999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

大腦中動脈栓塞模型大鼠海馬組織circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)分析*

2022-03-28 05:59:46陳博威唐榮梅徐雅倩易健劉柏炎
中國病理生理雜志 2022年3期
關(guān)鍵詞:海馬差異信號

陳博威, 唐榮梅, 徐雅倩, 易健, 劉柏炎△

大腦中動脈栓塞模型大鼠海馬組織circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)分析*

陳博威1, 唐榮梅1, 徐雅倩2, 易健2, 劉柏炎1△

(1湖南中醫(yī)藥大學(xué),湖南 長沙 410208;2湖南中醫(yī)藥大學(xué)第一附屬醫(yī)院,湖南 長沙 410007)

探討腦缺血模型大鼠海馬組織中差異表達(dá)的環(huán)狀RNAs(circRNAs)及信使RNAs(mRNAs),并進(jìn)行circRNA-微小RNA(miRNA)-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)的構(gòu)建。將雄性SD大鼠隨機(jī)分為對照組和模型組,每組8只,其中每組用于神經(jīng)行為學(xué)評分8只,尼氏染色4只,對照組基因芯片檢測4只,模型組基因芯片檢測3只。模型組大鼠使用大腦中動脈栓塞法(MCAO)復(fù)制腦缺血模型。7 d后采用神經(jīng)行為學(xué)評分和尼氏染色驗(yàn)證造模成功,Agilent競爭性內(nèi)源RNA(ceRNA)芯片篩選差異表達(dá)的circRNAs及mRNAs,通過GO功能和KEGG通路富集分析差異基因參與的主要生物學(xué)過程,RT-qPCR驗(yàn)證基因芯片結(jié)果,最后構(gòu)建circRNA-miRNA-mRNA轉(zhuǎn)錄網(wǎng)絡(luò)。與對照組相比,模型組大鼠神經(jīng)行為學(xué)評分顯著升高(<0.01),并出現(xiàn)海馬神經(jīng)元損傷。ceRNA芯片篩選出腦缺血大鼠海馬組織中有18個差異表達(dá)的circRNAs和836個差異表達(dá)的mRNAs(FC≥1.5,<0.05)。RT-qPCR驗(yàn)證結(jié)果顯示,隨機(jī)挑選的RNO_CIRCpedia_136、RNO_CIRCpedia_5686、RNO_CIRCpedia_9127及α-血紅蛋白穩(wěn)定蛋白(Ahsp)在模型組中表達(dá)下調(diào)(<0.05或<0.01),分泌型磷蛋白1(Spp1)及清道夫受體1(Msr1)在模型組中表達(dá)上調(diào)(<0.01),與基因芯片結(jié)果的變化趨勢一致。構(gòu)建了由3個circRNAs、4個miRNAs及9個mRNAs組成的三元轉(zhuǎn)錄網(wǎng)絡(luò)。生物信息學(xué)分析顯示這些差異基因可能通過血管內(nèi)皮生長因子信號通路、Toll樣受體信號通路、Janus激酶-信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子信號通路、磷脂酰肌醇3-激酶-蛋白激酶B信號通路及Hedgehog信號通路等調(diào)控腦缺血損傷。腦缺血大鼠海馬組織存在差異表達(dá)的circRNAs和mRNAs,這些差異基因可能通過circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)系統(tǒng)調(diào)控腦缺血損傷。

大腦中動脈栓塞;基因微陣列;環(huán)狀RNA;競爭性內(nèi)源RNA

缺血性腦血管病(ischemic cerebrovascular disease, ICD)具有高發(fā)病率和高致殘率的特點(diǎn),造成了極大的醫(yī)療負(fù)擔(dān)[1]。對于缺血性腦卒中,靜脈溶栓是目前主要的治療方法。然而,因溶栓嚴(yán)格的時間窗限制,故在臨床運(yùn)用中仍存在諸多限制,腦梗死仍是目前尚未攻克的疑難疾病之一。

與常規(guī)的線性RNA不同,環(huán)狀RNA(circular RNA, circRNA)特有的共價閉合環(huán)狀結(jié)構(gòu)使其具有良好的穩(wěn)定性,更難以被降解,這一特性也顯示了circRNA作為生物標(biāo)志物具有良好的潛力[2]。研究顯示,circRNA雖不能直接編碼翻譯蛋白質(zhì),但是其能充當(dāng)“微小RNA(microRNA, miRNA)海綿”,通過海綿吸附miRNA的方式,間接降低miRNA與下游靶向信使RNA(messenger RNA, mRNA)的結(jié)合,從而影響靶基因的表達(dá),即競爭性內(nèi)源RNA(competing endogenous RNA, ceRNA)調(diào)控機(jī)制[3]。有證據(jù)表明,circRNA參與的ceRNA調(diào)控軸在腦梗死的早期診斷和有效治療中發(fā)揮著重要作用,如circ_HECTD1 (HECT domain E3 ubiquitin protein ligase 1)可通過miR-27a-3p/卵泡抑素樣蛋白1(follistatin-like protein 1,F(xiàn)STL1)軸調(diào)控ICD后神經(jīng)損傷[4];circRNA TTC3 (tetratricopeptide repeat domain 3)能夠競爭性結(jié)合miRNA-372-3p,從而影響Toll樣受體4(Toll-like receptor 4, TLR4)表達(dá),參與腦缺血后的神經(jīng)炎癥反應(yīng)[5]。目前,由多個ceRNA軸組成的circRNA-miRNA-mRNA轉(zhuǎn)錄網(wǎng)絡(luò)已成為研究腦缺血病理生理機(jī)制的熱點(diǎn)[6]。

