999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

進氣壓力及流量對自調型J-T制冷器性能的影響

2022-06-09 05:03:54蘇鵬翼趙利明徐長彬
激光與紅外 2022年5期
關鍵詞:深度模型

蘇鵬翼,趙利明,徐長彬

(華北光電技術研究所,北京 100015)

1 引 言

自調機構是自調型J-T制冷器控制節流流量的關鍵結構之一。近年來國內外學者對影響自調機構性能的結構參數[1-2]、運行參數[3]等進行了大量研究工作。但現有研究結果仍未有效解決因自調機構設計不合理造成制冷器間歇性噴液等穩定性較差的問題[4],尤其當氣瓶為氣源時,隨著瓶內壓力逐漸降低,自調結構的閥針不斷運動,導致制冷器流量變化范圍更大,穩定性變差。針對該問題,本文建立理論模型,研究了不同高壓流體進氣壓力、流量對制冷器不同區域流體的壓力場、溫度場及閥針插入深度的影響規律。

自調型J-T制冷器系統主要由換熱器及自調機構兩部分組成,系統如圖1所示[5]。換熱器包括翅片管、芯管及外部殼體等結構,自調機構主要由閥針、閥體、傳動機構及芯管內的自調元件構成,其中自調元件可采用波紋管或記憶合金彈簧等可變形元件。

節流前的高壓流體壓力是分析自調機構力學分析的重要參數之一[6],但是該壓力值不易測量,且受高壓流體進氣壓力、流量及熱交換器結構等因素的共同影響。為更準確地分析制冷器流體對自調機構的影響,本文對換熱器熱交換過程及自調機構節流過程分別建模,耦合分析流體對自調機構的影響規律。

2 理論模型

2.1 換熱器理論模型

熱平衡方程法是計算換熱器溫度及壓力分布常用方法之一。Gupta等人[7]利用熱平衡方程法分析了翅片管高度、內徑、制冷器與外殼間隙等結構參數對換熱性能的影響規律。Zhou等[8]基于熵增理論分析了制冷器換熱器部分的做功能力損失。Hong等[9]利用熱平衡方程法對制冷器理論制冷量、有用功損失等參數進行分析及預測。Tzabar[10]、肖日仕[11]結合模擬與試驗,改進熱平衡方程法模型,證明了模型對進出口壓力及溫度模擬結果具有較高的準確性。

Damle與 Atrey[12]、Cao等人[13]研究結果表明:毛細管沿程的J-T效應是不可忽略的,本文將沿程的J-T效應引入到熱平衡方程法模型中。同時,現有模型對芯管及其內充氣體的溫度分布規律的研究較少,該區域可顯著影響自調元件的形變過程。此外,現有模型求解時常將需要測量的低壓流體入口處壓力及溫度作為定解條件[10-11],不利于自調型制冷器的設計計算。本文將在前人模型的基礎上,采用考慮了沿程J-T效應的熱平衡方程法,以易測量的低壓流體出口壓力作為定解條件,求解制冷器高低壓流體、芯管內部各區域的壓力、溫度等參數。

在高壓與低壓流體模擬計算過程中,考慮了節流效應的氣體焓值采用公式(1)計算[12],假設低壓氣體入口處狀態為飽和蒸汽。

Δh=cpΔT-μJTcpΔp

(1)

式中,Δh為單元內流體焓變;μJT為節流系數;cp為比熱;Δp為壓降。

在芯管及內充氣體模擬計算過程中,假設內充氣體均為氣態氮氣,穩定工況下內充氮氣與芯管間為導熱過程,芯管與低壓流體間為對流換熱。芯管及內充氣體兩個區域的傳熱方程可統一為式(2);利用公式(3)將芯管、內充氣體換熱與高壓低壓流體換熱耦合。芯管及內部氣體兩端為絕熱邊界條件[13]。

hlAt(Tl-T)=0

(2)

Ql=Qh+hlAt(T-Tl)

(3)

式中,T為單元內芯管或內充氣體的溫度;Tl為對流換熱過程中流體溫度;Acx與Acr分別為每個單元軸向x與徑向r導熱過程的換熱面積;At為對流換熱過程的接觸面積。低壓流體的吸熱量Ql由高壓流體的放熱量Qh與芯管對流換熱量組成。

本文所采用的熱平衡方程法的控制方程及參數計算公式匯總至表1。將未考慮與已考慮J-T節流效應的模型分別記作模型1、模型2,將同時考慮J-T節流效應及芯管內部換熱的模型記作模型3。

表1 熱平衡方程法的參數公式及控制方程匯總表[11-12,15]Tab.1 Summary of governing equations of heat balance equation method

