999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

磁浮車輛-橋梁耦合系統隨機振動分析的時域顯式方法研究

2022-08-01 00:57:10陸周瑞
工程力學 2022年8期
關鍵詞:橋梁系統

陸周瑞,陳 冉,蘇 成,2

(1. 華南理工大學土木與交通學院,廣州 510640;2. 華南理工大學亞熱帶建筑科學國家重點實驗室,廣州 510640)

磁浮列車以其運行速度高、乘坐舒適安全、線路適應能力強、運營維護成本低等優勢,成為當前頗具競爭力的地面軌道交通運輸工具[1-4]。目前,國內外已建成多條磁浮列車商業線路,我國600 km/h 高速磁浮試驗樣車也已進入試跑階段。當磁浮列車高速通過高架橋梁時,軌道不平順是誘發磁浮車輛和橋梁耦合振動的重要因素,直接影響行車舒適性和穩定性[5-6]。經典的車橋耦合動力學理論主要聚焦于確定性振動分析方面,考慮輸入系統的激勵是確定性函數(如某一軌道不平順樣本),研究單一給定激勵作用下車橋系統的動力響應。事實上,軌道不平順具有本質的隨機性,而車橋耦合系統本身是一個時變體系,在軌道隨機不平順作用下的車橋耦合振動是典型的非平穩隨機振動問題,需要在非平穩隨機振動理論框架下進行研究??紤]軌道不平順等激勵源的隨機特性,開展磁浮車輛-橋梁耦合系統(以下簡稱磁浮車橋耦合系統)隨機振動分析方法研究具有重要的理論價值和現實意義。

已有的車橋耦合系統隨機振動分析方法可以劃分為統計型方法[5,7-9]和非統計型方法[10-19]。統計型方法即傳統的隨機模擬法(也稱Monte Carlo 模擬法),該法通過計算車橋耦合系統在大量隨機生成激勵樣本下的時域響應,統計得到車橋動力響應的隨機特征,如文獻[5]采用軌道不平順譜生成樣本,模擬計算了TR06 磁浮車橋耦合系統時域上的隨機響應,通過時頻變換給出系統隨機響應的功率譜。統計型方法本質上是針對樣本的確定性分析方法,其優點是原理簡單和適用性廣,但計算效率嚴重依賴于所需樣本量和單樣本時程分析效率,難以滿足大型復雜磁浮車橋耦合系統隨機振動計算的需求。非統計型方法指基于隨機振動理論的分析方法,主要有譜演化法(包括功率譜法[10-11]和虛擬激勵法[12-15])、矩演化法[16]和概率密度演化法[17-19]等。其中,虛擬激勵法已被應用于磁浮車輛隨機振動問題,如文獻[12]基于虛擬激勵原理,提出磁浮車輛系統受多點異相位平穩隨機激勵的響應功率譜計算方法,但未考慮磁浮車輛與橋梁的耦合振動問題??傮w而言,對于一般的車橋耦合系統隨機振動問題,已開展了大量研究,但針對磁浮車橋耦合系統隨機振動問題,相關研究尚不多見。

時域顯式法(explicit time-domain method)是近年來發展起來的一類針對大規模系統的高效非平穩隨機振動分析方法[20-23]。該法通過構建系統動力響應的時域顯式表達式,實現系統物理演化機制與概率演化機制的相對分離,在獲取響應統計矩的過程中,無須反復求解系統運動方程,同時可以任意選取所關注的自由度進行降維計算。最近,時域顯式法已成功應用于線彈性接觸[24]和非線性赫茲接觸[25]的輪軌車橋耦合系統隨機振動分析,展現了良好的計算精度和效率。

本文在文獻[24 - 25]的基礎上,進一步發展了考慮軌道隨機不平順作用的磁浮車橋耦合系統隨機振動分析時域顯式法。分別從車輛系統和橋梁系統的運動方程出發,結合車軌間的電磁力方程和幾何相容條件,構建表征車橋相互作用的電磁力關于軌道不平順的時域顯式表達式,并進一步得到磁浮車橋耦合系統關鍵響應關于軌道不平順的時域顯式表達式。在此基礎上,利用統計矩運算法則或隨機模擬法,高效計算磁浮車橋耦合系統關鍵響應的演變統計矩。數值算例表明,本文所提方法具有理想的計算精度與效率。