研究表明,哺乳動物大腦海馬區(qū)域存在靜默的神經(jīng)干細(xì)胞。當(dāng)腦缺血時,由于微環(huán)境變化激活了神經(jīng)干細(xì)胞,促進(jìn)其增殖并移行至損傷部位,分化成熟為各類神經(jīng)細(xì)胞,重建大腦的組織結(jié)構(gòu)[7]。因此,進(jìn)一步明確腦缺血后海馬區(qū)的分子機(jī)制變化,有利于尋找到治療腦缺血的新靶點(diǎn)。故本實(shí)驗(yàn)擬采用腦缺血模型大鼠,運(yùn)用ceRNA芯片分析腦缺血大鼠海馬組織差異表達(dá)的circRNAs及mRNAs,并進(jìn)行circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)的構(gòu)建,為進(jìn)一步尋找到治療腦缺血的靶點(diǎn)提供參考資料。

材料和方法

1 實(shí)驗(yàn)動物

SPF級雄性SD大鼠,周齡6~8周,體重(230±10) g,共20只,購自湖南斯萊克景達(dá)實(shí)驗(yàn)動物有限公司,實(shí)驗(yàn)動物生產(chǎn)許可證號為SCXK(湘)2019-0004。喂養(yǎng)于湖南中醫(yī)藥大學(xué)第一附屬醫(yī)院SPF級動物房,實(shí)驗(yàn)單位使用許可證號為SYXK(湘)2020-0010。室溫22~26 ℃,濕度45%~55%,通風(fēng),晝夜規(guī)律照明,適應(yīng)性飼養(yǎng)1周,大鼠自由飲水進(jìn)食。本實(shí)驗(yàn)已通過湖南中醫(yī)藥大學(xué)第一附屬醫(yī)院實(shí)驗(yàn)動物倫理委員會批準(zhǔn)(倫理號:ZYFY20201215-1)。

2 主要試劑

動脈栓線(貨號:2432A2)購自北京西濃科技有限公司;RNAwait非凍型組織保存液(貨號:MA0208)購自大連美侖生物技術(shù)有限公司;Trizol試劑(貨號: 10296010)購自Life Technologies;ceRNA基因芯片由Agilent定制;PCR引物由北京擎科新業(yè)生物合成。

3 主要儀器

2100型生物分析儀和G2505C型芯片掃描儀(Agilent);9700型PCR儀(ABI);5418型高速離心機(jī)(Eppendorf);Vectra3智能組織切片成像系統(tǒng)(PerkinElmer)。

4 方法

4.1模型的制備與評價采用Longa等[8]報道的線栓法復(fù)制大鼠大腦中動脈栓塞(middle cerebral artery occlusion, MCAO)腦缺血模型:術(shù)前禁食禁水12 h,0.3%戊巴比妥鈉麻醉,取頸正中切口,鈍性分離左側(cè)頸總、頸內(nèi)、頸外動脈,將線栓經(jīng)頸總動脈送入頸內(nèi)動脈,當(dāng)線栓上黑色標(biāo)記點(diǎn)恰好位于頸總分叉時固定線栓,消毒并縫合皮膚。術(shù)后2 h進(jìn)行神經(jīng)行為學(xué)評分,參照Longa等[8]報道的方法,1~3分表明造模成功,入選模型(model)組。共造模12只大鼠,實(shí)驗(yàn)期間死亡4只,剩余8只,對照(control)組8只大鼠無死亡。

4.2神經(jīng)行為學(xué)評估造模后7 d,應(yīng)用Ayelet Levy 14分評分法對每組所有大鼠神經(jīng)行為學(xué)進(jìn)行評估[9]。

4.3尼氏染色神經(jīng)行為學(xué)評分完成后,每組選取4只大鼠。麻醉后首先用預(yù)冷的生理鹽水及4%多聚甲醛進(jìn)行灌注處理,后斷頭取腦。4%多聚甲醛固定腦組織后,常規(guī)脫水、透明、包埋及切片,以1%甲苯胺藍(lán)染色。使用Vectra3智能組織成像系統(tǒng)掃描整個切片,并從海馬齒狀回(dentate gyrus, DG)和CA3區(qū)提取100倍視野。

