楊夢茹,徐 雄,王東紅,劉權震,呂 婧,林利華,王殿常,陳永柏,梁文艷
長江典型江段水體PAHs的分布特征、來源及其生態風險
楊夢茹1,2,徐 雄2*,王東紅2,劉權震2,呂 婧2,林利華2,王殿常3,陳永柏3,梁文艷1**
(1.北京林業大學環境科學與工程學院,北京 100083;2.中國科學院生態環境研究中心,中國科學院飲用水科學與技術重點實驗室,北京 100085;3.中國長江三峽集團有限公司,湖北 武漢 430014)
針對我國長江典型江段豐、平、枯不同時期的地表水,采用了固相萃取—氣相色譜質譜聯用(GC-MS)的分析技術,調查了16種優先控制多環芳烴(PAHs)的污染狀況.研究了長江干流PAHs的污染水平和分布特征,并在定量分析的基礎上評估了長江干流PAHs的來源和生態風險.結果顯示,Σ16PAHs濃度范圍為2.22~1450.91ng/L,均值為107.04ng/L,其中,平水期武漢江段Σ16PAHs濃度最高,均值為1050.64ng/L,長江干流PAHs污染狀況與近5a國內其他水體相比處于中等偏低水平.空間分布上長江典型江段地表水中Σ16PAHs從上游攀枝花江段到下游南京江段呈現出先上升后下降的趨勢;時間分布上Σ16PAHs的變化趨勢為平水期(187.78ng/L)>豐水期(73.30ng/L)>枯水期(38.02ng/L).由同分異構比值法分析表明:在枯水期和平水期中,煤炭、生物質燃燒和石油源是長江干流PAHs的主要來源,而豐水期PAHs主要源于煤炭、生物質燃燒,其中南京江段PAHs的來源較為復雜.采用物種敏感性分布評估法對PAHs進行生態風險評估,結果顯示長江典型江段地表水中PAHs尚未對水生生物造成顯著的負面影響,與歷史數據比對表明現階段長江干流PAHs生態風險低于長江大保護政策實施前的生態風險.
長江干流;多環芳烴;生態風險評價
多環芳烴被聯合國環境規劃署(UNEP)列為管控類的持久性有機污染物.由于人類活動過程中燃料的不完全燃燒、車輛和船舶尾氣排放以及工業廢料的排放,使得大量的PAHs進入到各種環境介質中,不論在大氣[1-2]還是土壤[3]、沉積物[4]等介質中均有PAHs被檢出的研究報道,進而PAHs通過地表徑流、大氣沉降[5]、廢水排放以及石油泄漏等方式最終進入到河流生態系統中,進入到河流生態系統中的PAHs一部分會溶解在水體中,另外一部分PAHs由于其高疏水性極易吸附于懸浮顆粒物表面并隨著水流的遷移沉于底泥中[6],而處于底泥表層的PAHs隨著水文等因素的擾動,PAHs會重新進入河流水體中,從而對水生態系統和人類健康造成潛在危害[7].
長江是中國的第一長河,城市經濟的快速發展給長江帶來了巨大的環境壓力,在過去幾十年里長江沿岸建設了30多家石油化工廠,導致大量的PAHs排放到河流中[8-10].因此人們對長江流域中PAHs的賦存特征進行了長期的監測和研究.Yang等[8]調查了2006~2017年長江地表水PAHs的污染狀況,發現PAHs為長江主要的風險微污染物.由于水體受到嚴重污染,長江已被列入世界十大瀕危河流名單中[9],因此引起了社會各階層的廣泛關注.2016年通過的《長江經濟帶發展規劃綱要》[12]以及2017年開展的長江干流岸線保護和利用專項檢查行動[13],堅持生態優先,綠色發展,共抓大保護、不搞大發展,督促各地推進涉嫌違法違規項目的整改.長江大保護政策實施期間,長江中游岸線PAHs污染狀況(58.17ng/L)[14]低于長江大保護政策實施前的狀況(2006年:2095.00ng/L[15];2007年:247.45ng/L[16]),同樣南京江段也發現相同規律,2018年南京江段PAHs的濃度(208ng/L)[4]低于2004年和2015年南京PAHs的濃度(2004年:1511ng/L;2015年:12826ng/L)[17-18].這一系列的研究結果表明國家出臺的一系列長江大保護政策和各種有效的控制手段,使得長江流域PAHs的污染程度有下降的趨勢.
目前對于長江干流地表水中PAHs的濃度水平和分布狀況的研究大都集中于部分江段,如重慶江段[19]、三峽江段[20]、武漢江段[21]、下游江段[22]等江段,而PAHs污染往往受到當地工業模式和人口密度的影響,長江大保護行動期間,PAHs在長江干流上的整體污染情況目前研究較少.盡管已有研究報道了2021年枯水期和豐水期長江流域重點江段PAHs的污染情況并評估了長江流域地表水中PAHs的健康風險[23],然而地表水中PAHs對水生生物的危害同樣不容忽視,近年來長江流域干流地表水中PAHs對水生生物造成的生態風險狀況不清.
