999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

赤泥對(duì)堆肥腐熟度及其產(chǎn)品對(duì)稻米Cd阻控效果

2022-08-24 00:12:40周紅燕李侃麒冷為貴王宗抗
中國(guó)環(huán)境科學(xué) 2022年8期

周紅燕,陳 喆,2*,李侃麒,冷為貴,王宗抗

赤泥對(duì)堆肥腐熟度及其產(chǎn)品對(duì)稻米Cd阻控效果

周紅燕1,陳 喆1,2*,李侃麒1,冷為貴3,王宗抗3

(1.桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,廣西 桂林 541004;2.廣西師范大學(xué),珍稀瀕危動(dòng)植物生態(tài)與環(huán)境保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室,廣西 桂林 541004;3.貴港市芭田生態(tài)有限公司,廣西 貴港 537000)

以赤泥作為堆肥添加劑進(jìn)行雞糞好氧堆肥試驗(yàn),分析了堆肥過(guò)程中赤泥對(duì)溫度、pH值、電導(dǎo)率(EC)及種子發(fā)芽指數(shù)(GI)的影響.通過(guò)三維熒光與紫外-可見(jiàn)光光譜特征解析堆肥過(guò)程中腐殖酸(HA)組分的演變特征.并利用盆栽實(shí)驗(yàn)探索堆肥產(chǎn)品對(duì)礦區(qū)土壤中稻米鎘的阻隔效果.結(jié)果表明,赤泥的添加提高了堆體高溫期的溫度.EC較堆肥前均顯著降低,但赤泥堆肥EC(4.29mS/cm)顯著高于雞糞堆肥EC(3.59mS/cm).雞糞堆肥與赤泥堆肥的GI隨著堆肥時(shí)間的增長(zhǎng)而升高,在堆肥結(jié)束時(shí)分別達(dá)到100.2%和96.44%,說(shuō)明2種堆肥產(chǎn)品均未表現(xiàn)出植物毒性.2種堆肥HA中類蛋白質(zhì)等物在堆肥過(guò)程中均轉(zhuǎn)化為較為穩(wěn)定的類腐殖質(zhì)物質(zhì),HA的SUVA254、SUVA280和A226~400在堆肥結(jié)束后也顯著提高,表明堆肥的腐殖化程度升高.此外,赤泥的添加提高了腐殖化參數(shù)數(shù)值,證明赤泥的加入能夠加速堆肥腐殖化進(jìn)程.在盆栽實(shí)驗(yàn)中,雞糞堆肥與赤泥堆肥均提高了土壤的pH值,降低了土壤中DTPA-Cd和糙米中Cd的含量.其中,施用2g/kg赤泥堆肥后,糙米Cd含量降低幅度最大,為58.68%,水稻糙米中Cd的含量由未施用堆肥的0.42mg/kg降低至0.17mg/kg.因此,赤泥的添加可以在一定程度上提高堆肥效率,同時(shí)施加堆肥產(chǎn)品對(duì)土壤Cd的生物有效性及水稻植株內(nèi)Cd起到抑制與阻隔作用,且施加赤泥堆肥效果更為顯著.

赤泥;雞糞;堆肥;水稻;鎘污染;重金屬

赤泥是制鋁工業(yè)提取氧化鋁時(shí)排出的工業(yè)固體廢棄物,廣西平果鋁是中國(guó)特大型鋁土礦,年產(chǎn)氧化鋁高達(dá)200萬(wàn)t,年排放赤泥量也高達(dá)約200萬(wàn)t[1].鋁礦開(kāi)采造成赤泥的露天隨意堆放不僅占用礦區(qū)大量耕地資源,而且雨水對(duì)赤泥堆場(chǎng)的不斷沖刷與淋溶作用已造成礦區(qū)大面積重金屬污染,其中以鎘(Cd)污染耕地超標(biāo)問(wèn)題尤為突出.目前,赤泥的主要利用途徑包括生產(chǎn)水泥、混凝土[2],提取有價(jià)金屬[3]等.研究表明,赤泥因其堿性可有效增加土壤pH值,有利于鐵錳氧化物的形成[4],能夠降低金屬的溶解度和生---物有效性.同時(shí),由于赤泥中富含的鋁硅酸鹽可吸附或絡(luò)合重金屬[5],使得赤泥可被作為土壤鈍化劑[6]使用,但仍需通過(guò)預(yù)處理與無(wú)害化等手段確保赤泥投加的安全性.通過(guò)堆肥可將畜禽糞便中的病原體、抗生素和重金屬等物質(zhì)無(wú)害化,使之成為優(yōu)質(zhì)的肥料[7].堆肥過(guò)程中通常添加秸稈、粉煤灰[8]和石灰[9]等作為膨脹劑和鈍化劑,加速堆肥發(fā)酵,鈍化重金屬,提升堆肥品質(zhì).土壤中施用有機(jī)肥不僅可以調(diào)節(jié)土壤養(yǎng)分含量和pH值,還可以固定、吸附土壤中的重金屬離子.Wang等[10]研究表明,施用有機(jī)-無(wú)機(jī)復(fù)混肥可以增加土壤pH值2~3個(gè)單位,并降低玉米植株各部位中Cd的濃度;Zhang等[11]的研究也表明,豬糞堆肥可以代替化肥施用于土壤,并能夠顯著降低小麥籽粒中重金屬鎳、銅、鋅、鎘和鉛的含量,且低于我國(guó)小麥?zhǔn)称窐?biāo)準(zhǔn)限值.赤泥對(duì)土壤中的重金屬也可以起到較好的鈍化作用[12].

本研究以雞糞與米糠為基質(zhì),以赤泥為輔料進(jìn)行雞糞好氧堆肥試驗(yàn),通過(guò)三維熒光和紫外-可見(jiàn)光光譜,分析堆肥腐殖酸中有機(jī)物質(zhì)的變化,探究赤泥對(duì)堆肥效率與質(zhì)量的影響;并對(duì)水稻進(jìn)行盆栽實(shí)驗(yàn)探索堆肥產(chǎn)品對(duì)礦區(qū)Cd污染土壤中水稻稻米Cd的阻隔效果,為利用赤泥提高堆肥效率與品質(zhì)提供參考.