2.2 自調機構理論模型

對于波紋管、記憶合金彈簧兩種自調機構,閥針的插入深度xL是影響流量的關鍵因素之一。閥針與閥體的結構示意圖如圖2所示。

圖2 自調結構閥針閥體結構示意圖Fig.2 Structure diagram of self-adjusting valve needle and valve body

改變閥針的插入深度,調節制冷器的流量。通過節流孔流量m的經驗公式為[14]:

(4)

(5)

(6)

式中,Ao表示閥針與節流孔間的通流截面積;P與ρ分別為節流前的氣體壓力及密度;Do為節流孔孔徑;Dt為閥針插入節流孔內的最大截面直徑;θ為閥針的錐角。

基于上述兩個結構的模型,對J-T制冷器的性能參數進行分析求解。

3 結果分析

3.1 換熱器模型驗證

利用肖日仕[11]、Ng等人[16]研究的制冷器結構(分別記作結構1、結構2)及試驗數據對上述模型進行驗證,換熱器的結構參數如表2所示。模擬數據與試驗數據對比結果如表3所示。

表2 換熱器結構參數[11,16]Tab.2 Structural parameters of heat exchanger

對比表3試驗數據與模擬結果可知,盡管兩種制冷器結構參數、工質及邊界條件存在差異,三種模型對低壓流體出口溫度Tlo的模擬值準確性均比較高,與試驗值的最大偏差為2.78 %。與模型1相比,考慮了J-T節流效應的模型2與模型3的低壓流體出口溫度值Tlo與試驗值更接近,最大偏差減小至1.38 %,準確性更高。模型2與模型3的計算結果接近相等。

表3 模擬數據與試驗數據對比結果[11,16]Tab.3 Comparison results of simulation and test data

圖3示出了制冷器結構1在高壓流體進氣壓力為20.08 MPa時,三種模型模擬的高壓與低壓流體溫度隨換熱器長度的變化規律。

圖3 流體溫度隨換熱器長度的變化規律Fig.3 Variation of fluid temperature with heat exchanger length

由圖3及公式(1)可知,由于模型2與模型3考慮了節流效應,該過程節流系數μJT>0,因此模型2與模型3的高壓與低壓流體溫度模擬值較模型1更低。模型3的低壓流體的進出口溫差模擬值略微高于模型2,其原因為低溫端低壓流體的部分冷量經芯管及其內部的氣體傳遞到高溫段,換熱量略微增加,換熱器內部溫度場更均勻。

換熱器不同區域的換熱量隨其長度的變化規律如圖4所示,由圖4可知,隨著換熱器長度增加,高壓與低壓流體溫度差增大,導致換熱量迅速增加。但是在芯管及內部氣體兩端的絕熱邊界條件下,從芯管及其內部傳遞的換熱量較少,僅占高壓與低壓流體間總換熱量的0.08 %。因此,模型2與模型3的溫度場基本一致。

圖4 換熱量隨換熱器長度的變化Fig.4 Variation of heat exchange with heat exchanger length

圖5與圖6分別示出了流體壓力及密度隨制冷器長度的變化。由圖5可知,隨著換熱器長度增加,高壓流體壓力顯著減小,由20.08 MPa降低至10.68 MPa(模型2);低壓流體入口壓力模擬值略高于出口壓力約0.56 kPa,因此可忽略低壓流體的壓降。由圖6可知,隨溫度的降低,高壓流體與低壓流體的密度顯著增加。

圖5 流體壓力隨換熱器長度的變化Fig.5 Variation of fluid pressure with length of the heat exchanger

圖6 密度隨換熱器長度的變化Fig.6 Variation of density with length of heat exchanger

對比三種模型可知,考慮節流效應后,高壓與低壓流體總壓降較模型1更小。分析其原因可知,考慮節流后溫度模擬值較低,流體密度較高。將動量微分方程變形為式(7),其中,等號右側第二項為流體可壓縮性產生的壓降;數據表明,其數值遠小于右側第一項,部分文獻已忽略[7];忽略第二項后的壓降dP與密度值ρ呈反比,導致模型1的壓降低于模型2與模型3。模型2與模型3的壓降及密度無明顯差異。

(7)

3.2 換熱器性能分析

由前一小節分析可知,考慮節流效應的模型2與模型3模擬值準確性更高。為獲得換熱器內部各區域更準確的溫度場及壓力場,本小節利用模型3分析不同進氣壓力及流量下換熱器的性能參數變化規律。