因此,本研究針對長江干流典型江段地表水,包括攀枝花、宜賓、重慶、三峽庫區、武漢以及南京江段,從2019~2020年在豐水期、平水期和枯水期進行樣品采集,以16種優控PAHs為研究對象,分析PAHs在長江干流的濃度以及時空分布特征,識別長江典型江段地表水中PAHs的來源,并對長江干流PAHs進行生態風險評價.

根據長江沿岸城市的工農業發展程度以及人口密度的不同,選取長江干流6個受人類活動影響較大的典型江段作為本次的研究區域,共設置了51個采樣點:包括攀枝花江段(P1~P6),宜賓江段(YB1~YB6),重慶江段(C1~C11),三峽庫區江段(SX1~SX12),武漢江段(WH1~WH6),以及南京江段(N1~N10).每個典型江段采樣點均囊括城市上下游區域,整體地反映城市不同功能區對長江地表水中PAHs的影響.采樣點示意見圖1.于2019年12月(枯水期)、2020年6月(豐水期)以及2020年10月(平水期)分3次在以上采樣點對長江干流地表水進行樣品采集,共計采集了127個樣品.2020年6月(豐水期)武漢江段由于疫情的原因未進行樣品采集.在長江中弘線的垂直方向上使用不銹鋼盛水器直接采集水面下約0.5m處的表層水,水樣采集時均避開了明顯的污染源,采集的2L地表水樣存儲于預先清洗的避光棕色玻璃瓶中,水樣在4℃條件下保存和運輸,且在48h內完成過濾和固相萃取等前處理操作.

圖1 采樣點示意
樣品前處理方法參照文獻[24],采集到的2L水樣首先使用0.7μm孔徑的玻璃纖維濾膜去除水體中的懸浮顆粒物.加入回收率指示物氘代菲100ng,混勻后使用C18固相萃取柱對水樣進行富集:富集前固相萃取小柱依次用5mL二氯甲烷、甲醇和超純水進行淋洗和活化,在負壓條件下使水樣通過固相萃取小柱富集.富集好的小柱使用10mL二氯甲烷進行洗脫,洗脫液使用無水硫酸鈉進行脫水處理,氮吹并置換溶液為正己烷,定容至0.5mL后于-20℃條件下保存以供后續儀器分析.
PAHs的定性和定量分析使用安捷倫6890N氣相色譜以及安捷倫5975B質譜聯用儀.色譜柱為安捷倫DB-5MS柱(30m×0.25mm×0.25μm),柱溫箱升溫程序為:初始溫度為60℃,保持2min,然后以10℃/min的速率升至300℃,保持10min.高純氦氣為載氣,恒流模式下載氣流速為1mL/min,采用不分流進樣模式,進樣量為1μL.質譜儀在選擇離子模式(SIM)下進行定量分析,16種PAHs以及氘代菲的保留時間、特征離子、標準曲線等信息列于表1.
本研究采取了嚴格的質量控制過程,使用2L超純水作為實驗室空白,16種PAHs的實驗室空白在n.d.~14.31ng/L間,除了萘的空白最高為14.31ng/L,其余15種PAHs濃度均在4.12ng/L以下,其中高環PAHs(>4環)在空白樣品中均未檢出,該實驗空白對后續數據的解讀和分析影響不大;在所有樣品中加入回收率指示物氘代菲,結果表明氘代菲的回收率為(107%±12.13%) (=130,包括127個實際樣品和3個空白樣品);PAHs的檢出限使用儀器自帶的信噪比(/)工具進行估算,以/≈3時的進樣濃度為儀器檢出限(LOD),16種目標PAHs的LOD在0.05~ 0.2μg/L間;目標化合物的回收率通過實驗室空白加標來測定,PAHs的回收率為65%~118%.

表1 16種PAHs以及氘代菲的保留時間,特征離子以及標準曲線
采用物種敏感性分布評估法(SSD)對PAHs的生態風險進行評價,該方法描述了在一定污染物暴露濃度下預計受影響的物種比例,被廣泛應用于評價某一污染物或多種污染物對生物的生態風險[25].SSD構建和應用的步驟如下:(1)毒性數據的獲取;(2)SSD曲線擬合;(3)計算可能受影響的物種比例(PAF);(4)單一PAHs的生態風險評估.
生物毒性數據由美國環保署EPA ECOTOX數據庫提供.毒性數據優先選擇慢性毒性數據,當慢性數據量不足以構建SSD曲線時,可采用急性數據,并通過急/慢性毒性比率(ACR)來預測化合物相應的慢性值[25-26].本研究使用急性毒性數據來構建PAHs的SSD曲線,急/慢性毒性比率選用10[27]并選擇暴露終點為半數致死濃度(LC50)及半數有效濃度(EC50),暴露時間小于4d的標準測試品種的毒理數據.所選物種的信息列于表2中.

表2 構建SSD曲線的物種信息
注:物種信息均來自EPA ECOTOX數據庫.
