
[摘要]目的探討6-羥基多巴胺(6-OHDA)誘導的單側帕金森?。≒D)模型小鼠的運動及焦慮癥狀。方法7周齡雄性C57BL/6小鼠20只,隨機分為對照組及模型組,每組10只。模型組小鼠通過左側紋狀體立體定位注入6-OHDA(2 g/L,2 μL)制備PD模型,對照組小鼠注入等量的生理鹽水。2周后進行曠場實驗檢測小鼠的移動總距離和中心區探索時間,采用酪氨酸羥化酶(TH)免疫熒光染色檢測黑質區多巴胺能神經元數目。結果曠場實驗結果顯示,與對照組相比,模型組小鼠移動總距離明顯減少,中心區探索時間明顯增加,差異具有統計學意義(t=2.201、2.576,P<0.01)。免疫熒光染色結果顯示,與對照組相比,模型組小鼠黑質區TH陽性神經元的數目明顯減少,差異有統計學意義(t=17.570,P<0.001)。結論6-OHDA誘導的單側PD模型小鼠黑質-紋狀體系統功能受損,出現運動障礙但沒有產生焦慮。
[關鍵詞]帕金森??;羥多巴胺;紋狀體;小鼠;癥狀評估
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2023)03-0321-04
doi:10.11712/jms.2096-5532.2023.59.076[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230719.1611.001.html;2023-07-2013:27:08
MOTOR AND ANXIETY SYMPTOMS IN A MOUSE MODEL OF 6-HYDROXYDOPAMINE-INDUCED PARKINSON’S DISEASE CHEN Fenghua, SHI Limin, XIE Junxia (Department of Physiology and Pathophysiology, School of Basic Medicine, Qing-dao University, Institute of Brain Sciences and Diseases, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the motor and anxiety symptoms in a mouse model of 6-hydroxydopamine (6-OHDA)-induced unilateral Parkinson’s disease (PD). MethodsA total of 20 male C57BL/6 mice, aged 7 weeks, were randomly divided into control group and model group, with 10 mice in each group. The mice in the model group were given stereotactic injection of 2 μL 6-OHDA (2 g/L) into the left corpus striatum to establish a model of PD, and those in the control group were gi-ven injection of an equal volume of normal saline. Two weeks later, the open field test was used to measure total moving distance and time spent in the center of the open field, and tyrosine hydroxylase (TH) immunofluorescent staining was used to measure the number of dopaminergic neurons in the substantia nigra. ResultsThe open field test showed that compared with the control group, the model group had a significant reduction in total moving distance and a significant increase in time spent in the center of the open field (t=2.201,2.576;Plt;0.01). Immunofluorescent staining showed that compared with the control group, the model group had a significant reduction in the number of TH-positive neurons in the substantia nigra (t=17.570,Plt;0.001). ConclusionImpaired function of the substantia nigra-corpus striatum system is observed in a mouse model of 6-OHDA-induced unilateral PD, with the presence of movement disorders, but without the presence of anxiety.
[KEY WORDS]Parkinson disease; oxidopamine; corpus striatum; mice; symptom assessment