1 材料與方法

1.1 供試材料

堆肥實(shí)驗(yàn)采用雞糞與米糠為原料,以赤泥為輔料.雞糞取自廣西桂林豐悅農(nóng)業(yè)科技發(fā)展有限公司,米糠取自廣西賀州農(nóng)豐寶公司,赤泥取自廣西平果鋁業(yè)公司.盆栽實(shí)驗(yàn)供試土壤采自某礦區(qū)周邊Cd污染耕地土壤.堆肥原輔材料及供試土壤的基礎(chǔ)理化性質(zhì)如表1所示.

表1 堆肥原輔料與供試土壤的基礎(chǔ)理化性質(zhì)

1.2 堆肥實(shí)驗(yàn)

1.2.1 實(shí)驗(yàn)設(shè)計(jì) 堆肥發(fā)酵桶有效體積為50L,堆肥桶高為41cm,上口直徑為40cm,下口直徑為33cm,桶底鋪一層多面空心球,上覆雙層紗網(wǎng).根據(jù)研究目的共設(shè)置2個(gè)處理,雞糞堆肥(CM):將雞糞:米糠以質(zhì)量比5:1均勻混合;赤泥堆肥(RM):將雞糞:米糠:赤泥以質(zhì)量比5:1:0.75均勻混合,每個(gè)處理設(shè)置3個(gè)重復(fù).調(diào)節(jié)含水率和碳氮比分別為60%和25/1,采用強(qiáng)制通風(fēng)好氧堆肥方式,使用氧氣泵由下部篩網(wǎng)向上通風(fēng)供氧,通氣量為2L/min.

1.2.2 采樣與前處理 堆肥歷時(shí)約45d,分別在堆肥的第0,5,11,19,28,36,45d采集樣品各約600g,采用五點(diǎn)法[13]對(duì)堆體中心部位進(jìn)行取樣,混合均勻后采用四分法[13]將樣品分為3份各200g,樣品于4℃冰箱保存,測(cè)定pH值、電導(dǎo)率(EC)、含水率及種子發(fā)芽指數(shù)(GI).一份樣品經(jīng)-54℃凍干后研磨過(guò)100目篩,用于重金屬分析與腐殖質(zhì)的提取實(shí)驗(yàn).另一份樣品保存于-20℃冰箱中.

1.2.3 基礎(chǔ)理化性質(zhì)測(cè)定 每天早(08:00)、晚(18:00)分別對(duì)堆體進(jìn)行溫度測(cè)定,從上到下依次測(cè)定5,15,25,35,40cm等5個(gè)層次的溫度,取其算術(shù)平均值為當(dāng)天測(cè)量溫度,同時(shí)記錄環(huán)境溫度.取不同時(shí)期新鮮堆肥并按固液比1:10(/)加入超純水[14],150r/min混合振蕩浸提30min,取出并靜置30min,待測(cè)pH值.取不同時(shí)期新鮮堆肥樣品并按固液比1:10(/)加入超純水[14],混合振蕩浸提30min,取出在4000r/min,25℃條件下離心10min,待測(cè)電導(dǎo)率.

1.2.4 種子發(fā)芽指數(shù)(%) 取新鮮堆肥樣品并按固液比1:10(/)加入超純水,混合振蕩浸提30min,取出并靜置浸提1h,在4000r/min,25℃條件下離心10min后,用定性濾紙過(guò)濾,吸取10mL 濾液于墊有濾紙的培養(yǎng)皿內(nèi),均勻放入20粒小白菜種子(種子需先置于蒸餾水中浸泡2h,挑選飽滿種子),蓋上皿蓋,在25℃培養(yǎng)箱中避光培養(yǎng)72h后測(cè)定發(fā)芽率和根長(zhǎng)[15].每個(gè)樣品3次重復(fù),同時(shí)以去離子水做空白試驗(yàn).GI(%)=(處理種子發(fā)芽率′處理種子根長(zhǎng))/(對(duì)照種子發(fā)芽率′對(duì)照種子根長(zhǎng))′100%.

1.2.5 堆肥腐殖酸(HA)的提取 堆肥腐殖酸提取按照國(guó)際腐殖質(zhì)協(xié)會(huì)提供的方法[16]進(jìn)行提取.

1.2.6 HA三維熒光(3D-EEM)測(cè)定與分析[17]3D-EEM采用儀器Perkin Elmer Lumines-cence Spectrometer LS50B測(cè)定.激發(fā)光源:150W氙弧燈;PMT電壓:700V;信噪比>110;帶通(Bandpass):激發(fā)波長(zhǎng)(x)=10nm;發(fā)射波長(zhǎng)(m)=10nm;掃描速度:1200nm/min.激發(fā)發(fā)射波長(zhǎng)范圍x:300~ 450nm,m:350~600nm.平行因子分析(PARAFAC)采用MATLAB7.11中DOMFluor工具包分析.

1.2.7 HA紫外-可見(jiàn)光光譜(UV-Vis)測(cè)定[18]UV-Vis采用UV-8000a光度計(jì)測(cè)定.以純水作為空白對(duì)照,在紫外吸收區(qū),掃描波長(zhǎng)范圍為190~ 700nm,掃描間距為1nm.首先將待測(cè)樣品的TOC調(diào)整為20mg/L以下,掃描全譜.

1.3 盆栽實(shí)驗(yàn)

1.3.1 實(shí)驗(yàn)設(shè)計(jì) 本實(shí)驗(yàn)共設(shè)7個(gè)處理,不添加堆肥為對(duì)照(CK),施加純雞糞0.5,1和2g/kg風(fēng)干土壤(CM0.5、CM1和CM2),施加赤泥堆肥0.5,1和2g/kg風(fēng)干土壤(RM0.5、RM1和RM2).每個(gè)處理設(shè)3個(gè)重復(fù).將15kg風(fēng)干土裝入25L培養(yǎng)桶,桶高為30cm,上口直徑為32cm,下口直徑為29cm,在淹水狀態(tài)下(土面水深 3~4cm)平衡30d后移苗.本實(shí)驗(yàn)采用的水稻品種均為陸兩優(yōu)996(Lu Liang You996).每盆移栽4株水稻秧苗,移栽后90d(抽穗期)收獲.整個(gè)生育期保持土面水深3~4cm.實(shí)驗(yàn)期間水稻無(wú)病蟲害發(fā)生.在移苗21d后施入堆肥.

