

[摘要]目的探索大麻素Ⅱ型(CB2)受體對脂多糖(LPS)誘導小鼠黑質(zhì)(SN)區(qū)炎癥反應的作用。方法將18只8周齡雄性野生型(WT)C57BL/6小鼠隨機分為WT對照組、WT LPS組和WT LPS+JWH133(CB2受體激動劑)組,12只8周齡雄性CB2受體敲除(CB2-KO)C57BL/6小鼠隨機分為CB2-KO對照組和CB2-KO LPS組。對照組小鼠單次雙側SN立體定位注射生理鹽水,其余各組小鼠注射等體積的LPS,然后連續(xù)腹腔注射JWH133或生理鹽水14 d。應用實時熒光定量PCR技術檢測各組小鼠SN中環(huán)氧化酶2(COX-2)和誘導型一氧化氮合酶(iNOS)基因的表達。結果與WT對照組相比,WT LPS組小鼠SN區(qū)COX-2和iNOS基因表達水平升高,差異有統(tǒng)計學意義(F=20.9、21.4,q=5.536、5.518,Plt;0.01);JWH133能明顯抑制LPS誘導的COX-2和iNOS基因表達上調(diào)(q=5.170、4.553,Plt;0.05);與WT LPS組相比,CB2-KO LPS組小鼠COX-2和iNOS基因表達明顯上調(diào),差異有統(tǒng)計學意義(q=4.150、5.496,Plt;0.05)。結論激活CB2受體能夠抑制LPS誘導小鼠SN區(qū)COX-2和iNOS基因的表達,缺失CB2受體能夠促進LPS誘導小鼠SN區(qū)COX-2和iNOS基因的表達。
[關鍵詞]受體,大麻酚,CB2;脂多糖類;炎癥;環(huán)氧化酶2;一氧化氮合酶
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2023)03-0371-04
doi:10.11712/jms.2096-5532.2023.59.086[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版]https://kns.cnki.net/kcms2/detail/37.1517.r.20230731.1044.001.html;2023-07-3117:11:34
EFFECT OF CANNABINOID TYPE Ⅱ RECEPTORS ON LIPOPOLYSACCHARIDE-INDUCED GENE EXPRESSION OF CYCLOO-XYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE IN THE SUBSTANTIA NIGRA OF MICEWANG Bingchao, SUN Lin, ZHU Tianli, MA Zegang (Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of cannabinoid receptor-2 (CB2) on lipopolysaccharide (LPS)-induced inflammatory response in the substantia nigra (SN) of mice. MethodsA total of 18 male C57BL/6 wild-type (WT) mice, aged 8 weeks, were randomly divided into WT control group, WT LPS group, and WT LPS+JWH133 (a CB2 receptor agonist) group, and 12 male CB2 receptor-knockout (CB2-KO) C57BL/6 mice were randomly divided into CB2-KO control group and CB2-KO LPS group. The mice in the control group received a single stereotactic injection of normal saline into the bilateral SN, and those in the other groups were injected with an equal volume of LPS, followed by the intraperitoneal injection of JWH133 or normal saline for 14 consecutive days. Quantitative real-time PCR was used to measure the mRNA expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the SN." ResultsCompared with the WT control group, the WT LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS in the SN (F=20.9,21.4;q=5.536,5.518;Plt;0.01). JWH133 significantly inhibited the upregulated mRNA expression of COX-2 and iNOS induced by LPS (q=5.170,4.553;Plt;0.05). Compared with the WT LPS group, the CB2-KO LPS group had significant increases in the mRNA expression levels of COX-2 and iNOS (q=4.150,5.496;Plt;0.05). ConclusionActivation of CB2 receptor can inhibit LPS-induced mRNA expression of COX-2 and iNOS in the SN of mice, while deletion of CB2 receptor can promote LPS-induced mRNA expression of COX-2 and iNOS.