Log-Normal, Log-logistic和Burr III型分布(包括Burr III、ReWeibull和Weibull)是構建SSD常用的擬合方法[26].與其他兩個方法相比,Burr III型分布通常可以較好的擬合SSD曲線,本研究采用Burr III型分布擬合SSD曲線,并通過Burrli OZ軟件構建SSD曲線[28].Burr III型分布可有公式(1)表示:

式中:為環境濃度,μg/L;、、為函數3個參數;當趨于無窮大時,Burr III分布函數變為Repareto 分布函數;當趨于無窮大時,可變成ReWeibull分布函數.
在SSD模型中,水生態風險以PAF值表征,PAF值越大,則污染物帶來的水生態風險越高.當PAF值小于5%時,認為生態風險低或不顯著;大于等于5%時生態風險被定義為高風險[29].PAF值的計算方法以公式(1)為例說明:取為污染物的濃度值帶入式中,計算得到()值,即為PAF值.
2.1.1 長江典型江段PAHs污染水平 水生態系統中低分子量PAHs因其高溶解性更傾向存在于水體中,而高分子量PAHs由于其對顆粒具有較強的親和力更容易積聚于沉積物中[30-31],因此水體中16種PAHs的濃度以及檢出率可能存在差異.如表3所示,從PAHs的組成上來看,2環和3環PAHs濃度在總量中占很大比例(中位數占比:82.54%;均值占比: 91.53%),其中Nap、Phe以及Flu是主要的組分,4環和5~6環PAHs濃度中位數分別占總量的15.69%和1.77%,濃度均值占總量的比值分別為6.97%及1.5%,可以看出2~4環PAHs濃度(中位數占比:98.23%;均值占比:98.50%)占比最大.Σ16PAHs濃度范圍為2.22~1450.91ng/L,平均濃度為107.04ng/L.從長江典型江段PAHs的檢出率來看,2~4環PAHs檢出率較高,其中Nap、Flu、Flt以及Pyr的檢出率均為100%,5~6環的PAHs除了BbF的檢出率為98.43%外,其他PAHs的檢出率均較低.研究發現平水期長江干流地表水中Nap以及豐水期3環和4環PAHs在上游江段存在累積現象,而枯水期和平水期PAHs幾乎不存在累積.
本研究長江干流地表水中PAHs污染水平與近5a內(2017~2021年)報道的我國其他水體地表水中PAHs濃度相比(圖2),長江干流的Σ16PAHs平均值與黃河[32]、豐水期海河[33]及潮白河[34]水體相似,高于丹水河流域、鄱陽湖等水體[33,35-38],低于松花江、臺灣鹽河以及觀瀾河等水體[39-44].可以看出近5a內長江干流PAHs污染在我國地表水中處于中等偏低水平.

表3 16種PAHs在長江干流地表水中濃度統計(ng/L)
注:Min、Max、Aver以及Median分別為濃度最小值、最大值、平均值以及中位數; n.d.為未檢出.

圖2 近5a內(2017~2021)中國不同水體地表水中PAHs的濃度范圍和均值
2.1.2 長江典型江段PAHs的時空分布特征 長江流域水系眾多,支流、湖泊的匯入以及沿岸城市人文活動導致長江干流ΣPAHs在時空分布上可能存在明顯的差異.圖3顯示了不同時期典型江段Σ16PAHs的分布特征,首先從空間分布上看,平水期PAHs的濃度從上游攀枝花江段(Σ16PAHs均值為43.61ng/L)到中下游武漢江段(1050.64ng/L)有上升趨勢,下游的南京江段(94.61ng/L)較武漢江段濃度有所降低,但其濃度高于三峽江段(71.33ng/L);豐水期PAHs的濃度上游從攀枝花江段(23.59ng/L)到三峽庫區江段(122.86ng/L)有上升趨勢,下游的南京江段濃度較低(33.67ng/L),該江段濃度值僅高于上游的攀枝花江段濃度值;枯水期PAHs的濃度從上游到下游沒有明顯的變化趨勢.總體上長江地表水中Σ16PAHs含量從上游攀枝花到下游南京江段呈現先上升后下降的趨勢,下游南京江段Σ16PAHs含量(51.11ng/L)高于上游攀枝花(39.41ng/L)和宜賓江段(44.71ng/L). Nguyen等人研究表明工業區地表水中PAHs含量高于居民區[45],另外三峽[46]以及中下游[4,8]的工業較上游其他地區發達,可能是造成長江三峽庫區以及中下游地區PAHs含量高于上游的攀枝花和宜賓江段的原因.

圖3 長江典型江段PAHs在不同時期的變化特征
人類活動是地表水和沉積物中PAHs的主要來源.平水期武漢段與同時期其他城市的PAHs濃度有顯著性差異(<0.05),該現象可能因為疫情得到控制后的武漢為滿足經濟的快速發展,排放大量工業廢水以及頻繁航運所排放的廢棄物造成武漢江段PAHs污染嚴重.受疫情影響,2020年初武漢港一度貨運需求下降,但是2020年全年武漢港集裝箱年吞吐量達到193.25萬,同2019年比增長了14.4%[47],并從武漢新港管理委員會得到武漢港2020年4~10月的集裝箱吞吐量數據,發現2020年9月和10月集裝箱吞吐量均高于同年4~8月的數據;頻繁航運排放的廢棄物可能是導致PAHs污染量劇增的原因.