1 磁浮車橋耦合系統的基本方程

1.1 計算模型

為了闡述時域顯式法的列式過程,考慮二自由度常導電磁懸浮型車輛以勻速V通過簡支梁橋的計算模型,如圖1 所示。車輛系統由車體、車體懸架和電磁鐵組成,采用多剛體建模,m1和m2分別為車體和電磁鐵的質量,ks和cs分別為車體懸架的剛度和阻尼。橋梁系統采用平面梁單元建模,L為橋梁跨度, ρAb和EIb分別為橋梁的線密度和抗彎剛度。假定磁浮車輛通過橋梁前橋面在自重作用下保持水平,并假定軌道與橋面之間不存在相對位移,w(x)為軌道不平順隨機場,以向下為正,其中x=Vt。

圖1 二自由度磁浮車輛-橋梁耦合系統力學模型Fig. 1 Mechanical model for a 2-DOF maglev vehicle-bridge coupled system

1.2 磁浮車輛系統運動方程

車輛系統的運動方程可以列為:

式中:下標v 表示車輛(vehicle);Mv、Cv和Kv分別為車輛系統的質量矩陣、阻尼矩陣和剛度矩陣;Yv、和分別為車輛系統的位移向量、速度向量和加速度向量,方向以向下為正,并取車輛系統在岸上的靜懸浮位置為原點;G為車輛系統的重力;F(t) 為 電磁吸引力,如圖1 所示;Lv為作用于車輛電磁鐵上荷載 [G-F(t)]的定位向量。

1.3 橋梁系統運動方程

橋梁系統的運動方程可以列為:

式中:下標b 表示橋梁(bridge);Mb、Cb和Kb分別為橋梁系統的質量矩陣、阻尼矩陣和剛度矩陣;Yb、和分別為橋梁系統的位移向量、速度向量和加速度向量,方向以向下為正,并取車輛通過橋梁前的橋梁系統靜平衡位置為原點;Lb(x) 為 車輛位置x處 電磁力F(t)的定位向量。

1.4 電磁力方程

與輪軌直接接觸方式不同,磁浮車輛借助電磁鐵和軌道之間的電磁吸引力克服重力作用,實現懸浮。任意瞬時的電磁力可以表示為:

式中:μ0為空氣磁導率;N為電磁鐵線圈匝數;A為有效磁極面積;I(t) 為 電磁鐵電流;c(x)為懸浮間隙,x=Vt,如圖1 所示。

式(3)說明了電磁力是關于電流和懸浮間隙的非線性函數。假定車輛靜懸浮時,電流和懸浮間隙分別為I0和c0,此時電磁力F0=G??紤]到車輛運行時控制電流和懸浮間隙的變化較小[5],在I0和c0處對電磁力進行一階泰勒展開,可將電磁力表達為如下線性函數:

式中: ΔI(t) 和 Δc(x)分別為電流變化量和懸浮間隙變 化 量;kI和kc分 別 為 ΔI(t) 和 Δc(x)的 比 例系數,其表達式分別為:

1.5 電流控制律和車軌幾何相容條件

電磁力是有源主動控制力,通常可以將懸浮間隙變化量等信號輸入懸浮控制器,實現電磁力的動態調整,進而控制懸浮間隙變化量,保持車輛的懸浮穩定性。選取懸浮間隙變化量 Δc(x)、車輛電磁鐵豎向速度(t) 和 豎向加速度(t)為狀態反饋量,則電流控制律可以寫為[8]:

式中,G1、G2和G3分別為 Δc(x) 、(t) 和(t)的反饋系數。

根據車輛和橋梁之間的幾何相容條件,由圖1可得懸浮間隙變化量 Δc(x)的表達式為:

式中:yv(t) 為 車輛電磁鐵豎向位移;yb(x,t)為電磁力作用點處橋梁豎向位移。

將式(7)和式(8)代入式(4),整理后可得:

式中:

由以上推導可見,電磁力式(9)綜合考慮了線性化電磁力方程式(4)、電流控制律式(7)和幾何相容條件式(8),揭示了車橋運動狀態及軌道不平順對電磁力的影響機制。

2 系統響應的時域顯式表達式

2.1 系統響應關于電磁力的顯式表達

采用任意一種數值積分方法,如Newmark-β法,分別求解運動方程式(1)和式(2),導出車輛和橋梁響應關于各離散時刻電磁力F(ti)的顯式表達式:

2.2 電磁力關于軌道不平順的顯式表達

考慮全部時刻的電磁力,由式(9)可得:

式中,w[n]=[w(x1)w(x2) ···w(xn)]T。

將式(15)~式(18)代入式(19),整理后可得:

式中:

式中,Iu為n階單位矩陣。

式(20)即為電磁力向量F[n]關于軌道不平順向量w[n]的顯式表達式,該式從本質上反映了磁浮車橋耦合系統的物理演化過程。

2.3 系統關鍵響應關于軌道不平順的顯式表達

式(13)和式(14)分別給出了電磁力作用下磁浮車輛系統和橋梁系統的響應表達式,而式(20)則給出了電磁力關于軌道不平順的表達式。因此,可以進一步推導車輛系統和橋梁系統關鍵響應關于軌道不平順的顯式表達式。假定rv(t)和rb(t)分別為磁浮車輛系統和橋梁系統的某一關鍵響應。同樣地,由式(13)和式(14)可以得到全部時刻rv(ti)和rb(ti)(i=1,2,···,n)分別為:

將式(20)分別代入式(22)和式(23)中,整理后可得磁浮車輛系統和橋梁系統關鍵響應關于軌道不平順的顯式表達式:

式中:

2.4 電流變化量及懸浮間隙變化量關于軌道不平順的顯式表達

除了車輛系統和橋梁系統的關鍵響應外,與磁浮車輛行駛穩定性密切相關的控制電流變化量和懸浮間隙變化量也應重點關注。由式(7)和式(8)可 以 得 到 全 部 時 刻 ΔI(ti) 和Δc(ti)(i=1,2,···,n)分別為:

式 中: ΔI[n]=[ΔI(t1)ΔI(t2) ··· ΔI(tn)]T,Δc[n]=[Δc(t1) Δc(t2) ··· Δc(tn)]T。

將式(20)代入式(15)~式(18),然后再分別代入式(28)和式(29),整理后可得電流變化量和懸浮間隙變化量關于軌道不平順的顯式表達式:

式中:

至此,已經獲得磁浮車橋耦合系統關鍵響應、控制電流變化量以及懸浮間隙變化量關于軌道不平順的顯式表達,分別如式(24)、式(25)、式(30)和式(31)所示。當給定軌道不平順隨機場的功率譜密度函數或相關函數后,即可利用上述式子開展磁浮車橋耦合系統隨機振動分析。

3 磁浮車橋耦合系統隨機振動分析

3.1 時域顯式直接法

式中, E(w[n]) 和 cov(w[n],w[n])分別表示軌道不平順的均值向量和協方差矩陣,它們的具體形式如下:

其中,μw(x)和Rw(x,x+τ)分別為軌道不平順場的均值函數和相關函數。特別地,當w(x)為均勻隨機場時,Rw(τ)可由軌道不平順場的功率譜密度函數Sw(ω)通過傅氏變換求得。

值得注意的是,由式(34)~式(37)計算得到的各協方差矩陣,其對角線元素即為各個時刻磁浮車橋耦合系統關鍵響應、電流變化量以及懸浮間隙變化量的方差值。

從上述計算列式可以看出,由于已經先行構建了磁浮車橋耦合系統關鍵響應、電流變化量以及懸浮間隙變化量的顯式表達式,在其統計矩的計算過程中,并不需要嵌入磁浮車橋耦合系統運動方程的求解,同時可以針對任意關鍵響應進行降維計算,顯著提高了隨機振動的分析效率。由于該法是在時域顯式表達式的基礎上直接進行統計矩的運算,因此可稱為時域顯式直接法。

3.2 時域顯式隨機模擬法

磁浮車橋耦合系統關鍵響應、控制電流變化量以及懸浮間隙變化量的平均峰值通常也是需要重點關注的,可以利用隨機模擬方法獲得。根據式(39)給出的軌道不平順向量w[n]的協方差矩陣,利用隨機向量的數字生成方法,如正交分解法[26],即可生成w[n]的大量樣本(k=1,2,···,K),K為樣本總數。將生成的軌道不平順樣本代入時域顯式表達式(24)、式(25)、式(30)和式(31),得:

對各個物理量的時程樣本峰值進行統計,即可得到各物理量的平均峰值如下:

3.農村新型養老保險。國務院從2009年起開展新型農村社會養老保險(簡稱新農保)試點。新型農村社會養老保險是以保障農村居民年老時的基本生活為目的,由政府組織實施的一項社會養老保險制度,是國家社會保險體系的重要組成部分。養老待遇由社會統籌與個人賬戶相結合,與家庭養老、土地保障、社會救助等其他社會保障政策措施相配套,建立個人繳費、集體補助、政府補貼相結合的籌資模式。

值得注意的是,若采用傳統隨機模擬法,需要將生成的軌道不平順樣本代入電磁力式(9),并借助磁浮車橋耦合系統運動方程式(1)和式(2)進行反復迭代求解,樣本分析計算效率很低。利用已經構建完畢的磁浮車橋耦合系統關鍵響應、電流變化量和懸浮間隙變化量的時域顯式表達式進行隨機模擬,在樣本分析中并不需要求解磁浮車橋耦合系統運動方程,且可以針對任意關鍵響應進行降維計算,大幅提高了隨機模擬的計算效率。由于該法是在時域顯式表達式的基礎上進行隨機模擬,因此可稱為時域顯式隨機模擬法。

4 數值算例1

采用圖1 所示的磁浮車橋耦合模型開展數值模擬研究,相關參數參考文[27]選定。橋梁跨度L=20 m , 線密度 ρAb=1.42×103kg/m,抗彎剛度EIb=1.66×108N·m2,采用Rayleigh 阻尼模型,阻尼比 ζ=0.05。橋梁離散為100 個平面梁單元。車體質量m1=500 kg , 電磁鐵質量m2=300 kg,車體懸架剛度ks=1.40×104N/m , 車體懸架阻尼cs=5.80×102N·s/m 。 空氣磁導率μ0=4π×10-7H/m,有效磁極面積A=0.049 m2,線圈匝數N=356 T,靜懸浮電流I0=20 A , 靜懸浮間隙c0=0.01 m。電流控制的位移反饋系數G1=7500 A/m,速度反饋系數G2=10 A·s/m , 加速度反饋系數G3=0.5 A·s2/m 。 車輛行駛速度V=20 m/s。

假定軌道不平順場為零均值均勻隨機場,其功率譜密度函數可取為如下形式[5]:

式中:ω為空間圓頻率,ω=2πf,f為空間頻率;α為頻率特征參數;Aw為粗糙度系數。在本算例中,取 α=3,Aw=6.1×10-8m,f的取值范圍為[0.01,7]m-1。

4.1 單樣本時程分析

根據上述功率譜密度函數形成如式(39)所示的軌道不平順向量的協方差矩陣,據此生成大量軌道不平順樣本,其中一條軌道不平順樣本如圖2所示。

圖2 某軌道不平順樣本Fig. 2 A sample of guideway irregularity

采用Newmark-β 積分格式建立磁浮車橋耦合系統關鍵響應、電流變化量和懸浮間隙變化量的時域顯式表達式,分別如式(24)、式(25)、式(30)和式(31)所示,時程分析步長 Δt=0.005 s??紤]圖2 所示的單個軌道不平順樣本,采用時域顯式法獲得橋梁跨中豎向位移ybm、車體豎向加速度a1、電流變化量 ΔI和懸浮間隙變化量 Δc的時程曲線,分別如圖3~圖6 所示。為了進行對比,采用傳統的Newmark-β 逐步迭代法計算得到的結果也示于圖3~圖6 中。從圖中可見,時域顯式法和傳統方法的計算結果完全吻合,說明了時域顯式法的正確性。

圖3 橋梁跨中豎向位移 ybm時程Fig. 3 Time history of vertical displacement ybmat mid-span of bridge