1.3.2 采樣與預(yù)處理 水稻收獲后,將水稻籽粒脫殼,用不銹鋼粉碎機(jī)粉碎至約1mm的粉末,測(cè)定Cd的含量.水稻收獲后,采集培養(yǎng)桶中土樣,風(fēng)干,混勻,過(guò)20目篩,測(cè)定有效態(tài)Cd的含量.

1.3.3 有效硅的測(cè)定[19]采用0.025mol/L檸檬酸緩浸提,進(jìn)行鉬藍(lán)比色.

1.3.4 重金屬總量的測(cè)定[20]重金屬總量采用三酸(HNO3-HF-HClO4)消解法進(jìn)行消解,使用ICP- OES待測(cè)(ICP-OES,Opetima 7000DV).

1.3.5 重金屬有效態(tài)的測(cè)定[21]稱取風(fēng)干土壤樣品并按固液比1:10(/)加入DTPA溶液,在180r/min條件下室溫振蕩反應(yīng)2h,然后在4000r/min,25℃條件下離心10min,過(guò)0.45μm濾膜,使用 ICP-OES待測(cè).

1.4 數(shù)據(jù)統(tǒng)計(jì)與分析

數(shù)據(jù)統(tǒng)計(jì)分析用Microsoft Excel 2010以及SPSS11.5完成,用Duncan法進(jìn)行顯著性多重比較分析,用Pearson系數(shù)法(<0.05)進(jìn)行相關(guān)性分析.數(shù)據(jù)繪圖用Origin 8.0完成.

2 結(jié)果與討論

2.1 赤泥對(duì)雞糞堆體溫度、pH值、EC、GI的變化

如圖1a所示,堆肥初期溫度迅速升高,CM與RM這2個(gè)處理的溫度均在堆肥第1天達(dá)到50℃以上,維持5d,即已達(dá)到堆肥無(wú)害化衛(wèi)生要求[22].其中,CM最高溫度平均達(dá)到62.1℃,RM最高溫度平均達(dá)到66.8℃,說(shuō)明赤泥的添加可以顯著提高堆體在高溫期的溫度(<0.05),這可能是因?yàn)樵诙逊蔬^(guò)程中,赤泥的堿性避免了pH值的降低并為微生物提供了足夠的鈣,增強(qiáng)了微生物的代謝活性[23].

如圖1b所示,CM與RM處理的pH值均呈先上升后下降的趨勢(shì),這與前人研究[24]結(jié)果一致.在堆肥結(jié)束時(shí),CM與RM的pH值分別為8.14和8.27.由于微生物分解蛋白質(zhì)類有機(jī)物,含氮物質(zhì)在微生物作用下被分解并產(chǎn)生大量氨氮,在堆體內(nèi)積累使 pH值上升.隨著堆肥的進(jìn)行,堆體有機(jī)物分解并產(chǎn)生小分子有機(jī)酸,導(dǎo)致pH值下降[25].

如圖1c所示,在堆肥過(guò)程中,CM處理的EC從6.13mS/cm降到3.59mS/cm;RM處理由5.25mS/cm降到4.29mS/cm.2種堆肥的EC值在堆肥過(guò)程中均呈現(xiàn)先上升,再下降的趨勢(shì).堆肥完成時(shí),RM的EC值要顯著高于CM的EC值(<0.05),表明赤泥的添加會(huì)增加堆體的EC值[26].

如圖1d所示,在堆肥初期,2種堆肥處理的GI增長(zhǎng)速率較慢.隨著堆肥時(shí)間延長(zhǎng),兩種處理堆肥過(guò)程中GI增長(zhǎng)迅速.CM與RM堆肥的GI最終分別達(dá)到100.21%和96.44%,這可能是由于RM的EC值大于CM的所導(dǎo)致.堆肥完成時(shí),CM與RM這2種堆肥的GI均超過(guò)80%,表明隨著堆肥的進(jìn)行,堆肥產(chǎn)品均已完成無(wú)害化并達(dá)到腐熟,對(duì)植物的毒害作用逐漸減少,且赤泥的投加并未造成堆肥產(chǎn)品的植物毒性[27].

圖1 不同處理在堆肥過(guò)程中溫度、pH值、EC與GI的動(dòng)態(tài)變化

CM:雞糞堆肥;RM:含赤泥的雞糞堆肥

2.2 赤泥對(duì)堆肥HA組分的平行因子分析

2.2.1 堆肥HA組分特征 如圖2所示,經(jīng)過(guò)PARAFAC得出兩組HA的組分均主要有3種,分別為組分1(C1:x=395nm,m=480nm)、組分2(C2:x=380nm,m=420nm)和組分3(C3:x=285nm,m=340nm).HA的成分主要以C1和C2為主.C1和C2均屬于類腐殖質(zhì)物質(zhì),C1反映了長(zhǎng)波類腐殖酸物質(zhì),C2反映了類富里酸物質(zhì)[28];C3則反映了類色氨酸類物質(zhì)(類蛋白物質(zhì))[29].CM與RM堆肥HA的熒光組分與已報(bào)道的市政污泥堆肥的熒光物質(zhì)組成相似[30].