[KEY WORDS]receptor, cannabinoid, CB2; lipopolysaccharides; inflammation; cyclooxygenase 2; nitric oxide synthase
炎癥是免疫系統(tǒng)保護生物體免受有害因素傷害的一種生物反應,然而過度的炎癥反應可能導致機體損傷和疾病的產(chǎn)生[1-2]。近年來研究發(fā)現(xiàn),神經(jīng)炎癥是帕金森病(PD)發(fā)病的關鍵因素[3]。有臨床研究證實,在PD病人死后的中腦黑質(zhì)(SN)中,除了觀察到多巴胺(DA)能神經(jīng)元丟失之外,還檢測到活化的膠質(zhì)細胞和大量的炎癥因子[4-5],這表明神經(jīng)炎癥參與了PD的發(fā)病。因此,有效抑制膠質(zhì)細胞介導的炎癥反應,可能有助于PD的治療。大麻素Ⅱ型(CB2)受體屬于G蛋白偶聯(lián)受體,在中樞神經(jīng)系統(tǒng)中主要表達于膠質(zhì)細胞[6]。最近CB2受體成為治療PD的關鍵靶點[7]。本實驗室研究發(fā)現(xiàn),激活CB2受體能夠抑制1-甲基-4-苯基-吡啶陽離子引起的星形膠質(zhì)細胞環(huán)氧化酶2(COX-2)和誘導性一氧化氮合酶(iNOS)的表達,抑制星形膠質(zhì)細胞的炎癥反應[8]。iNOS和COX-2是調(diào)節(jié)炎癥反應的關鍵酶,參與炎癥因子的過度產(chǎn)生[9]。然而CB2受體在PD體內(nèi)模型中研究較少,激活該受體能否抑制脂多糖(LPS)誘導的SN區(qū)COX-2和iNOS基因表達,目前尚不清楚。因此,本研究應用LPS制備PD小鼠炎癥模型,探討CB2受體對LPS誘導小鼠SN區(qū)COX-2和iNOS基因表達的影響。現(xiàn)將結果報告如下。
1材料與方法
1.1實驗動物及試劑
SPF級雄性健康C57BL/6野生型(WT)以及CB2受體敲除(CB2-KO)小鼠,8周齡,體質(zhì)量18~22 g,其中WT小鼠購于北京維通利華公司,CB2-KO小鼠由美國巴羅神經(jīng)研究所贈予。小鼠每3~4只一籠,飼養(yǎng)環(huán)境:室溫23~26 ℃,濕度為40%~60%,12-12 h晝夜循環(huán)光照,可自由飲水進食。實驗開始前小鼠需要適應飼養(yǎng)環(huán)境1周。JWH133(CB2受體激動劑)購于美國APE x BIO公司;LPS購于美國Sigma公司;TRIzol購于美國Life Technologies公司;RNA逆轉錄試劑盒、SYBR Green購于南京諾唯贊生物科技股份有限公司;PCR引物購于日本Takara公司;其他試劑均為國產(chǎn)分析純。
1.2動物分組及處理
將18只8周齡雄性WT C57BL/6小鼠隨機分為WT對照組(A組)、WT LPS組(B組)和WT LPS+JWH133組(C組),12只8周齡雄性CB2-KO C57BL/6小鼠隨機分為CB2-KO對照組(D組)和CB2-KO LPS組(E組),每組6只。小鼠預先腹腔注射JWH133(100 μg·kg-1·d-1)或生理鹽水2 d。24 h后,參照以往文獻的方法,以腦立體定位注射的方式,單次雙側SN區(qū)注射0.2 g/L的LPS 0.6 μL建立PD動物模型[10-11],對照組小鼠注射等體積的生理鹽水。SN區(qū)注射LPS 1 h后,再連續(xù)腹腔注射JWH133(100 μg·kg-1·d-1)或生理鹽水14 d[12]。
1.3實時熒光定量PCR(qRT-PCR)檢測COX-2和iNOS mRNA水平
藥物處理后,用異氟烷完全麻醉小鼠,迅速斷頭取腦,用刀片將小腦部位切除,然后沿大腦腹側視神經(jīng)根部垂直切開腦組織,SN的輪廓在大腦的冠狀切面即可見到,用眼科鑷夾取出SN置于離心管中,加入500 μL的TRIzol,提取小鼠SN總RNA。取1 μg總RNA使用反轉錄試劑盒進行反轉錄,加入4×gDNA wiper Mix 4 μL,加入RNase free water至16 μL,混勻。反應(42 ℃ 2 min,4 ℃ 3 min)完成后加入5×HiScript Ⅲ qRT SuperMix 4 μL,總體積20 μL,混勻。反應(37 ℃ 15 min,85 ℃ 5 s)后得到cDNA。采用SYBR Green染料法定量檢測COX-2、iNOS以及GAPDH基因的表達[13]。采用2-△△CT法計算目的基因相對表達量。qRT-PCR檢測所用引物及序列見表1。
1.4統(tǒng)計學處理
應用GraphPad Prism 7.0軟件對數(shù)據(jù)進行統(tǒng)計處理。實驗所得數(shù)據(jù)以±s表示,多組間比較采用單因素方差分析(One-way ANOVA),并應用Turkey法進行兩兩比較,Plt;0.05表示差異有統(tǒng)計學意義。