帕金森?。≒D)是僅次于阿爾茨海默病的第二大神經退行性疾病,其病理學特征為黑質致密帶多巴胺能神經元選擇性丟失和紋狀體軸突末梢多巴胺含量減少[1-3]。其運動癥狀主要有靜止性震顫、肌僵直、運動遲緩和姿勢不穩等,非運動癥狀有嗅覺障礙、睡眠障礙、認知障礙、焦慮和疲勞等。動物模型在探究PD發病機制和尋找潛在治療靶點的過程中發揮著重要作用[4-6]。6-羥基多巴胺(6-OHDA)是一種兒茶酚胺選擇性神經毒素,腦內紋狀體注射6-OHDA會引起相應的黑質-紋狀體多巴胺系統進行性和部分受損,可用于制備穩定有效的大鼠PD模型[7-9]。盡管6-OHDA單側損傷大鼠模型是PD研究中最常用的模型之一,但隨著光遺傳和化學遺傳技術的發展,6-OHDA制備PD模型也逐步應用于小鼠[10-14]。目前尚缺乏6-OHDA注射誘導的PD模型小鼠的系統性研究。本實驗通過單側紋狀體立體定位注射6-OHDA制備小鼠PD模型,觀察其運動及焦慮癥狀,以期為PD模型小鼠的基礎研究提供實驗證據。
322青島大學學報(醫學版)59卷
1材料與方法
1.1動物及主要試劑
SPF級雄性C57BL/6小鼠,7周齡,體質量為(22±2)g,購自北京維通利華公司。小鼠飼養于25 ℃、12 h晝夜循環光照的SPF級清潔環境中,可自由飲水、攝食、活動,適應環境1周后開始實驗。6-OHDA購于中國Absin公司,L-Ascorbic acid以及地昔帕明購于美國Sigma公司,酪氨酸羥化酶(TH)抗體購于美國Millipore公司,其他試劑均為國產分析純。
1.2動物分組及處理
將小鼠隨機分為對照組和模型組,每組10只。術前30 min小鼠腹腔注射地昔帕明25 mg/kg。利用瑞沃德公司的呼吸麻醉機將小鼠麻醉后,固定在立體定位儀上。用耳桿適配器將小鼠固定好,調整高度使顱骨保持水平。剃除小鼠頭部毛發,用碘附擦拭消毒,剪開頭皮暴露顱骨的前囟和后囟。以前囟為零點,前囟前0.4 mm、旁開1.8 mm、深度-3.5 mm定位坐標。模型組將2 μL溶于2 g/L抗壞血酸的6-OHDA(2 g/L)按立體定位坐標注入左側紋狀體,流量6 nL/s,注射完成后停針10 min;對照組則以等量生理鹽水代替6-OHDA。在整個手術過程中,用異氟烷麻醉小鼠并用加熱墊維持體溫。
1.3曠場實驗
實驗前小鼠置于測試環境中適應至少半小時。將小鼠放在一個27 cm×27 cm×35 cm大小不透明測試盒的中央,攝像機放于盒子的正上方。利用Smart v3.0系統記錄小鼠10 min的活動情況。每只小鼠檢測結束后,用體積分數0.75的乙醇清理曠場區域,并在測試時保持干燥。分析在10 min的曠場實驗中小鼠的移動總距離和中心區探索時間,評估小鼠的運動行為和焦慮程度。
1.4腦組織切片及TH免疫熒光染色
行為學檢測結束后,腹腔注射阿佛丁(20 mL/kg)麻醉小鼠。經心灌注9 g/L NaCl和多聚甲醛溶液(用0.1 mol/L PBS配制,pH值為7.2~7.4),小心取出鼠腦。將鼠腦置于多聚甲醛溶液中,4 ℃固定6 h,然后分別用200、300 g/L的蔗糖溶液(用0.1 mol/L PBS配制)進行梯度脫水。用冷凍切片機(Leica, CM1950)進行冠狀面連續切片。參照小鼠腦圖譜,確定黑質區域。進行厚度為20 μm的冠狀面連續切片,每組10張,共4組。
取一組完整腦片進行TH免疫熒光染色。將腦片置于多聚甲醛溶液中固定10 min,用0.01 mol/L PBS漂洗3次,每次10 min。用含有體積分數0.05驢血清(Jackson)的PBST緩沖液室溫封閉1 h,然后置于用PBST配制的一抗稀釋液中4 ℃搖床孵育過夜。次日,用0.01 mol/L PBS漂洗3次,每次10 min。將腦片放于用PBST配制的熒光二抗稀釋液中室溫孵育2 h,之后用0.01 mol/L PBS漂洗3次,每次10 min。將腦片平鋪于載玻片上,避光保存。免疫熒光染色實驗中用到的一抗為anti-tyrosine hydroxylase(1∶2 000,rabbit),二抗為donkey anti-rabbit 555(稀釋比為1∶500)。使用數字病理切片掃描系統(OLYMPUS,Tokyo,Japan,VS120)拍攝成像,應用OlyVIA軟件對TH陽性神經元進行計數。
1.5統計學分析
應用GraphPad Prism 6軟件進行統計學處理。實驗所得計量資料結果以±s形式表示,兩組比較采用t檢驗。P<0.05表示差異有統計學意義。
2結果
2.16-OHDA對小鼠運動行為的影響
曠場實驗結果顯示,與對照組小鼠相比,模型組小鼠移動總距離明顯減少,中心區探索時間明顯增加,差異有統計學意義(t=2.201、2.576,P<0.01)。見表1。
2.26-OHDA對小鼠黑質TH陽性神經元的影響
免疫熒光染色結果顯示,對照組和模型組小鼠黑質區TH陽性神經元的數目分別為10 852.0±209.8和6 072.0±173.3(n=10),與對照組相比,模型組小鼠黑質區TH陽性神經元的數目明顯減少,差異有統計學意義(t=17.570,P<0.001)。
3討論