2.2.2 不同分子量熒光組分演變規(guī)律 如圖3所示,CM處理中,堆肥初期的HA組分主要以C3為主,占比64.15%,隨著堆肥進(jìn)行,C3含量逐漸減少,堆肥結(jié)束時(shí)C3為22.52%,C1的含量則從13.89%增長(zhǎng)至35.84%,C2從21.10%增長(zhǎng)至41.64%.RM處理中,堆肥初期HA組分也以C3為主,但顯著低于CM中C3含量(<0.05),僅為51.29%,隨著堆肥進(jìn)行,C3含量逐漸下降至20.43%.C1的含量從22.90%增長(zhǎng)為38.97%,C2從25.81%增長(zhǎng)至40.60%,與CM結(jié)果相似.從以上3種組分的含量變化可以得知有機(jī)物的降解由難到易為C1>C2>C3,即最易降解的為類蛋白質(zhì)物質(zhì),這可能是由于C3的成分及結(jié)構(gòu)簡(jiǎn)單,生物利用性較高導(dǎo)致.此外,由于類腐殖酸中含有大量的芳香基團(tuán),C1含量的增長(zhǎng)說(shuō)明HA中芳香官能團(tuán)大量增長(zhǎng)[31].而赤泥的添加導(dǎo)致初始C3含量減少,初始C1含量增加,說(shuō)明赤泥不僅促進(jìn)了不穩(wěn)定C3含量的快速降低,還促進(jìn)更穩(wěn)定的C1含量增加,從而加速了堆體的解毒過(guò)程[32].然而,在該研究中進(jìn)行PARAFAC分析的樣品僅為14個(gè),存在一定的局限性,在后續(xù)研究中應(yīng)使用更多的樣品數(shù)量進(jìn)行PARAFAC分析以保證數(shù)據(jù)的代表性.

圖2 三維熒光平行因子分析解析出不同HA的3種組分

圖3 堆肥不同階段中HA組分百分含量變化

2.3 堆肥HA的紫外特征分析

2.3.1 SUVA254和SUVA280不飽和C=C鍵會(huì)引起有機(jī)質(zhì)在254nm波長(zhǎng)下的紫外吸收,SUVA254(=254′100/TOC)被認(rèn)為與芳香族化合物的含量呈正比[33].如圖4a、b所示,CM與RM中HA的SUVA254初始值分別為0.76和1.65,堆肥結(jié)束時(shí)分別為2.50與2.32.SUVA254一直呈增長(zhǎng)趨勢(shì),說(shuō)明HA的C=C含量在堆肥過(guò)程中逐漸增加,HA物質(zhì)穩(wěn)定化程度得到了提高.同樣,SUVA280(=280′100/TOC)也可以表征堆肥的腐殖化程度,在相同TOC濃度下,SUVA280值越大,表示堆肥過(guò)程中非腐殖物質(zhì)向腐殖質(zhì)轉(zhuǎn)化,堆肥產(chǎn)品的穩(wěn)定程度越高[34].CM與RM中HA的SUVA280初始值分別為0.67和1.51,堆肥結(jié)束時(shí)分別為2.35與2.30,進(jìn)一步說(shuō)明HA腐殖化程度提高.

2.3.2253/203和226-400253/203(有機(jī)物分子在紫外-可見(jiàn)光光譜的253nm和203nm處的吸光度之比)與芳香環(huán)上取代基的種類和取代程度相關(guān),當(dāng)芳香環(huán)取代基的脂肪鏈增加,該值將減小,若芳香環(huán)中羰基、羧基、羥基等取代基增多時(shí),該值便隨之增加[35].如圖4c、d所示,CM與RM中HA的253/203(=253/203)初始值分別為0.14和0.17,在堆肥結(jié)束時(shí)分別為0.27和0.24.在堆肥過(guò)程中,CM與RM的253/203總體呈上升趨勢(shì),這是由于在堆肥前期,HA物質(zhì)的耗氧反應(yīng)劇烈,苯環(huán)取代基上的含氧基團(tuán)相對(duì)含量快速升高,苯環(huán)上的脂肪鏈發(fā)生聚合反應(yīng)轉(zhuǎn)化為羥基、羧基等[36].據(jù)報(bào)道[37],堆肥物質(zhì)的苯環(huán)結(jié)構(gòu)是體現(xiàn)堆肥穩(wěn)定化程度重要指標(biāo),226~400nm吸收帶具有很強(qiáng)紫外吸收,與有機(jī)質(zhì)中的多個(gè)共軛體系的苯環(huán)相關(guān),CM與RM中HA的226-400(226~ 400nm吸收帶的區(qū)域積分)初始值分別為2.11和5.22,堆肥結(jié)束后分別為8.30和7.82.226~400呈上升趨勢(shì),說(shuō)明有機(jī)質(zhì)的分子縮合程度增高,芳香化程度增高,HA物質(zhì)的穩(wěn)定程度提高,堆肥產(chǎn)品逐漸穩(wěn)定.以上結(jié)果說(shuō)明,由于赤泥的加入使得RM中各腐殖化參數(shù)初始值顯著高于CM的初始值(<0.05),以此加速腐殖化過(guò)程.

2.4 堆肥HA不同光譜特征參數(shù)相關(guān)性分析

如表2所示.CM與RM的C1、C2均在<0.05水平上與C3呈負(fù)相關(guān)性顯著,這說(shuō)明C3減小會(huì)引起C1和C2的增加,而C3可能是C1和C2的來(lái)源.CM與RM的SUVA254、SUVA280及226~400兩兩呈正相關(guān)性極顯著(<0.01),說(shuō)明HA中一些含有苯環(huán)的有機(jī)物可能在254nm及280nm處有極強(qiáng)的吸收峰,進(jìn)一步驗(yàn)證了堆肥過(guò)程中芳香性增加,聚合度升高.此外,CM的SUVA254、SUVA280及226~400均與C1呈正相關(guān)性顯著(<0.05),RM的SUVA254、SUVA280及226~400均與C2呈正相關(guān)性顯著(<0.05),且相關(guān)性強(qiáng)度由大到小依次為226~400>SUVA280> SUVA254,226~400顯示相關(guān)性更大的原因可能是該參數(shù)為堆肥有機(jī)物在226~400nm這一波段的紫外吸收區(qū)域積分,它包含了SUVA254及SUVA280的相關(guān)信息,雖然這3個(gè)參數(shù)均可在一定程度上反映堆肥腐熟度,但226~400能較為全面地反映堆肥腐殖化程度的紫外特征參數(shù).在CM中,253/203與以上3個(gè)紫外參數(shù)呈現(xiàn)出正相關(guān)性極顯著(<0.01),卻與C1未達(dá)到顯著性水平(>0.05),而在RM中,253/203與以上3個(gè)參數(shù)均未呈現(xiàn)出顯著性水平(>0.05),卻與C2正相關(guān)性顯著(<0.05),表明該參數(shù)與SUVA254、SUVA280及226~400相比,不能較好地反映堆肥的腐熟程度.