2結果
與WT對照組相比較,WT LPS組小鼠SN區(qū)COX-2和iNOS基因表達水平升高,差異有統(tǒng)計學意義(F=20.9、21.4,q=5.536、5.518,Plt;0.01);JWH133處理能夠明顯抑制LPS誘導的COX-2和iNOS基因表達上調(diào)(q=5.170、4.553,Plt;0.05);與WT LPS組小鼠比較,CB2-KO LPS組小鼠SN區(qū)COX-2和iNOS基因表達明顯上調(diào),差異有統(tǒng)計學意義(q=4.150、5.496,Plt;0.05);CB2-KO對照組小鼠COX-2和iNOS基因表達水平與WT對照組相比較差異無統(tǒng)計學意義(q=1.071、0.940,P>0.05)。見表2。
3討論
PD是繼阿爾茨海默病(AD)之后最常見的慢性神經(jīng)退行性疾病,其病理學特征是中腦SN中DA能神經(jīng)元的進行性丟失[14]。PD炎癥反應的特征是SN中膠質(zhì)細胞激活,引起COX-2和iNOS等炎癥遞質(zhì)增加,誘導產(chǎn)生大量的炎癥因子,造成對DA能神經(jīng)元的損傷。有研究表明,SN區(qū)微量注射LPS可以引起局部的免疫反應,并產(chǎn)生PD特征性的黑質(zhì)紋狀體通路局部病變[10-11]。因此,本實驗應用腦立體定位技術在SN區(qū)注射LPS建立PD小鼠模型,并且采用qRT-PCR方法檢測SN中COX-2和iNOS基因表達水平。COX-2和iNOS是炎癥反應的重要參與者。當有炎癥刺激時,COX-2表達增加,催化合成更多的前列腺素,產(chǎn)生的前列腺素一方面加重了炎癥反應,另一方面誘導iNOS表達增加,從而催化產(chǎn)生更多的一氧化氮,進一步加重炎癥反應,造成神經(jīng)元的死亡[9]。所以,有效地抑制SN區(qū)COX-2和iNOS的表達,可對DA能神經(jīng)元發(fā)揮保護作用。CB2受體是內(nèi)源性大麻素系統(tǒng)(ECS)的組成部分之一,ECS由兩種內(nèi)源性大麻素和大麻素Ⅰ、Ⅱ型(CB1和CB2)受體以及合成和降解它們的酶組成[15-16]。不同于CB1受體的激活,CB2受體的激活沒有精神副作用,而且廣泛地分布在神經(jīng)膠質(zhì)細胞中[17]。因此,CB2受體及其特定配體近年來獲得更多的關注。最近的研究證實,CB2受體可以調(diào)節(jié)中樞神經(jīng)系統(tǒng)的免疫功能和神經(jīng)炎癥反應[18-19]。LI等[20]在腦出血模型中研究發(fā)現(xiàn),激活膠質(zhì)細胞的CB2受體可抑制iNOS等表達的增加,發(fā)揮神經(jīng)保護作用。ASO等[21]研究發(fā)現(xiàn),應用CB2受體激動劑JWH133的AD小鼠在主動回避測試和V迷宮記憶檢測中表現(xiàn)出認知缺陷的部分緩解,這種認知能力的改善伴隨炎癥因子的減少。既然CB2受體在神經(jīng)炎癥中發(fā)揮保護作用,那么是否可以通過激活膠質(zhì)細胞的CB2受體抑制PD模型中SN區(qū)的炎癥反應?
本實驗選用對CB2受體具有高選擇性的合成激動劑JWH133,探討了激活CB2受體對LPS誘導的COX-2和iNOS基因表達的影響。實驗結果顯示,LPS處理后小鼠SN區(qū)COX-2和iNOS基因表達水平顯著增加。JWH133腹腔注射2周可以抑制LPS處理引起的COX-2和iNOS基因表達升高,說明激活CB2受體可以抑制炎癥遞質(zhì)的產(chǎn)生,緩解炎癥反應。與LPS處理的WT小鼠相比較,CB2-KO小鼠經(jīng)LPS處理后腦SN區(qū)COX-2和iNOS基因的表達明顯增加。在LPS誘導下SN區(qū)COX-2和iNOS基因表達明顯上調(diào),而敲除CB2受體又能進一步促進COX-2和iNOS基因表達,說明CB2受體的缺失加劇了LPS誘導的炎癥反應,證實CB2受體激活在PD的發(fā)病中發(fā)揮了抗炎作用,但其具體機制還有待進一步探究。在臨床研究方面,雖然有不同的試驗分析了基于大麻的藥物在PD病人中的應用[22-24],但目前尚無專門研究CB2受體作用或CB2受體激動劑對PD病人影響的臨床試驗。然而,人類全基因組關聯(lián)研究分析顯示,CB2受體基因CNR2與PD相關[25]。此外,在PD病人的死后腦組織中發(fā)現(xiàn)了CB2受體表達的改變[26]。CB2受體在PD中的保護作用提示,CB2受體可能是PD潛在的新治療靶點。
[參考文獻]
[1]METSIOS G S, MOE R H, KITAS G D. Exercise and inflammation[J]. Best Practice amp; Research Clinical Rheumatology, 2020,34(2):101504.