圖4 車體豎向加速度 a1時程Fig. 4 Time history of vertical acceleration a1 of car body

圖5 電流變化量 ΔI時程Fig. 5 Time history of electric current change ΔI

圖6 懸浮間隙變化量 Δc時程Fig. 6 Time history of air gap changeΔc

在計算效率方面,表1 對比了兩種方法進行單樣本分析的計算耗時。從表1 中可見,時域顯式法的耗時由兩部分組成:一部分是建立時域顯式表達式所需時間(0.739 s);另一部分是利用時域顯式表達式進行時程分析所需時間(0.013 s),總耗時0.752 s;而Newmark-β 逐步迭代法則耗時1.413 s。顯然,對于單樣本時程分析,時域顯式法的計算效率已經高于Newmark-β 逐步迭代法的效率。

表1 單樣本時程分析耗時對比Table 1 Comparison of computation time for sample analysis

4.2 響應統計矩分析

采用時域顯式直接法,即式(34)~式(37),計算磁浮車橋耦合系統關鍵響應、電流變化量和懸浮間隙變化量的統計矩時程。其中,考慮到軌道不平順是零均值均勻隨機場,因此 E(w[n])=0,而cov(w[n],w[n])可以利用式(48)給出的功率譜密度函數計算得到。圖7~圖14 分別給出了橋梁跨中豎向位移ybm、車體豎向加速度a1、電流變化量 ΔI和懸浮間隙變化量 Δc的均值時程和標準差時程。為了進行對比,根據 cov(w[n],w[n]),通過正交分解法生成大量軌道不平順樣本,采用時域顯式隨機模擬法進行統計矩分析,其結果也示于圖7~圖14中。從圖中可見,隨著樣本數的增加,時域顯式隨機模擬法的計算結果逐漸收斂,并與時域顯式直接法的計算結果十分接近,驗證了時域顯式直接法的正確性。注意到,對于隨機模擬,計算電流變化量或懸浮間隙變化量統計矩時程所需樣本數一般要多于計算橋梁跨中豎向位移或車體豎向加速度統計矩時程所需的樣本數。從圖8 可見,在車輛即將出橋時,橋梁跨中豎向位移的標準差出現最大值,這一現象與文[10]算例中出現的情況相似。

圖7 橋梁跨中豎向位移 ybm 均值時程Fig. 7 Time history of mean value of vertical displacement ybmat mid-span of bridge

圖8 橋梁跨中豎向位移 ybm 標準差時程Fig. 8 Time history of standard deviation of vertical displacement ybm at mid-span of bridge

圖9 車體豎向加速度 a1均值時程Fig. 9 Time history of mean value of vertical acceleration a1 of car body

圖10 車體豎向加速度 a1標準差時程Fig. 10 Time history of standard deviation of vertical acceleration a1 of car body

圖11 電流變化量 ΔI均值時程Fig. 11 Time history of mean value of electric current changeΔI

圖12 電流變化量 ΔI標準差時程Fig. 12 Time history of standard deviation of electric current changeΔI

圖13 懸浮間隙變化量 Δc均值時程Fig. 13 Time history of mean value of air gap changeΔc

圖14 懸浮間隙變化量 標準差時程ΔcFig. 14 Time history of standard deviation of air gap changeΔc

在計算效率方面,表2 列出了兩種方法的計算耗時。從表中可知,兩種方法都需要建立系統響應時域顯式表達式,耗時0.739 s,該時間與表1相應的時間是一致的。除此以外,時域顯式直接法在進行響應統計矩運算時,還需耗時0.100 s;而時域顯式隨機模擬法在進行響應統計矩分析時,還需耗時0.072 s~0.693 s 不等,這部分時間取決于所選的樣本數。顯然,兩種方法均具有較高的計算效率。值得注意的是,隨著樣本數的增加,時域顯式隨機模擬法的計算耗時并沒有顯著增加,這是由于時域顯式表達式僅需構建1 次,即可用于各樣本分析。因此,樣本數的增加對于時域顯式隨機模擬法的總耗時影響不大,說明在樣本數規模加大時,時域顯式隨機模擬法比傳統隨機模擬法(如基于Newmark-β 逐步迭代的隨機模擬法)更具計算效率優勢。

表2 算例1 響應統計矩分析的計算耗時Table 2 Computation time for statistical moment analysis of responses for the 1st numerical example