表2 堆肥HA的熒光組成與光譜特征參數(shù)的相關(guān)性

注:*,<0.05:相關(guān)性顯著;**,<0.01:相關(guān)性極顯著.

2.5 堆肥對(duì)水稻植株內(nèi)Cd的積累效果

表3 雞糞堆肥與赤泥堆肥的理化性質(zhì)

由表3可知,經(jīng)過(guò)堆肥處理后,CM和RM處理中重金屬的總量均未超過(guò)有機(jī)無(wú)機(jī)復(fù)合肥料(GB/T 18877-2020)[38]的限量標(biāo)準(zhǔn).

由表4可知,隨著2種堆肥施加劑量增加,土壤pH值逐漸增加.施加雞糞堆肥與赤泥堆肥后顯著降低了土壤中DTPA-Cd含量,土壤中Cd的活性隨著施加劑量的增加而降低.未改良土壤中DTPA-Cd的含量為1.10mg/kg,施加雞糞堆肥與赤泥堆肥后土壤中DTPA-Cd的降低幅度分別為11.92%~20.91%和14.09%~33.59%.施加赤泥堆肥后顯著增加了土壤中有效Si的含量,且隨著施加劑量的增加而增加,增加幅度為49.07%~75.21%.而施加雞糞堆肥后對(duì)土壤中有效Si影響不顯著.施加2種堆肥后,與CK相比,水稻糙米中Cd含量均顯著降低,降低幅度為17.97%~58.68%.糙米Cd的含量在0.17~0.42mg/kg之間,水稻糙米Cd含量由大到小為:CK>CM0.5> CM1>CM2>RM0.5>RM1>RM2,其中RM2處理下的糙米Cd含量低于國(guó)家《食品安全國(guó)家標(biāo)準(zhǔn)食品中污染物限量》中的規(guī)定值(0.2mg/kg,GB 2762- 2017)[39].

表4 不同劑量的雞糞堆肥與赤泥堆肥對(duì)土壤性質(zhì)及糙米中Cd含量的影響

注:同列不同小寫字母表示不同處理間存在顯著差異(<0.05,=3).

土壤中有效態(tài)Cd與糙米Cd含量的降低,可能是由于堆肥的堿性有效增加了pH值,有利于重金屬氫氧化物復(fù)合物沉淀的生成[40].而赤泥中還含有硅酸鹽礦物,SiO32-水解產(chǎn)生的OH-對(duì)中和土壤酸性、提高土壤pH值有著至關(guān)重要的作用.此外,硅酸鹽礦物中的有效硅可與土壤中移動(dòng)態(tài)Cd2+形成CdSiO3沉淀物,使重金屬沉積在土壤和植物根系表面[41].

同時(shí),因堆肥過(guò)程中形成大量腐殖質(zhì),腐殖質(zhì)和土壤中重金屬離子發(fā)生螯合與絡(luò)合反應(yīng)[42].腐殖質(zhì)中的羧基、酚羥基以及羰基等活性功能基團(tuán)增加,促進(jìn)腐殖質(zhì)提供更多可絡(luò)合重金屬的吸附點(diǎn)位[43],形成有機(jī)金屬配合物.其中,氨基和巰基基團(tuán)對(duì)Cd2+的絡(luò)合與羥基對(duì)Cd2+的共沉淀均起重要作用.可見(jiàn),施加堆肥對(duì)土壤Cd的生物有效性有抑制作用,對(duì)水稻植株內(nèi)Cd起到有效的阻隔效果,且施加赤泥堆肥效果更為顯著.

3 結(jié)論

3.1 雞糞堆肥與赤泥堆肥高溫期均維持5d,已達(dá)到無(wú)害化衛(wèi)生要求,且添加赤泥后,提高了堆體高溫期的溫度.2種堆肥的EC較堆肥前均顯著降低,堆肥完成時(shí),RM的EC要顯著高于CM的EC,表明赤泥的添加會(huì)增加堆體的EC.雞糞堆肥與赤泥堆肥的GI在堆肥結(jié)束時(shí)分別達(dá)到100.21%和96.44%,說(shuō)明兩種堆肥產(chǎn)品均沒(méi)有植物毒性,且達(dá)到腐熟狀態(tài).

3.2 隨著堆肥的進(jìn)行,2個(gè)處理的腐殖酸中類蛋白質(zhì)等物逐漸轉(zhuǎn)化為較為穩(wěn)定的類腐殖質(zhì)物質(zhì),腐殖酸的SUVA254和SUVA280、253/203、226~400在堆肥結(jié)束后也均得到提高,說(shuō)明堆肥的芳香性與腐殖化程度升高,且赤泥的添加會(huì)加速堆體的腐殖化進(jìn)程.

3.3 雞糞堆肥與赤泥堆肥提高了土壤的pH值,顯著降低了土壤中DTPA-Cd的含量,施加2g/kg赤泥堆肥后,土壤中DTPA-Cd的含量降低了33.59%,且顯著增加了土壤中有效Si的含量.施加2種堆肥后,糙米中Cd含量降低幅度為17.97%~58.68%,且施用2g/kg赤泥堆肥時(shí),水稻糙米種Cd的含量降低至0.17mg/kg,并達(dá)到中國(guó)的食用安全標(biāo)準(zhǔn).

[1] 薛群虎,陳延偉.廣西平果鋁赤泥綜合利用思路與探索[J]. 輕金屬,2011,(10):11-14.

Xue Q H,Chen Y W,Thought and exploration on the comprehensive utilization of red mud from Guangxi Pingguo aluminium Co. [J]. Light Metals,2011,(10):11-14.