4.4ceRNA芯片檢測神經(jīng)行為學(xué)評分完成后,每組選擇4只大鼠。麻醉后直接斷頭取腦,冰上操作迅速分離缺血側(cè)海馬組織,放入預(yù)先盛滿RNAwait液的凍存管中,嚴(yán)格按照操作流程保存送檢。采用Trizol法提取總RNA,檢測RNA濃度及質(zhì)量后,共有7個樣本進(jìn)行后續(xù)基因芯片分析(其中正常組4個,模型組3個)。擴(kuò)增RNA并轉(zhuǎn)錄成熒光cRNA。接著純化標(biāo)記的cRNA,將50 μL雜交溶液分布在ceRNA微陣列載玻片上。將載玻片放在安捷倫雜交爐中于65 ℃溫育17 h。洗滌、固定和掃描混合陣列,掃描完成后通過Feature Extraction軟件進(jìn)行數(shù)據(jù)的抽提,生成的原始數(shù)據(jù)文件經(jīng)GeneSpring軟件標(biāo)準(zhǔn)化后進(jìn)行后續(xù)的數(shù)據(jù)分析。

4.5基因本體(gene ontology, GO)功能及京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析將差異表達(dá)的circRNAs母源基因和mRNAs進(jìn)行GO功能及KEGG通路富集分析。

4.6RT-qPCR驗(yàn)證將芯片檢測后的剩余樣本進(jìn)行RT-qPCR驗(yàn)證。隨機(jī)選取了3個差異表達(dá)的circRNAs(RNO_CIRCpedia_136、RNO_CIRCpedia_5686及RNO_CIRCpedia_9127)和3個差異表達(dá)的mRNAs[α-血紅蛋白穩(wěn)定蛋白(alpha-hemoglobin stabilizing protein, Ahsp)、分泌型磷蛋白1(secreted phosphoprotein 1, Spp1)及清道夫受體1(macrophage scavenger receptor 1, Msr1)]。實(shí)驗(yàn)過程嚴(yán)格參照試劑盒步驟,內(nèi)參照選用β-actin,使用2-ΔΔCt法計算基因的相對表達(dá)量,各引物序列詳見表1。

表1 RT- qPCR引物序列

4.7circRNA-miRNA-mRNA轉(zhuǎn)錄網(wǎng)絡(luò)的構(gòu)建根據(jù)先前報道的方法及篩選條件[10],首先借助歐易生物云平臺共表達(dá)相關(guān)性分析模塊(https://cloud.oebiotech.cn/task/),輸入?yún)?shù)(相關(guān)系數(shù)閾值<0.8,相關(guān)系數(shù)值<0.05,分析算法為Pearson),篩選與差異mRNAs顯著正相關(guān)的差異circRNAs,隨后應(yīng)用miRBase 22.0數(shù)據(jù)庫預(yù)測circRNA-miRNA和miRNA-mRNA關(guān)系對,最后以miRNA為橋梁構(gòu)建circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)。

5 統(tǒng)計學(xué)處理

采用差異倍數(shù)(fold change, FC)≥1.5及<0.05的標(biāo)準(zhǔn)篩選差異基因[10]。計量資料以均數(shù)±標(biāo)準(zhǔn)差(man±SD)進(jìn)行表示。采用單因素方差分析比較多組間均數(shù)。以<0.05為差異有統(tǒng)計學(xué)意義。應(yīng)用GraphPad Prism 8作圖軟件分析并處理。

結(jié)果

1 腦缺血大鼠模型的建立

與對照組相比,模型組大鼠神經(jīng)行為學(xué)評分顯著升高(<0.01),見圖1A。另外尼氏染色顯示,與對照組相比,模型組大鼠海馬齒狀回區(qū)和CA3區(qū)神經(jīng)元排列不規(guī)則,細(xì)胞間隙增寬,細(xì)胞核固縮,見圖1B。這提示腦缺血大鼠模型建立成功,并且腦缺血大鼠缺血側(cè)海馬組織有病理損傷。

2 差異circRNAs與富集分析

基于ceRNA芯片,識別出模型組大鼠缺血側(cè)海馬組織相比對照組有18個差異表達(dá)的circRNAs,其中3個上調(diào),15個下調(diào),詳見圖2A、B。對這些差異circRNAs的母源基因進(jìn)行GO功能及KEGG通路富集分析,顯示GO功能的生物過程主要為興奮性突觸后電位、腦形態(tài)發(fā)生及對組織重塑的調(diào)節(jié)等,細(xì)胞組成主要為突觸及細(xì)胞連接等,分子功能主要為PDZ結(jié)構(gòu)域綁定、蛋白激酶C結(jié)合及蛋白質(zhì)結(jié)合等,詳見圖2C。KEGG通路富集分析結(jié)果主要為血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)信號通路、核因子κB(nuclear factor-κB, NF-κB)及Toll樣受體信號通路等,詳見圖2D。

Figure 2.Differentially expressed (DE) circRNAs and functional enrichment analysis. A: the scatter plot of the expression profiles of DE circRNAs between model and control groups (red dots: up-regulated genes; blue dots: down-regulated genes); B: heat map about DE circRNAs; C: GO enrichment analysis of maternal genes of DE circRNAs; D: KEGG enrichment analysis of maternal genes of DE circRNAs.