圖7示出了不同高壓流體出口壓力隨進氣壓力、流量的變化規律。由圖7可知,隨著進氣壓力增加,高壓流體部分的總壓降減?。浑S著流量增加,流體壓力損失越大。分析原因認為:隨著壓力增加,高壓流體密度增加導致沿程摩阻減??;由式(7)可知,壓降隨流量平方的增加而增加。

圖7 高壓流體出口壓力隨進氣壓力、流量的變化規律Fig.7 Effect of flow on outlet pressure of high pressure fluid

不同進氣壓力及流量下節流后干度變化如圖8所示。由圖8可知,隨著流量增加及壓力減小,節流后的干度逐漸增加,表明單位質量流量的工作制冷能力下降。當進氣壓力16 MPa、流量為0.30 g/s時,干度值為0.915,即節流口工質接近飽和蒸汽。由此推斷,若進一步減小進氣壓力或增加流量,節流后的工質可能由濕蒸汽轉變為干飽和蒸汽或過熱蒸汽,制冷器節流后溫度將大幅度變化,制冷能力不足。

圖8 節流后干度隨進氣壓力、流量的變化規律Fig.8 Effect of flow on dryness after throttling

采用公式(8)計算制冷器理想狀態的制冷量Qideal[11],制冷量隨進氣壓力、流量的變化規律如圖9所示。

Qideal=m(hho-hli)=mhpo(1-x)

(8)

式中,hpo為汽化潛熱;x為干度。

由圖9可知,當流量相同時,制冷器制冷量隨進氣壓力的增加而增加;當進氣壓力相同時,制冷器隨流量先增加后減小,該現象與Ardhapurkar與Atrey的研究有相似的結論[17]。結合式(8)可知,制冷量與質量流率呈正比,隨干度增加而減小,因此制冷量存在最大峰值。

圖9 制冷量隨進氣壓力、流量的變化規律Fig.9 Effect of flow on refrigerating capacity

3.3 芯管及其內部氣體溫度場分析

不同流量及高壓氣體進氣壓力下,換熱器內部不同區域溫度場分布如圖10、圖11所示,沿徑向方向依次表征芯管內氮氣、芯管、低壓流體及高壓流體的溫度值。

圖10 當Phi=20.08 MPa時不同流量下換熱器各區域溫度云圖Fig.10 Variation of temperature cloud chart with length of heat exchanger when Phi=20.08 MPa

由圖10可知,芯管外部的高低壓流體間存在較大的溫度梯度;芯管及其內部溫度沿軸向及徑向方向逐漸降低;隨著流量減小,制冷器冷段的區域范圍逐漸減小。其主要原因為,流量越大,節流后低壓流體攜帶的冷量越高,導致高壓流體溫度、密度及比熱下降越迅速。

分析圖11可知,隨著壓力增加,換熱器冷段的區域范圍逐漸減小。分析原因認為,隨著進氣壓力增加,高壓流體流體密度及比熱增大,導致高壓流體溫度不易下降;低壓流體密度及比熱較小,其溫度易隨高壓流體不斷升高。

圖11 溫度云圖隨換熱器長度的變化(m=0.3 g/s)Fig.11 Variation of temperature cloud chart with length of heat exchanger when m=0.3 g/s

3.4 自調機構分析

不同高壓流體進氣壓力及流量下,閥針的插入深度變化規律如圖12所示。由圖12可知,高壓流體進氣壓力越大,不同流量下的閥針插入深度越大。當m≤0.1 g/s時,不同流量對應的插入深度只在268~276 μm之間變化,即當流量越小時,閥針插入深度越接近恒定值,自調機構無需匹配運動。當進氣壓力越高時,由于流體密度越大,流量隨插入深度的變化越劇烈,該現象可能導致制冷器流量不穩定,甚至不易調節,失去自調功能。

圖12 高壓流體進氣壓力對插入深度的影響Fig.12 Effect of inlet pressure of high pressure fluid on insertion depth

圖13示出了閥針的插入深度對高壓流體進氣壓力及節流孔初始孔徑的變化規律。由圖13可知,流量越小,閥針插入深度值越大;隨著節流孔孔徑及高壓氣體進氣壓力的增加,不同流量對應的插入深度值逐漸接近,該現象易導致流量隨插入深度迅速變化,不易調節;相同流量下,隨節流孔初始直徑及進氣壓力增加,閥針插入深度的變化幅度逐漸減小,即自調機構需匹配的運動范圍越小。由此可知,節流孔初始孔徑具有最優解。

圖13 節流孔初始直徑對插入深度的影響Fig.13 Effect of initial orifice diameter on insertion depth

進一步分析圖13可知,當流量m≤0.1 g/s時,不同進氣壓力(20~30 MPa)對插入深度變化幅度的影響可以忽略,即流量較小時,壓力變化不會顯著改變插入深度,制冷器運行更穩定。由此推斷,為提高流量的可調節性,在孔徑滿足最大流量要求的前提下,可選擇較小孔徑的節流孔。當流量m>0.1 g/s時,可根據插入深度變化幅度選擇與之匹配運行的自調元件。