從時間分布上看,枯水期16種PAHs的總濃度范圍為4.05~87.65ng/L,均值為38.02ng/L;豐水期濃度范圍2.22~184.51ng/L,均值為73.30ng/L;平水期濃度范圍為25.3~1450.91ng/L,均值為187.78ng/L.枯水期攀枝花江段的Σ16PAHs濃度最高,為51.02ng/L;豐水期三峽庫區的Σ16PAHs濃度最高,為122.86ng/L;而平水期武漢Σ16PAHs濃度最高,為1050.64ng/L.總的PAHs變化趨勢為平水期>豐水期>枯水期.若忽略平水期武漢江段濃度,豐水期Σ16PAHs濃度均值略高于平水期Σ16PAHs濃度均值(70.12ng/L).本研究長江干流枯水期PAHs濃度低于其他時期的分布特征與太子河[48]、太湖[44]、長江重慶段[19]的分布特征相似.該現象的原因可能是豐水期和平水期降雨會增加地表水中PAHs濕沉降和地表徑流的輸入[44],另外,降雨引起沉積物擾動可能會導致沉積物中PAHs再次進入水環境[19].
豐水期的重慶和三峽庫區江段PAHs含量明顯高于其他時期(<0.05),該結果與Zhu等[19]研究的長江重慶江段PAHs時間變化趨勢一致.近年來有研究表明重慶市區ΣPAHs的大氣(氣態+顆粒態)平均濃度為(79.9±40.5)ng/m3[49],以及大氣沉降物平均濃度為(457±375)ng/L[50],均處于較高的濃度水平,豐水期強降雨可能增加重慶段和三峽庫區段中PAHs濕沉降和地表徑流的輸入,三峽庫區PAHs含量高可能還因為枯水期沉積物中PAHs大量累積,雨季三峽庫區開閘泄洪以及強降雨[19]導致底泥中的PAHs再次進入水體中[51],造成豐水期該江段PAHs含量的增加.
隨著長江沿岸城市的快速發展,大量的污染物即工業污廢水和廢棄物、市政污水以及航運產生的廢料不斷排入到長江干線中,城市江段內S16PAHs的分布可能會受到PAHs排放影響,因此本研究就單個城市的上下游PAHs濃度進行了研究,發現城市區域對江段中PAHs的含量有明顯影響,例如攀枝花江段(上游S16PAHs濃度均值:38.37ng/L、中游39.63ng/L、下游:40.68ng/L(下同))、重慶江段(54.48,73.94, 84.14ng/L)以及南京江段(55.06,68.32,76.50ng/L)總PAHs含量從城市上游到下游呈現出上升的趨勢,另外宜賓江段和武漢江段在中心城區處PAHs濃度高于城市上中下游(宜賓江段: 31.94,52.71,40.43ng/L和武漢江段:538.02, 823.45, 486.48ng/L).對于單個采樣點而言,本研究發現C7采樣點的S16PAHs濃度較高(114.19ng/L),該值高于重慶S16PAHs濃度均值(67.84ng/L),并且發現該采樣點上游分布著化工廠、鋼鐵廠、碼頭以及污水處理廠,這些場所影響著該江段的水質.WH1(702.79ng/L)以及WH3(768.39ng/L) 采樣點S16PAHs濃度值高于武漢S16PAHs濃度均值(546.27ng/L),這是因為WH1附近分布著眾多工業園區,WH6采樣點附近為武漢港口,這些場所排放的廢水和廢料造成該江段PAHs污染嚴重.N1(82.50ng/L)、N5(154.19ng/L)以及N9采樣點(82.78ng/L)濃度值高于南京江段S16PAHs濃度均值(51.11ng/L),N1及N9為南京市工業園區、碼頭的下游區域,N5為南京市中心城區下游段,工業生產、航運以及城市生活污水的排放造成長江江段水質惡化.
同分異構體比值法通常被用于識別和評估PAHs來源[52-53].本研究采用Ant/(Ant+Phe)和Fla/(Fla+Pyr)2個同分異構比值[52]對長江干流地表水中PAHs的來源進行分析,分析結果見圖4.當Flt/(Flt+Pyr)比值小于0.4時表示PAHs主要源于石油源(石油、石油物質的泄漏),大于0.4但小于0.5時表示PAHs主要來源于石油燃燒、大于0.5時PAHs主要來源于煤炭、生物質燃燒;Ant/(Ant+Phe)比值小于0.1和大于0.1分別表示PAHs來源于石油源和煤炭、生物質燃燒[52,54].枯水期和平水期長江典型江段地表水的PAHs主要來源是煤炭、生物質燃燒和石油源.豐水期地表水中PAHs主要來源于煤炭、生物質燃燒.攀枝花江段PAHs來源在3個時期的比值基本未發生變化,均來源于煤炭、生物質燃燒和石油源.不同時期南京江段和武漢江段PAHs的來源存在顯著性差異,枯水期南京江段以及武漢江段PAHs來源與其他江段PAHs來源一致,均來源于煤炭、生物質的燃燒以及石油泄漏,豐水期南京江段PAHs主要源于石油泄漏以及石油燃燒,而平水期南京江段和武漢江段PAHs主要由煤炭、生物質的燃燒.