3 差異mRNAs與富集分析

同樣,本研究識別出模型組相比對照組有836個差異表達(dá)的mRNAs,其中537個上調(diào),299個下調(diào),詳見圖3A、B。對這些差異mRNAs進(jìn)行GO功能及KEGG通路富集分析,顯示生物過程主要為對病毒的防御反應(yīng)、吞噬作用及炎癥反應(yīng)等,細(xì)胞組成主要為細(xì)胞外空間及血紅蛋白復(fù)合物,分子功能主要為趨化因子活性、IgG結(jié)合及氧載體活性等,詳見圖3C。KEGG通路富集分析結(jié)果主要為Toll樣受體信號通路、腫瘤壞死因子(tumor necrosis factor, TNF)信號通路及酪氨酸蛋白激酶/信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(Janus kinase/signal transducer and activator of transcription, JAK/STAT)信號通路等,詳見圖3D。

Figure 3.Differentially expressed (DE) mRNAs and functional enrichment analysis. A: the scatter plot of the expression profiles of DE mRNAs between model and control groups (red dots: up-regulated genes; blue dots: down-regulated genes); B: heat map about DE mRNAs; C: GO enrichment analysis of DE mRNAs; D: KEGG enrichment analysis of DE mRNAs.

4 差異表達(dá)基因的驗(yàn)證

隨機(jī)挑選3個差異表達(dá)的cricRNAs和3個mRNAs,通過RT-qPCR驗(yàn)證基因芯片結(jié)果,其中RNO_CIRCpedia_136、RNO_CIRCpedia_5686、RNO_ CIRCpedia_9127及Ahsp在模型組中表達(dá)下調(diào),Spp1及Msr1在模型組中表達(dá)上調(diào)(<0.05或<0.01),與基因芯片結(jié)果的變化趨勢一致,見圖4,證實(shí)了基因芯片結(jié)果的準(zhǔn)確性。因此將所有差異表達(dá)的基因均列入后續(xù)分析。

Figure 4.Validation of differentially expressed genes. Mean±SD. n=3. *P<0.05, **P<0.01 vs control group.

5 circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)的構(gòu)建

為了進(jìn)一步闡明差異circRNAs的生物學(xué)功能,課題組首先篩選出與差異mRNAs顯著正相關(guān)的circRNAs,接著以miRNA為核心,預(yù)測具有結(jié)合位點(diǎn)的circRNA-miRNA和miRNA-mRNA關(guān)系對,最終構(gòu)建出由3個circRNAs、4個miRNAs及9個mRNAs組成的circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò),見圖5。對該網(wǎng)絡(luò)中的效應(yīng)分子mRNAs進(jìn)行富集分析,顯示生物過程主要為調(diào)節(jié)血管內(nèi)皮細(xì)胞遷移及小膠質(zhì)細(xì)胞激活的正調(diào)控等,細(xì)胞組成主要為Wnt信號體及自噬泡,分子功能主要為組蛋白脫乙酰基酶結(jié)合及激酶活性等,見圖6A;KEGG通路富集分析結(jié)果主要為磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase-protein kinase B, PI3K-Akt)信號通路及Hedgehog信號通路等,見圖6B。

Figure 5.circRNA-miRNA-mRNA ternary transcriptional network. Circle: circRNA; square: miRNA; triangle: mRNA. Lines indicate a targeted regulatory relationship between the two genes.

Figure 6.Enrichment analysis of mRNAs in the ternary transcriptional network. A: GO enrichment analysis of mRNAs; B: KEGG enrichment analysis of mRNAs.

