xué)的學(xué)習(xí)方法。

三、教學(xué)難點(diǎn)

構(gòu)造直角三角形并借助方程、分類等思想解決數(shù)學(xué)問題。

四、教學(xué)流程

1.情境導(dǎo)學(xué),明晰內(nèi)容。

師:勾股定理是人類的寶貴財富,勾股定理及其逆定理在現(xiàn)實(shí)生活中有廣泛的應(yīng)用。本章我們一起研究過它——直角三角形(板書),今天我們將一起復(fù)習(xí)這一章。本章我們學(xué)習(xí)了哪些數(shù)學(xué)知識和數(shù)學(xué)方法?大家能取其要點(diǎn),構(gòu)建框圖嗎?

生1展示構(gòu)建的知識框圖,如圖1。學(xué)生之間相互點(diǎn)評。

圖1

2.多元評學(xué),以情勵學(xué)。

師:本章我們學(xué)習(xí)了勾股定理、勾股定理的多種證法,用不同的方法計(jì)算同一個圖形的面積,還有勾股定理的逆定理以及勾股定理、勾股定理逆定理在現(xiàn)實(shí)生活中的應(yīng)用等。接下來,我們來看幾個問題。

師:例題1,(1)如圖2,已知在△ABC中,∠B=90°,一條直角邊為a,斜邊為b,則另一條直角邊c滿足c2=。

圖2

生2:根據(jù)勾股定理,可得c2=b2-a2。

師:(2)如圖3,在Rt△ABC中,∠C=90°。

圖3

師:請同學(xué)們分小組合作,完成以上問題。

小組推薦代表1:已知直角三角形的兩條直角邊,求斜邊。根據(jù)勾股定理,得c2=a2+b2=32+42=9+16=25,解得c=5或-5?!遚>0,∴c=5。

小組推薦代表2:已知直角三角形的一條直角邊,一條斜邊,求另一條直角邊。根據(jù)勾股定理,得c2=a2+b2,102=62+b2,b2=64,解得b=8或-8?!遙>0,∴b=8。

小組推薦代表3:可設(shè)a=3k,b=4k(k>0)。根據(jù)勾股定理,得c2=a2+b2,求得c=5k(負(fù)值舍去),則

師:通過例題1,我們初步復(fù)習(xí)了勾股定理、勾股定理的逆定理。接下來,我們繼續(xù)看例題2。

師:例題2,(1)如圖4,以Rt△ABC的三邊a、b、c為邊,向外作正方形,正方形面積分別為S1、S2、S3,則S1、S2、S3有什么關(guān)系?

圖4

生3:∵△ABC是直角三角形,∴AC2+BC2=AB2,又∵S1=AC2,S2=BC2,S3=AB2,∴S1+S2=S3。

師:(2)以Rt△ABC的三邊a、b、c為邊,向外作等腰直角三角形(如圖5),等腰直角三角形面積分別為S1、S2、S3,或者以三邊a、b、c為直徑,向外作半圓(如圖6),半圓的面積分別為S1、S2、S3,則S1、S2、S3有什么關(guān)系?

圖5

圖6

教師組織學(xué)生進(jìn)行生生合作,共同探究得出S1+S2=S3。

師:(3)以△ABC的三邊a、b、c為邊,向外作正方形(如圖4),或等腰直角三角形(如圖5),或以三邊為直徑的半圓(如圖6)。若S1+S2=S3成立,則△ABC是直角三角形嗎?

師:這實(shí)際上是將之前問題的條件和結(jié)論互換,這樣變式,結(jié)論成立嗎?

教師“導(dǎo)”,學(xué)生“學(xué)”,學(xué)生在“對學(xué)”和“群學(xué)”中共同研究問題,解決問題,得出△ABC始終是直角三角形。