[2] 王清濤,李 森,于華芹,等.利用赤泥制備輕質(zhì)高強(qiáng)保溫裝飾一體化建筑材料[J]. 硅酸鹽通報(bào),2018,37(4):1393-1398.

Wang Q T,Li S,Yu H Q,et.al.Preparation of light-weiht hight-strength thermal insulation and decoration integration building materials using red mud as raw materials. [J]. Bulletin of the Chinese Ceramic Society,2018,37(4):1393-1398.

[3] Wang Y,Zhang T A,LYU G,et al.Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue [J]. Journal of Cleaner Production,2018,188:456-465.

[4] 李宇慶,陳 玲,仇雁翎,等.上海化學(xué)工業(yè)區(qū)土壤重金屬元素形態(tài)分析[J]. 生態(tài)環(huán)境,2004,13(2):154-155.

Li Y Q,Chen L,Qiu Y L,et al. Speciation of heavy metals in soil from Shanghai Chemical Industry Park [J]. Ecology and Environment,2004,13(2):154-155.

[5] 何增明,劉 強(qiáng),謝桂先,等.好氧高溫豬糞堆肥中重金屬砷、銅、鋅的形態(tài)變化及鈍化劑的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(10): 2659-2665.

He Z M,Liu Q,Xie G X,et al. Changes of heavy metals form during aerobic high temperature composting of pig manure and the effects of passivators [J]. Chinese Journal of Applied Ecology,2010,21(10): 2659-2665.

[6] Summers R N,Pech J D. Nutrient and metal content of water,sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary,Western Australia [J]. Agriculture Ecosystems & Environment,1997,64(3):219-232.

[7] Yu K,Li S,Sun X,et al. Maintaining the ratio of hydrosoluble carbon and hydrosoluble nitrogen within the optimal range to accelerate green waste composting [J]. Waste Management,2020,105:405-413.

[8] 李文姣,張 麗,劉東方,等.不同鈍化劑對(duì)豬糞中重金屬Cu Zn Mn鈍化效果的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(6):1262-1269.

Li W J,Zhang L,Liu D F,et al,Impact of different passivating agents on heavy metals Cu,Zn and Mn in pig manure [J]. Journal of Agro-Environment Science,2018,37(6):1262-1269.

[9] Chen Z,Fu Q,Cao Y,et al. Effects of lime amendment on the organic substances changes,antibiotics removal,and heavy metals speciation transformation during swine manure composting [J]. Chemosphere,2021,262:128342.

[10] Wang Q,Huang Q,Guo G,et al. Reducing bioavailability of heavy metals in contaminated soil and uptake by maize using organic- inorganic mixed fertilizer [J]. Chemosphere,2020,261(1–4):128122.

[11] Zhang G,Song K,Miao X,et al. Nitrous oxide emissions,ammonia volatilization,and grain-heavy metal levels during the wheat season: Effect of partial organic substitution for chemical fertilizer [J]. Agriculture Ecosystems & Environment,2021,311(129-132):107340.

[12] Hui L,Yan L,Zhou Y,et al. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice [J]. Science of the Total Environment,2018,640–641: 736-745.

[13] 楊海君,金紅玉,肖 為,等.香樟樹(shù)枝堆肥產(chǎn)物與盾構(gòu)脫水泥共堆肥的效果[J]. 水土保持通報(bào),2020,40(2):188-192.

Yang H J,Jin H Y,Xiao W,et al. Efficiency of Co-compost of cinnamomum camphora branch compost and shield decement [J]. Bulletin of Soil and Water Conservation,2020,40(2):188-192.

[14] 田 赟,王海燕,孫向陽(yáng),等.添加竹酢液和菌劑對(duì)園林廢棄物堆肥理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(8):272-278.

Tian Y,Wang H Y,Sun X Y,et al. Effects of bamboo vinegar and bacterial reagent addition on physico-chemical properties of green wastes compost [J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(8):272-278.

[15] Wu J,Zhao Y,Yu H,et al. Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure [J]. The Science of the Total Environment,2019658: 510-520.

[16] Kuwatsuka S,Watanabe A,Itoh K,et al. Comparision of two methods of preparation of humic and fulvic acids,IHSS method and NAGOYA method [J]. Soil Science and Plant Nutrition,1992,38(1):23-30.

[17] 魏自民,席北斗,李鳴曉,等.微生物接種堆肥胡敏酸三維熒光特性研究[J]. 光譜學(xué)與光譜分析,2008,28(12):2895-2899.

Wei Z M,Xi B D,Li M X,et al. Study on three-dimensional fluorescence spectroscopy characteristics of humic acid during composting with microbes inoculation [J]. Spectroscopy and Spectral Analysis,2008,28(12):2895-2899.

[18] 李 丹,何小松,高如泰,等.紫外-可見(jiàn)光譜研究堆肥水溶性有機(jī)物不同組分演化特征[J]. 中國(guó)環(huán)境科學(xué),2016,36(11):3412-3421.

Li D,He X S,Gao R T,et al. Evolution based on the spectra of different hydrophilic and hydrophobic components separated from dissolved organic matter (DOM) during compost [J]. China Environmental Science,2016,36(11):3412-3421.

[19] 鮑士旦.土壤農(nóng)化分析(第三版) [M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.

Bao S D. Soil agrochemical Analysis (3rd edition) [M]. Beijing: China Agriculture Press,2000.

[20] 劉杏芳,杜 華,唐 璜,等.土壤中重金屬元素檢測(cè)不同消解方法的比較[J]. 中國(guó)口岸科學(xué)技術(shù),2021,3(9):90-95.

Liu X F,Du H,Tang H,et al. Comparison of different digestion methods for detection of heavy metal elements in soil [J]. China Port Science and Technology,2021,3(9):90-95.

[21] 甘國(guó)娟,劉 妍,朱曉龍,等.3種提取劑對(duì)不同類型土壤重金屬的提取效果[J]. 中國(guó)農(nóng)學(xué)通報(bào),2013,29(2):148-153.