討論

circRNA最初被認(rèn)為是異常RNA剪接或剪接錯誤的產(chǎn)物,生物學(xué)功能的潛力很小[11]。然而,隨著高通量測序、基因芯片技術(shù)和生物信息學(xué)的迅速發(fā)展,越來越多的證據(jù)表明,circRNA在大腦內(nèi)有著豐富且保守的表達(dá)[12],且參與了腦梗死、多系統(tǒng)萎縮和阿爾茨海默病等中樞神經(jīng)系統(tǒng)疾病的病理過程[13-14]。此外,目前已有腦缺血后circRNA表達(dá)譜的研究[6],但circRNA在海馬組織中的表達(dá)譜及其ceRNA機(jī)制研究尚未見報道。

首先,本研究識別出腦缺血大鼠海馬組織中有21個差異表達(dá)的circRNAs,其中4個上調(diào),17個下調(diào)。其中經(jīng)過驗(yàn)證的RNO_CIRCpedia_9127亦被稱為circ-ATXN1 (ataxin 1),研究表明circ-ATXN1可作為ceRNA海綿,形成circ-ATXN1/miR-526b-3p/基質(zhì)金屬蛋白酶2(matrix metalloproteinase 2, MMP2)軸,影響血管內(nèi)皮生長因子A(vascular endothelial growth factor A, VEGFA)的表達(dá),敲除-后MMP2與VEGFA表達(dá)下降,而circ-ATXN1的過表達(dá)逆轉(zhuǎn)了MMP2和VEGFA的表達(dá)降低,并可促進(jìn)血管新生[15]。此外,我們通過GO功能和KEGG通路富集分析研究了差異circRNA的潛在功能,GO功能富集分析主要為興奮性突觸后電位、腦形態(tài)發(fā)生、對組織重塑的調(diào)節(jié)、細(xì)胞突觸、細(xì)胞連接、蛋白激酶C結(jié)合及蛋白質(zhì)結(jié)合等。而KEGG通路富集主要為VEGF信號通路、NF-κB信號通路及Toll樣受體信號通路等。VEGF信號通路是調(diào)控腦缺血后血管生成的經(jīng)典通路,VEGF是胚胎發(fā)生和血管生成過程中血管形成的關(guān)鍵調(diào)節(jié)因子,研究表明VEGF可在細(xì)胞膜上與其受體血管內(nèi)皮細(xì)胞生長因子受體(vascular endothelial cell growth factor receptor, VEGFR)結(jié)合,觸發(fā)磷酸化細(xì)胞外信號調(diào)節(jié)激酶(phosphorylated extracellular signal-regulated kinases, p-ERK)和內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)等多個下游信號,從而促進(jìn)血管生成[16]。NF-κB信號通路及Toll樣受體信號通路亦被證實(shí)與腦缺血后的炎癥級聯(lián)反應(yīng)關(guān)系密切[17]。另外,作為circRNA分子功能的效應(yīng)器,本研究識別出腦缺血后共有836個差異表達(dá)的mRNAs,其中537個上調(diào),299個下調(diào)。進(jìn)一步的GO功能及KEGG通路富集分析發(fā)現(xiàn),這些差異表達(dá)的mRNAs主要參與了對病毒的防御反應(yīng)、吞噬作用、炎癥反應(yīng)、趨化因子活性、IgG結(jié)合及氧載體活性等生物功能,參與的信號通路為Toll樣受體信號通路、TNF信號通路及JAK-STAT信號通路等。TNF信號通路及JAK-STAT信號通路均已被證明與腦缺血后的細(xì)胞存活、細(xì)胞增殖和細(xì)胞周期等密切相關(guān)[18-19]。大腦功能的正常運(yùn)行與充足的糖氧供應(yīng)密切相關(guān),腦缺血后導(dǎo)致的過氧化應(yīng)激、炎癥反應(yīng)及代謝失調(diào)等均會導(dǎo)致大腦神經(jīng)元功能異常[20]。這些差異基因的富集結(jié)果與先前的報道一致[21],表明腦缺血的病理機(jī)制可能涉及氧化應(yīng)激,微血管損傷及炎癥反應(yīng)等。