師:例題3,(1)已知,如圖7,將長方形的一邊BC沿CE折疊,使得點(diǎn)B落在AD邊的點(diǎn)F處,已知AB=8,BC=10,求BE的長。

圖7

師:由AB=8,BC=10,易知哪些線段的長?請?jiān)趫D中標(biāo)出來。

師:在Rt△DFC中,你可以求出DF的長嗎?請?jiān)趫D中標(biāo)出來。

師:由DF的長,你還可以求出哪條線段的長?請?jiān)趫D中標(biāo)出來。

師:設(shè)BE=x,你可以用含有x的式子表示出哪些線段長?請?jiān)趫D中標(biāo)出來。

師:你在哪個直角三角形中,可以應(yīng)用勾股定理建立方程?你建立的方程是

通過以上對比分析,利用閱讀的外圍去理解淺閱讀,都失之偏頗。筆者認(rèn)為,淺閱讀的淺應(yīng)該更著重于閱讀本身,在閱讀的過程中,都是有淺入深的一個漸進(jìn)過程。參與時間短、輕思考,即為淺閱讀,參與時間多、重思考,即為深閱讀。無論你讀的是什么書,目的怎樣,讀者是誰,無一不需要經(jīng)過這個過程。那么,在由淺入深的這個過程中,首先都要進(jìn)入淺閱讀,而在淺閱讀之后,經(jīng)過主體自身的判斷,是否需要進(jìn)入深閱讀。

生4:在Rt△DCF中,∵FC=BC=10,CD=8,在Rt△AEF中,∵∠A=90°,AE=8-x,∴42+(8-x)2=x2。

師:(2)如圖8,折疊長方形紙片,先折出對角線BD這條折痕,再折疊,使點(diǎn)A落在BD上的E處,折痕為DG,若AB=4,BC=3,求AG的長。

圖8

生5在黑板上板演:設(shè)AG的長為xcm,則x2+22=(4-x)2,解得解答過程略)。

師:還能用其他方法求AG的長嗎?

師:剛才我們以翻折問題為載體,利用方程思想,用“勾股定理”和“面積法”求出了AG的長。在生活中,我們也會遇到“最短路線問題”,下面我們一起來看例題4。

3.以練促學(xué),當(dāng)堂反饋。

師:例題4,如圖9,一條河同一側(cè)有兩個村莊A、B。A、B到河岸的最短距離分別為AC=1km,BD=2km。已知CD=4km,現(xiàn)欲在河岸上建一個水泵站向A、B兩村送水。水泵站建在河岸上何處時,從水泵站到A、B兩村鋪設(shè)的水管總長度最短?請求出最短距離。

圖9

生7:作點(diǎn)A關(guān)于河流所在直線的對稱點(diǎn)A′,連接A′B,交河流所在直線于點(diǎn)P,點(diǎn)P即為所求,BE=3,A′E=4,∴A′B=5。

師:這個最短路線問題,需從無到有去構(gòu)建“直角三角形”,再利用勾股定理解決問題。

師:例題5,圖10是一個三級臺階,它的每一級的長、寬和高分別為20dm、3dm、2dm,A和B是這個臺階兩個相對的端點(diǎn)。有一只螞蟻在A點(diǎn),想到B點(diǎn)去吃可口的食物,則螞蟻沿著臺階面爬到B點(diǎn)的最短路程是多少?

圖10

生8:可設(shè)螞蟻沿臺階面爬行到B點(diǎn)的最短路程為xdm,如圖11,由勾股定理,得x2=202+[(2+3)×3]2=252,解得x=25。

圖11

師:這個最短路線問題滲透了分類思想。借助于分類,我們可將復(fù)雜的問題簡單化。

4.回顧反思,學(xué)程總結(jié)。

師:通過本節(jié)課的學(xué)習(xí),請大家談一談收獲。

學(xué)生各抒己見。

五、教學(xué)反思

張衛(wèi)明名師工作室提倡“學(xué)生的實(shí)踐研究應(yīng)該指向高階思維”,主張“在課堂教學(xué)中,應(yīng)將低階思維和高階思維活動共同構(gòu)成一個多樣化的、由低到高的層次式的課堂核心活動群,這樣才能實(shí)現(xiàn)在發(fā)展學(xué)生低階思維的同時,推動其高階思維的發(fā)展,進(jìn)而實(shí)現(xiàn)課堂教學(xué)的有效性”,并提煉出“學(xué)程導(dǎo)航”的教學(xué)范式。