PD是常發生于中老年人的第二大神經退行性疾病,其主要病理改變為黑質多巴胺能神經元進行性丟失,其臨床表現除肌僵直、運動遲緩等運動癥狀外,還有嗅覺障礙、焦慮和抑郁等非運動癥狀。由于PD的病因病理尚未完全闡明,目前該病的治療主要是對癥治療[5,15-16]。為了闡明PD的發病機制和尋找潛在治療靶點,已經開發了許多動物模型[17-19]。6-OHDA可被黑質內含單胺氧化酶的多巴胺能神經元特異性攝取,并在單胺氧化酶的作用下轉化成自由基損傷神經元,故被廣泛應用于損傷黑質-紋狀體多巴胺能系統制備PD模型[10,20-21]。長期以來6-OHDA多用于大鼠PD模型的制備,近年來隨著光遺傳學、化學遺傳學的發展以及各種Cre小鼠的應用,6-OHDA也逐漸用于小鼠PD模型的制備。6-OHDA參與氧化應激反應,通過和多巴胺競爭,可與高親和力的多巴胺轉運體結合進入黑質-紋狀體多巴胺能神經元,并迅速被氧化,生成大量的活性氧(ROS),發揮毒性作用損傷細胞。還有研究結果表明,6-OHDA可以抑制線粒體呼吸鏈的功能,從而引起神經毒性[10,22-24]。由于6-OHDA不能通過血-腦脊液屏障,因此必須通過立體定位技術將它直接注射到黑質、內側前腦束或紋狀體中。研究表明,6-OHDA單側紋狀體注射具有較大的優勢:首先,注射到紋狀體引起的多巴胺能神經元進行性丟失和區域性的病變與PD病理進展最為相似;其此,小鼠腦內紋狀體是一個較大的區域,為立體定位注射減輕了難度[2,25-27]。
TH是多巴胺合成的限速酶,其功能缺失或表達不足直接影響多巴胺的合成與分泌。因此,檢測模型動物TH免疫陽性細胞的數目不僅可以反映多巴胺能神經元的數目和功能狀態,同時還可評估模型多巴胺水平[28-30]。本實驗采用單側紋狀體注射4 μg 6-OHDA的方法制備PD模型,結果顯示,單側紋狀體注射2周后,損傷側黑質TH陽性神經元減少了約44%,提示多巴胺能神經元丟失;同時模型小鼠出現運動缺陷,在曠場實驗中的運動總距離減少。但是本實驗中PD模型小鼠在曠場中心區探索時間與對照組小鼠相比顯著增加,提示小鼠并未出現焦慮癥狀。以往有研究顯示,紋狀體注射5 μg以上6-OHDA,3周后小鼠黑質多巴胺能神經元丟失超過50%,并出現運動障礙以及焦慮等非運動癥狀[31-34]。與之相比,本實驗中6-OHDA用藥劑量低、作用時間較短,因此推測這可能是小鼠未出現焦慮癥狀的原因。
綜上,本研究通過單側紋狀體注射6-OHDA觀察其對小鼠運動和焦慮癥狀以及黑質-紋狀體系統功能的影響,結果表明4 μg的6-OHDA單側紋狀體注射在2周后可以造成黑質-紋狀體通路的部分損失,小鼠出現運動障礙。本實驗為6-OHDA制備小鼠PD模型提供了良好的注射位點,為PD的研究提供了有效的實驗工具。
[參考文獻]
[1]BALESTRINO R, SCHAPIRA A H V. Parkinson disease[J]." European Journal of Neurology, 2020,27(1):27-42.
[2]JANKOVIC J, TAN E K. Parkinson’s disease: etiopathoge-nesis and treatment[J]." Journal of Neurology, Neurosurgery, and Psychiatry, 2020,91(8):795-808.
[3]GRAYSON M. Parkinson’s disease[J]." Nature, 2016,538(7626):S1.
[4]TIEU K. A guide to neurotoxic animal models of Parkinson’s disease[J]." Cold Spring Harbor Perspectives in Medicine, 2011,1(1):a009316.
[5]CHIA S J, TAN E K, CHAO Y X. Historical perspective: models of Parkinson’s disease[J]." International Journal of Molecular Sciences, 2020,21(7):2464.
[6]MUSTAPHA M, MAT TAIB C N. MPTP-induced mouse model of Parkinson’s disease: a promising direction of therapeutic strategies[J]." Bosnian Journal of Basic Medical Sciences, 2021,21(4):422-433.
[7]SAUER H, OERTEL W H. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tra-cing and immunocytochemical study in the rat[J]." Neuroscience, 1994,59(2):401-415.
[8]PRZEDBORSKI S, LEVIVIER M, JIANG H, et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine[J]." Neuroscience, 1995,67(3):631-647.
[9]IRAVANPOUR F, DARGAHI L, REZAEI M, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson’s disease[J]." CNS Neuroscience amp; Therapeutics, 2021,27(3):308-319.
[10]SIMOLA N, MORELLI M, CARTA A R. The 6-Hydroxydopamine model of Parkinson’s disease[J]." Neurotoxicity Research, 2007,11(3):151-167.
[11]GUIMARES R P, LEANDRO RIBEIRO D, DOS SANTOS K B, et al. The 6-hydroxydopamine rat model of Parkinson’s disease[J]." Journal of Visualized Experiments, 2021(176):1-17.