4.3 響應平均峰值分析

根據 cov(w[n],w[n]),通過正交分解法生成大量軌道不平順樣本,采用時域顯式隨機模擬法,即式(44)~式(47),分別計算橋梁跨中豎向位移ybm、車體豎向加速度a1、電流變化量 ΔI和懸浮間隙變化量 Δc的平均峰值,其結果如表3 所示。從表中可見,各響應平均峰值收斂較快,當采用200 個樣本時,結果已基本收斂。由于表3 中所考慮的樣本數與表2 中的樣本數一致,這里的時域顯式隨機模擬法計算時間與表2 所列時間基本一致。

表3 各響應平均峰值Table 3 Mean peak values of responses

5 數值算例2

本文以二自由度磁浮車輛與橋梁耦合模型為例闡述了時域顯式法的列式過程,該列式原理同樣可以推廣應用于多自由度磁浮列車與橋梁耦合系統的隨機振動分析。采用圖15 所示的磁浮列車過多跨簡支梁橋模型開展工程應用研究,相關參數參考文[27]選定。多跨簡支梁橋的單跨長度L=25 m , 線密度 ρAb=3.76×103kg/m,抗彎剛度EIb=2.46×1010N·m2,采用Rayleigh 阻尼模型,阻尼比 ζ=0.05。每跨簡支梁離散為100 個平面梁單元。磁浮列車由三節車輛組成,每節車輛包含1 個車體和5 個懸浮架,采用多剛體建模,考慮沉浮和點頭運動,每節車輛共12 個自由度。其中,車體長度L1=16 m , 車體質量M1=2.32×104kg,車體轉動慣量J1=2.11×105kg·m2,懸浮架長度L2=3.12 m , 懸浮架質量M2=846 kg,懸浮架轉動慣量J2=1.80×103kg·m2,懸浮架與車體之間由車體懸架連接,車體懸架剛度ks=8.10×104N/m,車體懸架阻尼cs=5.00×103N·s/m。考慮車輛之間的聯系,車輛連接豎向剛度kl=5.00×105N/m,車輛連接豎向阻尼cl=2.50×104N·s/m。懸浮架下布置4 個電磁鐵,每個電磁鐵對應的有效磁極面積A=0.084 m2,線圈匝數N=356 T,靜懸浮電流I0=20 A , 靜懸浮間隙c0=0.01 m。電流控制的反饋系數取值與數值算例1 相同。列車行駛速度V=100 km/h。

圖15 磁浮列車過多跨簡支梁橋模型Fig. 15 Mechanical model for a maglev train traversing a multi-span simply-supported bridge

采用與數值算例1 中相同的軌道不平順場功率譜密度函數,分別利用時域顯式直接法和時域顯式隨機模擬法計算磁浮車橋耦合系統關鍵響應的統計矩時程,時程分析步長 Δt=0.02 s。圖16~圖19 分別給出了某跨簡支梁跨中豎向位移ybm和第2 節車輛車體豎向加速度a1的均值時程和標準差時程。從圖中可見,時域顯式隨機模擬法采用1000 個樣本的計算結果與時域顯式直接法的計算結果十分接近。

圖16 某跨簡支梁跨中豎向位移 ybm 均值時程Fig. 16 Time history of mean value of vertical displacement ybmat mid-span of a simply-supported beam

圖17 某跨簡支梁跨中豎向位移 ybm標準差時程Fig. 17 Time history of standard deviation of vertical displacement ybm at mid-span of a simply-supported beam

圖18 第2 節車輛車體豎向加速度 a1均值時程Fig. 18 Time history of mean value of vertical acceleration a1for car body of the 2nd maglev vehicle

圖19 第2 節車輛車體豎向加速度 a1標準差時程Fig. 19 Time history of standard deviation of vertical acceleration a1 for car body of the 2nd maglev vehicle

在計算效率方面,表4 列出了兩種方法的計算耗時。從表中可知,兩種方法均能對大型復雜磁浮車橋耦合系統進行高效的隨機振動分析,其中時域顯式隨機模擬法比時域顯式直接法耗時更短。實際上,當車橋耦合系統規模達到一定程度時,采用式(36)和式(37)所需的計算量將高于采用隨機模擬方法所需的計算量,此時時域顯式隨機模擬法將比時域顯式直接法計算效率更高。

表4 算例2 響應統計矩分析的計算耗時Table 4 Computation time for statistical moment analysis of responses for the 2nd numerical example