基于共表達(dá)關(guān)系及生物信息學(xué)預(yù)測,本研究進(jìn)一步構(gòu)建了由3個circRNAs、4個miRNAs及9個mRNAs組成的三元轉(zhuǎn)錄網(wǎng)絡(luò),以求進(jìn)一步從整體的角度揭示腦缺血后海馬組織的分子變化。相關(guān)研究亦證實(shí)了上述部分靶點(diǎn)的作用,如有研究觀察到在腦梗死患者外周血中,miR-665表達(dá)顯著升高[22],miR-665的過表達(dá)可減輕缺氧/復(fù)氧誘導(dǎo)的小膠質(zhì)細(xì)胞凋亡和炎癥反應(yīng)[23];miR-1306可作為ceRNA軸的成員,抑制下游細(xì)胞凋亡相關(guān)分子的表達(dá),發(fā)揮神經(jīng)細(xì)胞保護(hù)作用[24-25];miR-328是評估腦卒中預(yù)后的重要生物標(biāo)志物,其高表達(dá)會顯著加重腦缺血再灌注損傷[26];細(xì)胞周期蛋白D1(cyclin D1, CCND1)屬于細(xì)胞周期家族,能夠促進(jìn)細(xì)胞周期正向進(jìn)行,與腦缺血后的神經(jīng)再生密切相關(guān)[27]。進(jìn)一步的富集分析顯示該網(wǎng)絡(luò)主要與PI3K-Akt信號通路及Hedgehog信號通路密切相關(guān)。PI3K-AKt信號通路是參與細(xì)胞增殖、分化及存活的重要通路,目前已有研究觀察到腦缺血后PI3K-AKt信號通路被激活,能促進(jìn)多種生長刺激因子的釋放,誘導(dǎo)神經(jīng)再生[28]。Hedgehog信號通路亦被證實(shí)與中樞神經(jīng)系統(tǒng)的神經(jīng)發(fā)生密切相關(guān)[29],有研究表明Hedgehog通路的激活能夠保護(hù)腦缺血后的神經(jīng)突觸及神經(jīng)干細(xì)胞,誘導(dǎo)神經(jīng)再生并促進(jìn)神經(jīng)功能恢復(fù)[30-31]。此外,本研究顯示該網(wǎng)絡(luò)中RNO_CIRCpedia_5508和miR-328a-5p分別在circRNA類別及miRNA類別中節(jié)點(diǎn)度值最高,結(jié)合上述報道,推測RNO_CIRCpedia_5508可能作為ceRNA海綿靶向調(diào)控miR-328a-5p,影響CCND1的表達(dá),進(jìn)而調(diào)控PI3K-Akt信號通路及Hedgehog信號通路,影響腦缺血后海馬組織的病理過程。但值得注意的是,針對該ceRNA軸,還需要進(jìn)一步的驗(yàn)證。

綜上所述,本研究探討了腦缺血后海馬組織circRNA及mRNA的表達(dá)譜,并初步構(gòu)建了circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò),這些差異基因與大腦缺血缺氧后的炎癥反應(yīng)、血管新生及神經(jīng)發(fā)生等病理生理過程密切相關(guān),還預(yù)測RNO_CIRCpedia_5508/miR-328a-5/CCND1可能是該網(wǎng)絡(luò)中的重要ceRNA調(diào)控軸,可為后續(xù)研究提供了基礎(chǔ)。

[1] Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11):1088-1098.

[2] Hanan M, Soreq H, Kadener S. CircRNAs in the brain[J]. RNA Biol, 2017, 14(8):1028-1034.

[3]劉燕芳, 逯丹, 徐安定. 腦血管病環(huán)狀RNA的轉(zhuǎn)錄后調(diào)控及展望[J]. 中國病理生理雜志, 2018, 34(4):760-763.

Liu YF, Lu D, Xu AD. circRNAs: post-transcription regulation in cerebrovascular diseases[J]. Chin J Pathophysiol, 2018, 34(4):760-763.

[4] Zhang Z, He J, Wang B. Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis[J]. Cell Cycle, 2021, 20(9):914-926.

[5] Yang B, Zang L, Cui J, et al. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction[J]. Stem Cell Re Ther, 2021, 12(1):125.

[6] Li S, Chen L, Xu C, et al. Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population[J]. Sci Rep, 2020, 10(1):10138.

[7]馬曉嬌, 承歐梅, 校歡, 等. 急性腦缺血通過激活EphB2/ephrin-B1/NMDA受體信號通路促進(jìn)小鼠海馬神經(jīng)發(fā)生[J]. 中國病理生理雜志, 2020, 36(8):1389-1395.

Ma XJ, Cheng OM, Xiao H, et al. Acute cerebral ischemia activates EphB2/ephrin-B1/NMDA receptor signaling pathway to promote hippocampal neurogenesis in mice[J]. Chin J Pathophysiol, 2020, 36(8):1389-1395.

[8] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91.

[9] Levy A, Bercovich-Kinori A, Alexandrovich AG, et al. CD38 facilitates recovery from traumatic brain injury[J]. J Neurotrauma, 2009, 26(9):1521-1533.

[10] Zhang Z, Yue L, Wang Y, et al. A circRNA-miRNA-mRNA network plays a role in the protective effect of diosgenin on alveolar bone loss in ovariectomized rats[J]. BMC Complement Med Ther, 2020, 20(1):220.

[11] Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic[J]. Pharmacol Ther, 2018, 187:31-44.

[12] Piwecka M, Gla?ar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function[J]. Science, 2017, 357(6357):eaam8526.

[13] Chen BJ, Mills JD, Takenaka K, et al. Characterization of circular RNAs landscape in multiple system atrophy brain[J]. J Neurochem, 2016,139(3):485-496.

[14] Li Y, Lv Z, Zhang J, et al. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients[J]. Metab Brain Dis, 2020, 35(1):201-213.

[15] Liu X, Shen S, Zhu L, et al. SRSF10 inhibits biogenesis of circ-ATXN1 to regulate glioma angiogenesis via miR-526b-3p/MMP2 pathway[J]. J Exp Clin Canc Res, 2020, 39(1):121.