圖4 長江典型江段PAHs在不同時期的來源特征
總的來說,長江PAHs主要源于煤炭、生物質燃燒和石油源,Tang等[46]對三峽庫區PAHs進行了來源分析,發現煤炭、生物質燃燒與石油源為PAHs的主要來源,與本研究結果一致.長江干流地表水中PAHs污染來源與近5a內(2017~2021年)國內其他水體地表水中PAHs污染成因相比,長江干流PAHs污染成因僅與鄱陽湖[36]中PAHs的成因相同,均以石油源和煤炭、生物質燃燒為主;其他河流大多以石油、煤炭以及生物質混合燃燒為主[32,37-38,41]或者僅以煤炭、生物質燃燒為主[33,35,40].不難發現國內大多數河流中PAHs的來源均以煤炭、生物質燃燒為主,僅有小清河[43]和太湖[44]以石油污染和石油燃燒為主.

表4 長江干流地表水中8種PAHs的PAF值(%)
注: 0.00為PAF值較小接近無風險;——為在化合物未檢出的情況下沒有進行生態風險評估.
由于水生生物毒性數據的缺乏,本研究僅分析了8種PAHs的生態風險.從表4可以看出,所有江段地表水中Flt和Pyr的PAF值均比其他PAHs的PAF值高,豐水期三峽庫區地表水中Flt和Pyr的PAF值高于枯水期和平水期,除此之外其他江段枯水期Flt和Pyr的風險均高于豐水期和平水期.長江典型江段PAHs的PAF值均低于5%,不存在明顯的生態風險.為了解大保護政策的實施對長江地表水中PAHs生態風險的干預效果,本研究收集了大保護政策實施前長江流域水體中8種PAHs濃度均值的數據,并通過本研究擬合的SSD曲線評估了以往報道的PAHs的生態風險.結果如表5所示,大保護政策實施前攀枝花江段地表水的Pyr(PAF值為6.97%),武漢江段的Flt(7.62%)和南京江段的Ant(11.80%)、Flt(7.52%)以及Pyr(5.80%)均對地表水中水生生物構成較高的生態風險,并且在武漢江段地表水中Pyr(4.23%)以及Bap(3.63%)存在潛在的生態風險,而本研究中攀枝花、武漢以及南京的江段的風險均低于1%,不存在明顯的生態風險.該結果表明長江大保護政策的實施,有效的降低了長江干流中PAHs的生態風險.

表5 以往長江地表水中PAHs濃度均值(μg/L)的報道及相應的PAF值(%)
注: 0.00為PAF值較小接近無風險;n.d.為化合物未檢出;——為化合物未報道或未檢出情況下沒有進行生態風險評估.
3.1 長江干流地表水中PAHs檢測結果顯示, Σ16PAHs濃度范圍為2.22~1450.91ng/L,均值為107.04ng/L,長江PAHs的污染水平與5a年國內其他水體相比,總體處于中等偏低水平.
3.2 長江典型江段地表水中PAHs來源解析顯示,水體受到石油源(石油泄漏)及生物質、煤燃燒共同污染,南京江段PAHs來源較為復雜.
3.3 生態風險評價結果顯示,長江典型江段地表水中PAHs對水生生物沒有造成明顯的生態風險,其生態風險值低于2017年之前長江流域中PAHs的生態風險值,該結果與長江大保護政策的實施密不可分.
[1] 徐宏輝,徐婧莎,何 俊,等.浙北地區PM2.5中多環芳烴特征 [J]. 中國環境科學, 2018,38(9):49-55.
Xu H H, Xu J S, He J, et al. Characteristics analyses of PAHs in PM2.5in the northern Zhejiang province [J]. China Environmental Science, 2018,38(9):49-55.
[2] 王 超,刀 谞,張霖琳,等.我國大氣背景點顆粒物PAHs分布特征及毒性評估 [J]. 中國環境科學, 2015,35(12):3543-3549.
Wang C, Dao X, Zhang L L, et al. Characteristics and toxicity assessment of airborne particulate polycyclic aromatic hydrocarbons of four background sites in China [J]. China Environmental Science, 2015,35(12):3543-3549.
[3] 張 娟,吳建芝,劉 燕.北京市綠地土壤多環芳烴分布及健康風險評價 [J]. 中國環境科學, 2017,37(3):1146-1153.
Zhang J, Wu J Z, Liu Y. Polycyclic aromatic hydrocarbons in urban green space of Beijing: distribution and potential risk [J]. China Environmental Science, 2017,37(3):1146-1153.