在設(shè)計(jì)本節(jié)課時,筆者從發(fā)展低階思維的“勾股定理的直接應(yīng)用”入手,層層遞進(jìn)到發(fā)展高階思維的“勾股定理在較復(fù)雜問題背景下的應(yīng)用”,由低到高,體現(xiàn)了思維的發(fā)展?!皩W(xué)程導(dǎo)航”教學(xué)范式需要教師的“導(dǎo)”和學(xué)生的“學(xué)”共同作用來實(shí)現(xiàn)。充分而不過分的導(dǎo)尤為重要,能使學(xué)生自主地開展建構(gòu)活動,構(gòu)建一章的知識框圖,歸納重難點(diǎn)、易錯點(diǎn)。本節(jié)課中,筆者通過“教”“學(xué)”“用”教學(xué)環(huán)節(jié),配以“獨(dú)學(xué)、對學(xué)和群學(xué)”等學(xué)習(xí)方式,讓學(xué)生獨(dú)立完成數(shù)學(xué)問題,在對學(xué)和群學(xué)中共同研究問題,解決問題,進(jìn)而形成高階思維。如探究“最短路線問題”,筆者通過創(chuàng)設(shè)情境、提供任務(wù)的方式,保證了探究的充分和有效,同時,學(xué)生也完成了自我建構(gòu)和共同建構(gòu),在課堂學(xué)習(xí)中優(yōu)先指向高階思維目標(biāo)的達(dá)成。筆者教方法,學(xué)生學(xué)方法,之后用方法遷移。所以,在教學(xué)過程中,教師應(yīng)將學(xué)習(xí)知識的過程還給學(xué)生,通過對知識的深度等級劃分,找到“不可教”的地方,然后把“不可教”之處讓渡給學(xué)生。

猜你喜歡
思維教學(xué)學(xué)生
思維跳跳糖
思維跳跳糖
思維跳跳糖
思維跳跳糖
微課讓高中數(shù)學(xué)教學(xué)更高效
甘肅教育(2020年14期)2020-09-11 07:57:50
趕不走的學(xué)生
“自我診斷表”在高中數(shù)學(xué)教學(xué)中的應(yīng)用
東方教育(2017年19期)2017-12-05 15:14:48
對外漢語教學(xué)中“想”和“要”的比較
學(xué)生寫話
學(xué)生寫的話
主站蜘蛛池模板: 免费中文字幕一级毛片| 日韩欧美国产综合| 国产香蕉国产精品偷在线观看| 777午夜精品电影免费看| 五月婷婷综合色| 99视频精品全国免费品| 美女潮喷出白浆在线观看视频| 久久无码av三级| 亚洲精品无码日韩国产不卡| 国产精品久久久久久久久久久久| 国产欧美高清| 国产精品第一区| 久久黄色小视频| 国产高清在线丝袜精品一区| 国产高清不卡视频| 国产精品13页| 青青草国产一区二区三区| 强奷白丝美女在线观看| 国产人碰人摸人爱免费视频| 四虎免费视频网站| 欧美成一级| 亚洲国产欧美目韩成人综合| 国产亚洲欧美在线人成aaaa| 亚洲综合狠狠| 尤物精品国产福利网站| 国产人成在线观看| 色爽网免费视频| 亚洲AV无码乱码在线观看裸奔 | 伊人久久大香线蕉影院| 国产精品久久久久久搜索| 欧美精品啪啪一区二区三区| 国产精品视屏| 久久香蕉国产线看精品| av在线5g无码天天| 亚洲欧美精品一中文字幕| 午夜在线不卡| 思思热在线视频精品| 99久久精品国产综合婷婷| 成人免费视频一区| 欧美成人免费午夜全| 午夜无码一区二区三区| 欧洲亚洲一区| 五月婷婷丁香色| 国产成人综合网| 久久精品中文字幕免费| 免费A∨中文乱码专区| 欧美伦理一区| 美女毛片在线| 福利一区在线| yy6080理论大片一级久久| 日本91视频| 亚洲一区二区成人| 国产99在线| 九九视频免费在线观看| 日本欧美在线观看| 天天视频在线91频| 国产女人18水真多毛片18精品| 国产一级片网址| 2024av在线无码中文最新| 夜精品a一区二区三区| AV片亚洲国产男人的天堂| 91在线国内在线播放老师| 日韩国产精品无码一区二区三区 | 亚洲综合第一页| 久久精品午夜视频| 亚洲精品777| 午夜电影在线观看国产1区 | 一本大道在线一本久道| 四虎永久免费在线| 亚洲免费福利视频| 欧美日韩国产系列在线观看| 97精品伊人久久大香线蕉| 国产第四页| 欧美日韩国产综合视频在线观看| 试看120秒男女啪啪免费| 国产欧美成人不卡视频| 日日拍夜夜嗷嗷叫国产| 亚洲无限乱码一二三四区| 国产91精品久久| 亚洲综合中文字幕国产精品欧美| 四虎成人在线视频| 素人激情视频福利|