6 結論

軌道不平順作用下磁浮車橋耦合系統隨機振動本質上是一類非平穩隨機振動,采用傳統隨機振動方法求解時,由于需要同時處理系統的物理演化和概率演化兩種機制,通常需要反復求解磁浮車橋耦合系統的運動微分方程,涉及大量的時程積分運算。本文開展了磁浮車橋耦合系統隨機振動分析的時域顯式方法研究,得到了以下結論:

(1) 通過建立磁浮車橋耦合系統關鍵響應關于軌道不平順的時域顯式表達式,完全揭示了系統的物理演化過程,在此基礎上再開展磁浮車橋耦合系統關鍵響應的隨機分析,實現了系統物理演化機制和概率演化機制的分離處置;

(2) 時域顯式方法大幅提升了磁浮車橋耦合系統隨機振動分析的計算效率,可以準確計算磁浮車橋耦合系統關鍵響應、控制電流變化量以及懸浮間隙變化量等隨機過程的統計矩及平均峰值。

本文將電磁力在靜懸浮點附近線性化,是一種簡化處理。在后續研究工作中,將進一步考慮電磁力的非線性特點,開展磁浮車橋耦合系統非線性隨機振動方法的研究,以期在實際工程中推廣應用。

猜你喜歡
橋梁系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
基于PowerPC+FPGA顯示系統
半沸制皂系統(下)
手拉手 共搭愛的橋梁
句子也需要橋梁
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
加固技術創新,為橋梁健康保駕護航
中國公路(2017年11期)2017-07-31 17:56:30
無人機在橋梁檢測中的應用
中國公路(2017年10期)2017-07-21 14:02:37
主站蜘蛛池模板: 99色亚洲国产精品11p| 日韩毛片免费视频| 国产精品偷伦视频免费观看国产| 手机在线看片不卡中文字幕| 亚洲Aⅴ无码专区在线观看q| 精品福利视频网| 国产高潮流白浆视频| 久久亚洲国产视频| 亚洲av无码专区久久蜜芽| 亚洲91在线精品| 综合五月天网| 欧美一区二区三区不卡免费| 好吊妞欧美视频免费| 色悠久久久久久久综合网伊人| 国产乱子伦精品视频| 色妺妺在线视频喷水| 一级毛片基地| 欧美天天干| 99re热精品视频国产免费| a级毛片网| 国产人人干| 欧美一区二区三区国产精品| 国产毛片不卡| 最新国产你懂的在线网址| 国产在线精品香蕉麻豆| 五月婷婷欧美| 在线亚洲精品自拍| 中文无码毛片又爽又刺激| 欧美成人怡春院在线激情| 2021国产精品自产拍在线| 国产精品亚洲日韩AⅤ在线观看| 久草视频一区| 干中文字幕| 久久美女精品| 视频二区中文无码| 成人在线不卡视频| 国产亚洲精久久久久久久91| 中国一级毛片免费观看| 国产在线观看精品| 久久精品这里只有精99品| 久久综合伊人 六十路| 亚洲天堂视频网站| 青青热久免费精品视频6| 亚洲国产亚洲综合在线尤物| 中文字幕亚洲专区第19页| 精品福利视频网| 91精品久久久久久无码人妻| 永久成人无码激情视频免费| 九九热精品在线视频| 亚洲欧美一区二区三区麻豆| 真实国产精品vr专区| av一区二区无码在线| 狠狠色狠狠综合久久| 91精品免费久久久| 伊人狠狠丁香婷婷综合色| 精品国产电影久久九九| 国产十八禁在线观看免费| 亚洲欧美日韩天堂| 四虎永久在线视频| 亚洲AV无码不卡无码| 国产剧情国内精品原创| 日韩精品一区二区三区swag| 国产成本人片免费a∨短片| 日韩在线播放欧美字幕| 免费看黄片一区二区三区| 92午夜福利影院一区二区三区| 国产精品毛片一区视频播| 国产精品污视频| 三上悠亚一区二区| 国产www网站| 精品久久久久久中文字幕女| 一区二区三区国产| 国产精品无码一二三视频| 九九久久精品免费观看| 亚洲欧美精品一中文字幕| 国产福利小视频高清在线观看| 久草视频精品| 91人妻日韩人妻无码专区精品| 国产swag在线观看| 自拍中文字幕| 日本91在线| 另类欧美日韩|