[4] Zhao Z, Gong X, Zhang L, et al. Riverine transport and water- sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China [J]. Journal of Hazardous Materials, 2021,403:123973.
[5] Du Y, Xu X, Liu Q, et al. Contribution of atmospheric deposition to halogenated polycyclic aromatic hydrocarbons in surface sediments: A validation study [J]. The Science of the total environment, 2022,815: 152889.
[6] Kannan K, Johnson-Restrepo B, Yohn S S, et al. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes [J]. Environmental Science & Technology, 2005,39(13):4700-6.
[7] Zhang J M, Liu G J, Wang R J, et al. Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: Distribution, partitioning, origin tracing and ecological risk assessment [J]. Environmental Pollution, 2017,230: 61-71.
[8] Yang Y J, Chen Z L, Zhang J L, et al. The challenge of micropollutants in surface water of the Yangtze River [J]. Science of the Total Environment, 2021,780:146537.
[9] Wong C M, Williams C E, Collier U, et al. World's top 10 rivers at risk [Z].Switzerland:World Wildlife Fund, 2007.
[10] Wang X, Shi W, Wu J, et al. Reproductive toxicity of organic extracts from petrochemical plant effluents discharged to the Yangtze River, China [J]. Journal of Environmental Sciences, 2010,22(2):297-303.
[11] Cai C, Li J, Wu D, et al. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China [J]. Chemosphere, 2017,178: 301-8.
[12] 銀 昕.共抓大保護不搞大開發五年迎巨變 [J]. 法人, 2021,(2): 20-25.
Yin X. A total of major protection, no major development, five years to welcome great changes [J]. legal person, 2021,(2):20-25.
[13] 李 旸.水利部組織開展長江干流岸線保護和利用專項檢查行動 [Z]. 中國:中國水利, 2018.
Li Y. The Ministry of Water Resources organized a special inspection campaign for the protection and utilization of the shoreline of the main stream of the Yangtze River [Z]. China: China Water Conservancy, 2018.
[14] 唐海濱,代嫣然,范垚城,等.長江中游岸線水域典型污染物種類與來源解析 [J]. 長江科學院院報, 2021,38(6):151-159.
Tang H B, Dai Y R, Fan Y C, et al. Typical pollutants in waters along the riverbank of the Yangtze River middle mainstream: species identification and source analysis [J]. Journal of Yangtze River Scientific Research Institute, 2021,38(6):151-159.
[15] 馮承蓮,夏星輝,周 追,等.長江武漢段水體中多環芳烴的分布及來源分析 [J]. 環境科學學報, 2007,27(11):1900-1908.
Feng C L, Xia X H, Zhou Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the Wuhan section of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2007,27(11):1900-1908.
[16] 王 超,楊忠芳,夏學齊,等.中國不同地區典型河流中多環芳烴分布特征研究 [J]. 現代地質, 2012,26(2):400-106.
Wang C, Yang Z F, Xia X Q, et al. Distribution and sources of pAHs in typical chinese rivers [J]. Geoscience, 2012,26(2):400-406.
[17] He H, Hu G-j, Sun C, et al. Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China [J]. Environmental Science and Pollution Research, 2011,18(4): 638-648.
[18] Wang C H, Zhou S L, Wu S H, et al. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China [J]. Water Science and Technology, 2017,76(8):2150-2157.
[19] Zhu Y, Liang B, Xia W, et al. Assessing potential risks of aquatic polycyclic aromatic compounds via multiple approaches: A case study in Jialing and Yangtze Rivers in downtown Chongqing, China [J]. Environmental Pollution, 2022,294:118620.
[20] Dong L, Lin L, Yang W J, et al. Distribution, composition, levels, source, and risk assessment of PAHs in surface water and sediment from the mainstream Three Gorges Reservoir [J]. Desalination and Water Treatment, 2019,168:175-183.
[21] 張坤鋒,付 青,涂 響,等.武漢典型飲用水水源中典型POPs污染特征與健康風險評估 [J]. 環境科學, 2021,42(12):5836-5847.
Zhang K F, Fu Q, Tu X, et al. Pollution characteristics and risk assessment of typical POPs in typical drinking water sources in Wuhan [J]. Environmental Science, 2021,42(12):5836-5847.
[22] Yan Z H, Yang H H, Dong H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion [J]. Environmental Pollution, 2018,239:223-232.
[23] 曾超怡,徐 輝,許 巖,等.長江重點江段水體中多環芳烴及其衍生物的分布及健康風險 [J]. 環境科學學報, 2021,41(12):4932-4941.
Zeng C Y, Xu H, Xu Y, et al. Distribution and health risk of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in surface water of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2021,41(12): 4932-4941.
[24] 宋瀚文,原盛廣,王海亮,等.我國主要流域飲用水中PAHs濃度分布及風險評價 [J]. 中國給水排水, 2015,31(21):64-68.
Song H W, Yuan S G, Wang H L, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in drinking water in major watersheds of china [J]. China Water & Wastewater, 2015, 31(21):64-68.