Gan G J,Liu Y,Zhu X L,et al. The extraction efficiency of three extracting agents for heavy metals in different types of soil [J]. Chinese Agricultural Science Bulletin,2013,29(2):148-153.

[22] 邵 淼,楊淑英,張?jiān)鰪?qiáng),等.不同處理對(duì)高含水率奶牛糞便好氧堆肥的影響 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(5):982-989.

Shao M,Yang S Y,Zhang Z Q,et al. Effect of different treatments on composting of high water content dairy manure [J]. Journal of Agro-Environment Science,2010,29(5):982-989.

[23] Wang X,SelvamWong J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting [J]. Bioresour Technology,2016,217:227-232.

[24] 靳 光,薛艷蓉,淡江華,等.牛糞中添加玉米秸稈對(duì)堆肥發(fā)酵的影響[J]. 現(xiàn)代畜牧獸醫(yī),2021,(7):15-18.

Jin G,Xue Y R,Dan J H,et al. Effect of adding corn stalks to dairy manure on compost fermentation [J]. Modern Journal of Animal Husbandry and Veterinary Medicine,2021,(7):15-18.

[25] 鮑艷宇,周啟星,顏 麗,等.畜禽糞便堆肥過(guò)程中各種氮化合物的動(dòng)態(tài)變化及腐熟度評(píng)價(jià)指標(biāo)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(2):374-380.

Bao Y Y,Zhou Q X,Yan L,et al. Dynamic changes of nitrogen forms in livestock manure during composting and relevant evaluation indices of compost maturity [J]. Chinese Journal of Applied Ecology,2008,19(2):374-380.

[26] Pan J,Li R,Zhai L,et al. Influence of palygorskite addition on biosolids composting process enhancement [J]. Journal of Cleaner Production,2019,217:371-379.

[27] 顧文杰,張發(fā)寶,徐培智,等.堆肥反應(yīng)器中硫磺對(duì)牛糞好氧堆肥的保氮效果研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(1):224-230.

Gu W J,Zhang F B,Xu P Z,et al. Nitrogen conservation by adding sulfur to dairy manure in compost bioreactors [J]. Plant Nutrition and Fertilizer Science,2011,17(1):224-230.

[28] Boehme J R,Coble P G. Characterization of colored dissolved organic matter using high-energy laser fragmentation [J]. Environmental Science & Technology,2000,34(15):3283-3290.

[29] 李曉潔,高紅杰,郭冀峰,等.三維熒光與平行因子研究黑臭河流DOM [J]. 中國(guó)環(huán)境科學(xué),2018,38(1):311-319.

Li X J,Gao H J,Guo J F,et al. Analyzing DOM in black and odorous water bodies using excitation-emission matrix fluorescence with PARAFAC [J]. China Environmental Science,2018,38(1):311-319.

[30] 楊 超,何小松,高如泰,等.堆肥過(guò)程不同分子量水溶性有機(jī)物電子轉(zhuǎn)移能力的演變及影響因素[J]. 分析化學(xué),2017,45(4):579-586.

Yang C,He X S,Gao R T,et al. Effect of compositional and structural evolution of size-fractionated dissolved organic matter on electron transfer capacity during composting [J]. Chinese Journal of Analytical Chemistry,2017,45(4):579-586.

[31] Spierings J,Worms I,Mieville P,et al. Effect of humic substance photoalteration on lead bioavailability to freshwater microalgae [J]. Environmental Science & Technology,2011,45(8):3452-3458.

[32] 鄭 威,周 紅,楊航波,等.海泡石添加對(duì)豬糞堆肥腐熟和水溶性有機(jī)質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):259-266.

Zheng W,Zhou H,Yang H B,et al. Effects of sepiolite addition on pig manure compost maturity and dissolved organic matter [J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(1):259-266.

[33] Li P,Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review [J]. Critical Reviews in Environmental Science & Technology,2017,47(1/6):131-154.

[34] Chin Y P,Aiken G,O'Loughlin E. Molecular weight,polydispersity,and spectroscopic properties of aquatic humic substances [J]. Environmental Science & Technology,1994,28(11):1853-1858.

[35] Peuravuori J,Pihlaja K,Valimaki N. Isolation and characterization of natural organic matter from lake water: Two different adsorption chromatographic methods [J]. Environment International,1997,23(4): 453-464.

[36] Perminova I V,Grechishcheva N Y,Kovalevskii D V,et al. Quantification and prediction of the detoxifying properties of humic substances related to their chemical binding to polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology,2001,35(19): 3841-3848.

[37] 李鳴曉,何小松,劉 駿,等.雞糞堆肥水溶性有機(jī)物特征紫外吸收光譜研究[J]. 光譜學(xué)與光譜分析,2010,30(11):3081-3085.

Li M X,He X S,Liu J,et al. Study on the characteristic UV absorption parameters of dissolved organic matter extracted from chicken manure during composting [J]. Spectroscopy and Spectral Analysis,2010,30(11):3081-3085.

[38] GB/T 18877-2020 有機(jī)無(wú)機(jī)復(fù)混肥料[S].

GB/T 18877-2020 Organic and inorganic compound fertilizer [S].

[39] GB 2762-2017 食品安全國(guó)家標(biāo)準(zhǔn)食品中污染物限量 [S].

GB 2762-2017 National food safety standards Limits of contaminants in food [S].

[40] 費(fèi)宇紅,曹樹(shù)堂,張光輝,等.鎘在土壤中吸附與沉淀的特征與界限[J]. 地球?qū)W報(bào),1998,(4):74-79.

Fei Y H,Cao S T,Zhang G H,et al. Characteristics and boundary line between adsorption and precipition of cadmium in soil [J]. Acta Geoscientia Sinica,1998,(4):74-79.

[41] 武成輝,李 亮,雷 暢,等.硅酸鹽鈍化劑在土壤重金屬污染修復(fù)中的研究與應(yīng)用[J]. 土壤,2017,49(3):446-452.

Wu C H,Li L,Lei C,et al. Research and application of Silicate passivation agent in remediation of heavy metal-contaminated soil: A review [J]. Soils,2017,49(3):446-452.