[16] Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke[J]. Neural Regen Res, 2020, 15(1):16-19.

[17] Eltzschig HK, Eckle T. Ischemia and reperfusion: from mechanism to translation[J]. Nat Med, 2011, 17(11):1391-1401.

[18] Wu Y, Xu J, Xu J, et al. Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia[J]. Mol Med Rep, 2018, 17(4):5007-5012.

[19] Chen AQ, Fang Z, Chen XL, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke[J]. Cell Death Dis, 2019, 10(7):487.

[20] Gong C, Zhou X, Lai S, et al. Long noncoding RNA/Circular RNA-miRNA-mRNA axes in ischemia-reperfusion injury[J]. Biomed Res Int, 2020, 2020:8838524.

[21] Huang Q, Li C, Xia N, et al. Neurochemical changes in unilateral cerebral hemisphere during the subacute stage of focal cerebral ischemia-reperfusion in rats: anH-1 magnetic resonance spectroscopy study[J]. Brain Res, 2018, 1684:67-74.

[22] Greco R, Demartini C, Zanaboni A, et al. Characterization of CB2 receptor expression in peripheral blood monocytes of acute ischemic stroke patients[J]. Transl Stroke Res, 2021, 12(4):550-558.

[23] Zhang X, Feng Y, Li J, et al. MicroRNA-665-3p attenuates oxygen-glucose deprivation-evoked microglial cell apoptosis and inflammatory response by inhibiting NF-κB signaling via targeting TRIM8[J]. Int Immunopharmacol, 2020, 85:106650.

[24] Chen X, Li C, Li J, et al. Upregulation of miR-1306-5p decreases cerebral ischemia/reperfusion injury by targeting BIK[J]. Biosci Biotech Bioch, 2019, 83(12):2230-2237.

[25] Huang Y, Deng L, Zeng L, et al. Silencing of H19 alleviates oxygen-glucose deprivation/reoxygenation-triggered injury through the regulation of the miR-1306-5p/BCL2L13 axis[J]. Metab Brain Dis, 2021, 36(8):2461-2472.

[26] Wang S, Jun J, Cong L, et al. miR-328-3p, a predictor of stroke, aggravates the cerebral ischemia-reperfusion injury[J]. Int J Gen Med, 2021, 14:2367-2376.

[27] Lee Hc, Ahn SM, Pak ME, et al. Positive effects of α-asarone on transplanted neural progenitor cells in a murine model of ischemic stroke[J]. Phytomedicine, 2018, 51:151-161.

[28] Beker MC, Caglayan B, Caglayan AB, et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival[J]. Sci Rep, 2019, 9(1):19082.

[29] Wilson NH, Stoeckli ET. Sonic Hedgehog regulates Wnt activity during neural circuit formation[J]. Vitam Horm, 2012, 88:173-209.

[30] Yu P, Wang L, Tang F, et al. Resveratrol-mediated neurorestoration after cerebral ischemic injury - Sonic Hedgehog signaling pathway[J]. Life Sci, 2021, 280:119715.

[31] Yin S, Bai X, Xin D, et al. Neuroprotective effects of the sonic hedgehog signaling pathway in ischemic injury through promotion of synaptic and neuronal health[J]. Neural Plast, 2020, 2021:9762592.

Analysis of circRNA-miRNA-mRNA ternary transcriptional network in hippocampus of a rat model of middle cerebral artery occlusion

CHEN Bo-wei1, TANG Rong-mei1, XU Ya-qian2, YI Jian2, LIU Bai-yan1△

(1,410208,;2,410007,)

To investigate the differentially expressed (DE) circular RNAs (circRNAs) and messenger RNAs (mRNAs) in hippocampus of cerebral ischemia model rats, and to construct circRNA-microRNA (miRNA)-mRNA ternary transcription network.Male SD rats were randomly divided into control group and model group with 8 rats each, of which 8 rats in each group were used for neurobehavioral scores, 4 rats for Nissl staining, 4 rats for microarray in control group, and 3 rats for microarray in model group. Middle cerebral artery occlusion (MCAO) was used to replicate cerebral ischemia model in model group. Seven days later, neurobehavioral scoring and Nissl staining were performed to verify the success of modeling. Agilent competing endogenous RNA (ceRNA) microarray was used to screen DE circRNAs and mRNAs. The main biological processes involved in DE genes were analyzed by GO function and KEGG pathways, and the results of gene microarray were validated by RT-qPCR. Finally, the circRNA-miRNA-mRNA transcription network was constructed.Compared with control group, the neurobehavioral scores of MCAO rats increased significantly (<0.01), and hippocampal neuronal cell damage appeared. Furthermore, 18 DE circRNAs and 836 DE mRNAs were detected in hippocampal tissues of rats with MCAO by ceRNA microarray (FC≥1.5,<0.05). RT-qPCR showed that RNO_CIRCpedia_136, RNO_CIRCpedia_5686, RNO_CIRCpedia_9127 and alpha hemoglobin stabilizing protein (Ahsp), selected randomly for validation, were down-regulated in model group (<0.05 or<0.01). The expression of secreted phosphoprotein 1 (Spp1) and macrophage scavenger receptor 1 (Msr1) was up-regulated in model group (<0.01), which was consistent with the change trend of gene microarray results. A ternary transcription network consisting of 3 circRNAs, 4 miRNAs and 9 mRNAs was constructed. Bioinformatic analysis showed that these DE genes may regulate cerebral ischemia injury through vascular endothelial growth factor signaling pathway, Toll-like receptor signaling pathway, Janus kinase-signal transducer and activator of transcription signaling pathway, phosphatidylinositol 3-kinase-protein kinase B signaling pathway and Hedgehog signaling pathway.There are DE circRNAs and mRNAs in the hippocampus of cerebral ischemia rats, and these DE genes may regulate cerebral ischemia injury through circRNA-miRNA-mRNA ternary transcription network system.