[25] Zhong W J, Wang D H, Xu X W, et al. Screening level ecological risk assessment for phenols in surface water of the Taihu Lake [J]. Chemosphere, 2010,80(9):998-1005.
[26] Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment [J]. Ecological Indicators, 2015,54:227- 237.
[27] Chen J, Fan B, Li J, et al. Development of human health ambient water quality criteria of 12polycyclic aromatic hydrocarbons (PAH) and risk assessment in China [J]. Chemosphere, 2020,252:126590.
[28] 孔祥臻,何 偉,秦 寧,等.重金屬對淡水生物生態風險的物種敏感性分布評估 [J]. 中國環境科學, 2011,31(9):1555-1562.
Kong X Z, He W, Qin N, et al. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions [J]. China Environmental Science, 2011,31(9):1555- 1562.
[29] Rico A, de Oliveira R, Nunes G S D, et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon [J]. Chemosphere, 2022,291:132821.
[30] Guo W, He M C, Yang Z F, et al. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China [J]. Chemosphere, 2007,68(1): 93-104.
[31] Qin N, He W, Kong X Z, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China [J]. Science of the Total Environment, 2014,496:414-423.
[32] Liu Y, Bu Q W, Cao H M, et al. Polycyclic Aromatic Hydrocarbons in Surface Water from Wuhai and Lingwu Sections of the Yellow River: Concentrations, Sources, and Ecological Risk [J]. Journal of Chemistry, 2020,2020:8458257.
[33] 張 俊,王海兵,孟憲智,等.海河流域地表水水源地多環芳烴污染特征及來源分析 [J]. 環境監測管理與技術, 2020,32(6):61-64.
Zhang J, Wang H B, Meng X Z, et al. Pollution characteristic and source identification of PAHs in typical surface water sources in Haihe basin [J]. The Administration and Technique of Environmental Monitoring, 2020,32(6):61-64.
[34] Qiao M, Fu L, Li Z, et al. Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai rivers in northern China [J]. Environmental Pollution, 2020,257:113600.
[35] Chen W, Peng B, Huang H F, et al. Distribution and potential sources of OCPs and PAHs in waters from the Danshui River Basin in Yichang, China [J]. International Journal of Environmental Research and Public Health, 2022,19(1):263.
[36] Zhang Y C, Qu C K, Qi S H, et al. Spatial-temporal variations and transport process of polycyclic aromatic hydrocarbons in Poyang Lake: Implication for dry-wet cycle impacts [J]. Journal of Geochemical Exploration, 2021,226:106738.
[37] CAO Y X, XIN M, WANG B D, et al. Spatiotemporal distribution, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in the urbanized semi-enclosed Jiaozhou Bay, China [J]. Science of the Total Environment, 2020,717:137224.
[38] 孫 旭.渤海水體和沉積物中多環芳烴的時空分布及來源研究 [D]. 煙臺:中國科學院煙臺海岸帶研究所, 2021.
Sun X. Spatial distribution, seasonal variation and sources of polycyclic aromatic hydrocarbons in the seawater and sediments of the Bohai Sea [D].Beijing: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 2021.
[39] Chen C F, Ju Y R, Su Y C, et al. Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan [J]. Marine Pollution Bulletin, 2020,154:111029.
[40] Mohammed R, Zhang Z F, Jiang C, et al. Fate and occurrence of polycyclic aromatic hydrocarbons and their derivatives in water and sediment from Songhua River, Northeast China [J]. Water, 2021,13(9): 1196.
[41] Liang X X, Junaid M, Wang Z F, et al. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China [J]. Environmental Pollution, 2019,250:695-707.
[42] Lv X M, Chen G L, Wu Y C, et al. Ecological and AhR-mediated risk assessment of polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers on multiple aquatic species in river water: A combined chemical analysis and in silico approach [J]. Science of the Total Environment, 2022,820:153287.
[43] Ji G C, Zou L, Guan W C, et al. Partition, transportation and ecological risks of polycyclic aromatic hydrocarbons (PAHs) under heavy anthropogenic estuary: A case study in the Xiaoqing River Estuary, North China [J]. Regional Studies in Marine Science, 2021,43: 101664.
[44] Kong J, Dai Y, Han M, et al. Nitrated and parent PAHs in the surface water of Lake Taihu, China: Occurrence, distribution, source, and human health risk assessment [J]. Journal of Environmental Sciences, 2021,102:159-169.
[45] Nguyen T N T, Park M K, Son J M, et al. Spatial distribution and temporal variation of polycyclic aromatic hydrocarbons in runoff and surface water [J]. Science of the Total Environment, 2021,793:148339.
[46] Tang Y M, Junaid M, Niu A P, et al. Diverse toxicological risks of PAHs in surface water with an impounding level of 175m in the Three Gorges Reservoir Area, China [J]. Science of the Total Environment, 2017,580:1085-1096.
[47] 黎 云.武漢港集裝箱年吞吐量創歷史新高 [N]. 長江日報, 2021-01-06.