[12]BOUCHATTA O, ABY F, SIFEDDINE W, et al. Pain hypersensitivity in a pharmacological mouse model of attention-deficit/hyperactivity disorder[J]." Proceedings of the National Academy of Sciences of the United States of America, 2022,119(30):e2114094119.
[13]MAGNO L A V, TENZA-FERRER H, COLLODETTI M, et al. Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinson’s disease[J]." The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2019,39(17):3234-3248.
[14]ZHANG H, ZHANG C K, QU Z W, et al. STN-ANT plasti-city is crucial for the motor control in Parkinson’s disease mo-del[J]." Signal Transduction and Targeted Therapy, 2021,6(1):215.
[15]ARMSTRONG M J, OKUN M S. Diagnosis and treatment of Parkinson disease: a review[J]." JAMA, 2020,323(6):548-560.
[16]VIJIARATNAM N, SIMUNI T, BANDMANN O, et al. Progress towards therapies for disease modification in Parkinson’s disease[J]." The Lancet Neurology, 2021,20(7):559-572.
[17]TAGUCHI T, IKUNO M, YAMAKADO H, et al. Animal model for prodromal Parkinson’s disease[J]." International Journal of Molecular Sciences, 2020,21(6):1961.
[18]DAUER W, PRZEDBORSKI S. Parkinson’s disease: mechanisms and models[J]." Neuron, 2003,39(6):889-909.
[19]KIN K, YASUHARA T, KAMEDA M, et al. Animal models for Parkinson’s disease research: trends in the 2000s[J]." International Journal of Molecular Sciences, 2019,20(21):5402.
[20]ASANUMA M, HIRATA H, CADET J L. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice[J]." Neuroscience, 1998,85(3):907-917.
[21]SCHWARTING R K W, HUSTON J P. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae[J]." Progress in Neurobiology, 1996,49(3):215-266.
[22]KONNOVA E A, SWANBERG M. Animal models of Parkinson’s disease[M]//STOKER T B, GREENLAND J C. Parkinson’s disease: Pathogenesis and clinical aspects. Brisbane (AU): Codon Publications Copyright. 2018.
[23]THIRUGNANAM T, SANTHAKUMAR K. Chemically induced models of Parkinson’s disease[J]." Comparative Biochemistry and Physiology Toxicology amp; Pharmacology, 2022,252:109213.
[24]TRONCI E, FRANCARDO V. Animal models of L-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse[J]." Journal of Neural Transmission (Vienna, Austria:1996), 2018,125(8):1137-1144.
[25]TRIPANICHKUL W, JAROENSUPPAPERCH E O. Ame-liorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice[J]." European Review for Medical and Pharmacological Sciences, 2013,17(10):1360-1368.
[26]VARCIN M, BENTEA E, MERTENS B, et al. Acute versus long-term effects of 6-hydroxydopamine on oxidative stress and dopamine depletion in the striatum of mice[J]." Journal of Neuroscience Methods, 2011,202(2):128-136.
[27]KABUTO H, NISHIZAWA M, TADA, et al. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hyd-roxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum[J]." Neurochemical Research, 2005,30(3):325-332.
[28]COLETTE S, DAUBNER. Tyrosine hydroxylase and regulation of dopamine synthesis[J]." Archives of Biochemistry and Biophysics, 2011,508(1):1-12.
[29]NAGATSU T, NAKASHIMA A, WATANABE H, et al. Neuromelanin in Parkinson’s disease: tyrosine hydroxylase and tyrosinase[J]." International Journal of Molecular Sciences, 2022,23(8):4176.
[30]NAGATSU T, NAKASHIMA A, ICHINOSE H, et al. Human tyrosine hydroxylase in Parkinson’s disease and in related disorders[J]." Journal of Neural Transmission, 2019,126(4):397-409.
[31]ANTUNES M S, CATTELAN SOUZA L, LADD F V L, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice[J]." Molecular Neuro-biology, 2020,57(7):3027-3041.
[32]MENDES-PINHEIRO B, SOARES-CUNHA C, MAROTE A, et al. Unilateral intrastriatal 6-hydroxydopamine lesion in mice: a closer look into non-motor phenotype and glial response[J]." International Journal of Molecular Sciences, 2021,22(21):11530.
[33]LIU X J, YU H, CHEN B X, et al. CB2 agonist GW842166x protected against 6-OHDA-induced anxiogenic- and depressive-related behaviors in mice[J]." Biomedicines, 2022,10(8):1776.
[34]MASINI D, PLEWNIA C, BERTHO M, et al. A guide to the generation of a 6-hydroxydopamine mouse model of Parkin-son’s disease for the study of non-motor symptoms[J]." Biomedicines, 2021,9(6):598.
(本文編輯馬偉平)