Middle cerebral artery occlusion; Gene microarray; Circular RNA; Competing endogenous RNA

R743; R363.2

A

10.3969/j.issn.1000-4718.2022.03.012

1000-4718(2022)03-0479-08

2021-10-11

2021-12-10

[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 82074251);湖南中醫(yī)藥大學(xué)中醫(yī)學(xué)一流學(xué)科開放基金資助項(xiàng)目(No. 2021ZYX38); 湖南中醫(yī)藥大學(xué)研究生創(chuàng)新課題(No. 2021CX20)

Tel: 0731-88536925; E-mail: liubaiyan@126.com

(責(zé)任編輯:林白霜,宋延君)

猜你喜歡
海馬差異信號
相似與差異
音樂探索(2022年2期)2022-05-30 21:01:37
海馬
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
海馬
找句子差異
生物為什么會有差異?
基于FPGA的多功能信號發(fā)生器的設(shè)計
電子制作(2018年11期)2018-08-04 03:25:42
“海馬”自述
基于LabVIEW的力加載信號采集與PID控制
主站蜘蛛池模板: 免费毛片在线| 成人在线综合| 亚洲中文字幕av无码区| 久久男人资源站| 一级做a爰片久久毛片毛片| 19国产精品麻豆免费观看| 亚洲精品无码抽插日韩| 日韩第九页| 日韩欧美高清视频| 五月天丁香婷婷综合久久| 91丝袜美腿高跟国产极品老师| 麻豆精品在线视频| 欧美A级V片在线观看| 成年女人18毛片毛片免费| 久热精品免费| 婷婷亚洲视频| 国产二级毛片| 性色在线视频精品| 国产欧美在线观看一区| 操美女免费网站| 成人自拍视频在线观看| 波多野结衣的av一区二区三区| 69国产精品视频免费| 精品视频一区二区三区在线播| 欧美精品成人| 国产美女91视频| 国内精品久久久久久久久久影视| 久久久久国产精品免费免费不卡| 国产网友愉拍精品视频| 精品一区二区三区中文字幕| 欧美成人看片一区二区三区| 久久久国产精品无码专区| 午夜精品久久久久久久99热下载 | 久久99精品久久久久久不卡| 欧美黑人欧美精品刺激| 久久99这里精品8国产| 国产在线精品网址你懂的| 国产亚洲欧美日韩在线观看一区二区| 另类欧美日韩| 伊人久久久久久久| 成人永久免费A∨一级在线播放| 欧美在线一二区| 91九色国产在线| 国产成人综合网| 欧美一区二区精品久久久| 国产成a人片在线播放| 国产v精品成人免费视频71pao| 91精品专区| 久久综合伊人77777| 国产网友愉拍精品视频| 99精品影院| 亚洲精品无码av中文字幕| 国产日韩欧美黄色片免费观看| 99激情网| 亚洲一区第一页| 五月天综合婷婷| 国产成人a毛片在线| 久久综合一个色综合网| 精品综合久久久久久97超人该| 在线看片国产| 免费看美女毛片| 伊人五月丁香综合AⅤ| 精品久久国产综合精麻豆| 国产成人亚洲精品色欲AV| 美女黄网十八禁免费看| 久久99精品久久久久久不卡| 国产国模一区二区三区四区| 91免费在线看| 人妻一本久道久久综合久久鬼色| 亚洲无线视频| 91青青视频| 成人韩免费网站| 久久视精品| 超清人妻系列无码专区| 久久国产亚洲欧美日韩精品| 日韩欧美亚洲国产成人综合| 国产精品自在在线午夜区app| 免费无码在线观看| 久久免费精品琪琪| 亚洲人成网站色7799在线播放| 国产欧美精品一区aⅴ影院| 日韩欧美中文字幕在线韩免费 |