[42] Liang X F,Han J,Xu Y M,et al. Sorption of Cd2+on mercapto and amino functionalized palygorskite [J]. Applied Surface Science,2014,322:194-201.

[43] Baldrian P. Interactions of heavy metals with white-rot fungi [J]. Enzyme & Microbial Technology,2003,32(1):78-91.

Effects of red mud on compost maturity and Cd resistance control of rice.

ZHOU Hong-yan1,CHEN Zhe1,2*,LI Kan-qi1,LENG Wei-gui3,WANG Zong-kang3

(1.College of Environmental Science and Engineering,Guilin University of Technology,Guilin 541004,China;2.Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Plants,Ministry of Education,Guangxi Normal University,Guilin 541004,China;3.Guigang Patan Ecology Co.,LTD.,Guigang 537000,China).,2022,42(8):3812~3821

Red mud was used as an additive to conduct aerobic composting experiments of chicken manure for evaluating effects of red mud on temperature,pH,electrical conductivity (EC),and seed germination index (GI) during composting. The evolution characteristics of humic acid (HA) components during composting were analyzed by combining three-dimensional fluorescence with ultraviolet-visible light spectrum; and the pot experiments were also conducted to explore the barrier effect of compost products on rice cadmium in the mining soil. The results showed that red mud increased the temperature of the compost during the high temperature period. The EC of both groups decreased significantly after composting,however,the EC of red mud compost (4.29mS/cm) was much higher than that of chicken manure compost (3.59mS/cm).The GI of chicken manure compost and red mud compost increased with composting time by; 100.2% and 96.44%,respectively,at the end of composting,indicating that the products of neither red mud compost nor chicken manure compost exhibited phytotoxicity. The protein-like substances in the HA of the two kinds of composts were converted into relatively stable humus-like substances throughout the composting process. A significant increase in SUVA254,SUVA280,and A226-400of HA indicates the elevated humification degree of compost. In addition,red mud could optimize the humification parameters,implying that the addition of red mud can accelerate the humification process of the heap. In pot experiments,both chicken manure compost and red mud compost increased soil pH and reduced the concentration of DTPA-Cd in soil and total Cd in brown rice. After applying 2g/kg red mud compost,the Cd content in brown rice decreased significantly (by 58.68%) from 0.42mg/kg to 0.17mg/kg after composting. Therefore,red mud can accelerate the composting efficiency to a certain extent. The application of compost products can inhibit the bioavailability of Cd in both soil and rice plants,and an addition of red mud can lead to a higher composting efficiency.

red mud;chicken manure;composting;rice;cadmium pollution;heavy metals

X705

A

1000-6923(2022)08-3812-10

2022-01-24

廣西創(chuàng)新研究團(tuán)隊(duì)項(xiàng)目(2018GXNSFGA281001);廣西科技基地和人才專項(xiàng)(桂科AD19110012);貴港市科技研發(fā)項(xiàng)目(貴科攻2021019);桂林市重大科技專項(xiàng)(20190219-3)

* 責(zé)任作者,講師,ldchenzhe@qq.com

周紅燕(1997-),女,四川廣安人,桂林理工大學(xué)碩士研究生,主要從事固體廢物資源化研究.

主站蜘蛛池模板: 91丝袜美腿高跟国产极品老师| 性色生活片在线观看| 欧美性精品| 国产呦精品一区二区三区下载| 国产精品永久不卡免费视频| 亚洲h视频在线| 3p叠罗汉国产精品久久| 欧美视频二区| 国产a在视频线精品视频下载| 9丨情侣偷在线精品国产| 国产噜噜在线视频观看| 99久久精品无码专区免费| 精品国产免费观看一区| 国产精品思思热在线| 亚洲男人天堂2018| 国产情精品嫩草影院88av| 亚洲男人天堂2018| 中文字幕人成人乱码亚洲电影| 无码有码中文字幕| 免费在线成人网| 最新加勒比隔壁人妻| 亚洲综合婷婷激情| 91丨九色丨首页在线播放| 2020最新国产精品视频| 日韩经典精品无码一区二区| 亚洲无码免费黄色网址| 啦啦啦网站在线观看a毛片| 国产免费羞羞视频| 欧美不卡视频一区发布| m男亚洲一区中文字幕| 精品少妇三级亚洲| 中文成人在线| 青草视频久久| 99在线观看精品视频| 99精品欧美一区| 夜色爽爽影院18禁妓女影院| 亚洲精品中文字幕无乱码| 国产亚洲精久久久久久无码AV| 国产一区二区人大臿蕉香蕉| 在线观看欧美精品二区| 欧美19综合中文字幕| 自拍偷拍一区| 欧美综合区自拍亚洲综合绿色| 国产伦片中文免费观看| 色综合婷婷| 亚洲男人在线天堂| 一级成人欧美一区在线观看| 日本道综合一本久久久88| 人妻中文久热无码丝袜| 激情综合激情| 日韩精品一区二区三区中文无码 | 国产欧美日韩18| 亚欧美国产综合| 自拍欧美亚洲| 亚洲福利视频一区二区| 久热re国产手机在线观看| 2022精品国偷自产免费观看| 亚洲男女在线| 高清久久精品亚洲日韩Av| 99免费在线观看视频| 四虎精品黑人视频| 欧美成人一区午夜福利在线| 91精选国产大片| 色噜噜中文网| 激情无码视频在线看| 97久久超碰极品视觉盛宴| 日韩精品无码一级毛片免费| 亚卅精品无码久久毛片乌克兰| 免费看美女毛片| 久久久久国产一级毛片高清板| 麻豆精品在线播放| 男人天堂伊人网| 亚洲欧美另类中文字幕| 精品一区二区无码av| 国禁国产you女视频网站| 亚洲精品国产日韩无码AV永久免费网 | 91人妻日韩人妻无码专区精品| 成年女人a毛片免费视频| 国产日本视频91| 毛片一级在线| 一本色道久久88综合日韩精品| 九九久久精品国产av片囯产区|