Li Y. Wuhan Port's annual container throughput hits a record high [N]. Changjiang Daily, 2021-01-06.
[48] Song X Y, Hu X J, He M M, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the surface water of Taizi River, Northeast of China [J]. Environmental Monitoring and Assessment, 2013,185(10):8375-8382.
[49] Hu H, Tian M, Zhang L, et al. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humid city in southwest China [J]. Atmospheric Environment, 2019,206:1-10.
[50] Xia W, Liang B, Chen L, et al. Atmospheric wet and dry depositions of polycyclic aromatic compounds in a megacity of Southwest China [J]. Environmental Research, 2022,204:112151.
[51] Luo X J, Mai B X, Yang Q S, et al. Distribution and partition of polycyclic aromatic hydrocarbon in surface water of the Pearl River Estuary, South China [J]. Environmental Monitoring and Assessment, 2008,145(1-3):427-436.
[52] Liu Q, Xu X, Lin L, et al. Occurrence, distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants [J]. Science of the Total Environment, 2021,789:147911.
[53] Bateni F, Mehdinia A, Lundin L, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments of northern part of the Persian Gulf [J]. Chemosphere, 2022,295:133859.
[54] 李 爽,劉殷佐,劉入瑜,等.渾河沈撫段多環芳烴的污染特征及風險評價 [J]. 中國環境科學, 2019,39(4):1551-1559.
Li S, Liu Y Z, Liu R Y, et al. The pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons of Shen-Fu section of the Hun River Basin [J]. China Environmental Science, 2019,39(4): 1551-1559.
[55] Huang J, Zhang Z L, Yu G. Occurrence of dissolved PAHs in the Jinsha River (Panzhihua) - Upper reaches of the Yangtze River, Southwest China [J]. Journal of Environmental Monitoring, 2003,5(4): 604-609.
[56] Wu B, Zhao D Y, Zhang Y, et al. Multivariate statistical study of organic pollutants in Nanjing reach of Yangtze River [J]. Journal of Hazardous Materials, 2009,169(1-3):1093-1098.
Distribution characteristics, source and ecological risks assessment of PAHs in water bodies of typical sections of the Yangtze River.
YANG Meng-ru1,2, XU Xiong2*, WANG Dong-hong2, LIU Quan-zhen2, LV Jing2, LIN Li-hua2, WANG Dian-chang3, CHEN Yong-bo3, LIANG Wen-yan1**
(1.College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China;2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3.China Three Gorges Corporation, Wuhan 430014, China)., 2022,42(11):5308~5317
Sixteen priority polycyclic aromatic hydrocarbons(PAHs) were investigated in water samples (wet, normal and dry periods) in the main stream of the Yangtze River using solid-phase extraction (SPE) -gas chromatography-mass spectrometry (GC-MS) analysis technique. The pollution levels and distribution characteristics of PAHs were studied, the sources and ecological risks of PAHs were evaluated based on quantitative analysis. The results showed that the concentration of Σ16PAHs was from 2.22 to 1450.91ng/L, the average concentrations of ΣPAHs was 107.04ng/L in the Yangtze River, among them, the concentration of Σ16PAHs in the Wuhan river section was the highest during the normal period, with an average value of 1050.64ng/L. Compared with other domestic water bodies in the past five years, the PAHs pollution in the main stream of the Yangtze River was at a moderately low level. In terms of spatial distribution, the Σ16PAHs in surface water of typical sections of the Yangtze River showed a trend of first rising and then falling from the Upstream Panzhihua section to the downstream Nanjing section, The variation trend of Σ16PAHs in temporal distribution: normal period (187.78ng/L)>wet period (73.30ng/L)> dry period (38.02ng/L). The analysis by isomeric ratio method showed that coal, biomass burning and petroleum sources were the main sources of PAHs in the main stream of the Yangtze River in dry and normal periods, In the wet season, PAHs mainly originated from coal and biomass combustion, among them, the sources of PAHs in the Nanjing River section were more complex. The ecological risk assessment of PAHs was carried out using the Species Sensitivity Distributions (SSD) assessment method. The results showed that the PAHs in the surface water of typical sections of the Yangtze River had not yet caused significant negative impacts on aquatic organisms. The comparison of the results with historical data showed that the current ecological risk of PAHs in the main stream of the Yangtze River is lower than the ecological risk before the implementation of the Yangtze River protection policy.
the main stream of the Yangtze River;polycyclic aromatic hydrocarbons;ecological risks assessment
X522
A
1000-6923(2022)11-5308-10
楊夢茹(1997-),女,山西運城人,北京林業大學碩士研究生,主要從事水體中風險污染物篩查研究.
2022-04-24
中國長江三峽集團有限公司科研項目(201903139);廣東省基礎與應用基礎研究基金資助項目(2020B1515120080);國家重點研發計劃項目(2021YFC3200802-02)
* 責任作者, 助理研究員, xuxiong@rcees.ac.cn;** 教授, lwy@bjfu.edu.cn