閥針錐角對閥針插入深度的變化規律如圖14所示。由圖14可知,隨著錐角增加,不同進氣壓力下的插入深度變化范圍逐漸減??;但由公式(4)~(6)可知,錐角越大,流量變化越劇烈,不利于流量的穩定。

圖14 閥針錐角對插入深度的影響Fig.14 Effect of valve needle cone angle on insertion depth

綜合圖13及圖14可知,節流孔初始直徑及閥針錐角均具有最優值,該最優值與自調結構的運行性能相關。由此可知,當換熱器參數一定時,或應基于自調元件的形變范圍,選擇合適的節流孔初始孔徑及閥針錐角,以提高流量穩定性及自調結構匹配性。

4 總 結

本文采用優化的控制單元法,建立自調型J-T制冷器的換熱器與自調結構的分析模型,分析不同高壓流體進氣壓力及流量對制冷器運行性能的影響規律,獲得如下結論:

(1)高壓流體總壓降、節流后低壓流體的干度隨流量增加而增大,隨高壓流體入口壓力增加而減小。當高壓流體進氣壓力一定時,隨著流量變化,制冷器制冷量存在峰值。

(2)芯管外側的高壓與低壓流體間溫度梯度較大;芯管及其內部氣體冷端區域范圍隨流量增加而擴大,隨高壓氣體進氣壓力增加而縮小。

(3)當換熱器結構一定時,閥針插入深度及其錐角具有最優值。對于本文所分析的制冷器,當流量相同且小于0.1g/s時,高壓流體入口壓力(20~30 MPa)對閥針插入深度變化范圍可忽略。

猜你喜歡
深度模型
一半模型
深度理解一元一次方程
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
深度觀察
深度觀察
深度觀察
深度觀察
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
主站蜘蛛池模板: 精品亚洲国产成人AV| 在线欧美日韩国产| 国产精品99在线观看| 久久网欧美| 欧美精品高清| 91福利一区二区三区| 精品国产免费观看| V一区无码内射国产| 亚洲国模精品一区| 制服丝袜一区二区三区在线| 欧美97色| 欧美日本中文| 亚洲—日韩aV在线| 国产精品自拍露脸视频| 亚洲国产成人精品无码区性色| 国产成人精品一区二区免费看京| 无码福利视频| 国产微拍精品| 97超级碰碰碰碰精品| yjizz国产在线视频网| 91欧美在线| 一级毛片在线播放免费观看| 国产爽妇精品| 国产成人免费手机在线观看视频 | 91免费片| 日韩福利在线视频| A级毛片高清免费视频就| 亚洲精品无码日韩国产不卡| 国产精品污污在线观看网站| 亚洲欧美一区二区三区蜜芽| 国产亚洲精品自在久久不卡| 精品无码日韩国产不卡av| 国产精品xxx| 国产精品尤物在线| yy6080理论大片一级久久| 在线国产资源| 色婷婷电影网| av一区二区无码在线| 国产成人精品高清不卡在线| 亚洲午夜福利精品无码| 全部免费毛片免费播放| 亚洲欧美成aⅴ人在线观看| 久久美女精品国产精品亚洲| 国产一区二区丝袜高跟鞋| 91亚瑟视频| 国产白浆一区二区三区视频在线| 欧美成人怡春院在线激情| 国产亚洲精久久久久久无码AV| 欧美性色综合网| 99在线观看国产| 四虎在线高清无码| 欧美www在线观看| 亚洲天堂区| 久久99国产综合精品1| 2021天堂在线亚洲精品专区| 国产成人亚洲综合A∨在线播放| 一本大道无码高清| 国产精品理论片| 亚洲人在线| 亚洲av无码人妻| 2021国产乱人伦在线播放| 在线中文字幕日韩| 9999在线视频| 国产成人a在线观看视频| 91久久夜色精品国产网站 | 激情无码字幕综合| 国产91精选在线观看| 在线不卡免费视频| 欧美中文字幕无线码视频| 亚洲美女AV免费一区| 大陆精大陆国产国语精品1024| 久久免费视频播放| 不卡视频国产| 天堂成人av| 美女无遮挡免费网站| 四虎永久在线精品国产免费| 成人亚洲国产| 一级毛片网| 久久天天躁夜夜躁狠狠| 国产精品私拍在线爆乳| 国产自无码视频在线观看| 在线va视频|