[2]YONG H Y F, RAWJI K S, GHORBANI S, et al. The benefits of neuroinflammation for the repair of the injured central nervous system[J]. Cellular amp; Molecular Immunology, 2019,16(6):540-546.
[3]KWON H S, KOH S H. Neuroinflammation in neurodegene-rative disorders: the roles of microglia and astrocytes[J]. Translational Neurodegeneration, 2020,9(1):42.
[4]XU S B, LU J N, SHAO A W, et al. Glial cells: role of the immune response in ischemic stroke[J]. Frontiers in Immuno-logy, 2020,11:294.
[5]LEE S L, HSU J Y, CHEN T C, et al. Erinacine A prevents lipopolysaccharide-mediated glial cell activation to protect dopaminergic neurons against inflammatory factor-induced cell death in vitro and in vivo[J]. International Journal of Molecular Sciences, 2022,23(2):810.
[6]STASIULEWICZ A, ZNAJDEK K, GRUDZIE? M, et al. Aguide to targeting the endocannabinoid system in drug design[J]. International Journal of Molecular Sciences, 2020,21(8):2778.
[7]VAN NIEKERK G, MABIN T, ENGELBRECHT A M. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective[J]. Inflammopharmacology, 2019,27(1):39-46.
[8]JIA Y, DENG H, QIN Q Y, et al. JWH133 inhibits MPP+-induced inflammatory response and iron influx in astrocytes[J]. Neuroscience Letters, 2020,720:134779.
[9]ZHANG W Q, LU J H, WANG Y Y, et al. Canagliflozin attenuates lipotoxicity in cardiomyocytes by inhibiting inflammation and ferroptosis through activating AMPK pathway[J]. International Journal of Molecular Sciences, 2023,24(1):858.
[10]HUMBERT-CLAUDE M, DUC D, DWIR D, et al. Tollip, an early regulator of the acute inflammatory response in the substantia nigra[J]. Journal of Neuroinflammation, 2016,13(1):303.
[11]DU Z R, GU Y, XIE X M, et al. GPER and IGF-1R mediate the anti-inflammatory effect of genistein against lipopolysaccharide (LPS)-induced nigrostriatal injury in rats[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2021,214:105989.
[12]CHUNG Y C, SHIN W H, BAEK J Y, et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease[J]. Experimental amp; Molecular Medicine, 2016,48(1):e205.
[13]JIANG M C, CHEN X H, ZHAO X, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells[J]. European Journal of Pharmacology, 2016,786:53-59.
[14]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurology, 2021,20(5):385-397.
[15]DI MARZO V, PISCITELLI F. The endocannabinoid system and its modulation by phytocannabinoids[J]. Neurotherapeutics, 2015,12(4):692-698.
[16]BISOGNO T, MACCARRONE M. Endocannabinoid signaling and its regulation by nutrients[J]. BioFactors, 2014,40(4):373-380.
[17]NAGOOR MEERAN M F, SHARMA C, GOYAL S N, et al. CB2 receptor-selective agonists as candidates for targeting infection, inflammation, and immunity in SARS-CoV-2 infections[J]. Drug Development Research, 2021,82(1):7-11.
[18]JEAN-GILLES L, BRAITCH M, LATIF M L, et al. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells[J]. Acta Physiologica, 2015,214(1):63-74.
[19]CAPOZZI A, CAISSUTTI D, MATTEI V, et al. Anti-inflammatory activity of a CB2 selective cannabinoid receptor agonist: signaling and cytokines release in blood mononuclear cells[J]. Molecules, 2021,27(1):64.
[20]LI L, TAO Y H, FENG Z, et al. Inflammatory regulation by driving microglial M2 polarization: neuroprotective effects of cannabinoid receptor-2 activation in intracerebral hemorrhage[J]. Frontiers in Immunology, 2017,8:112.
[21]ASO E, JUVS S, MALDONADO R, et al. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AβPP/PS1 mice[J]. Journal of Alzheimer’s Disease: JAD, 2013,35(4):847-858.
[22]PAES-COLLI Y, AGUIAR A F L, ISAAC A R, et al. Phytocannabinoids and Cannabis-based products as alternative pharmacotherapy in neurodegenerative diseases: from hypothesis to clinical practice[J]. Frontiers in Cellular Neuroscience, 2022,16:917164.
[23]OIKONOMOU P, JOST W H. Randomized controlled trials on the use of cannabis-based medicines in movement disorders: a systematic review[J]. Journal of Neural Transmission, 2022,129(10):1247-1256.
[24]PEBALL M, WERKMANN M, ELLMERER P, et al. Nabilone for non-motor symptoms of Parkinson’s disease: a randomized placebo-controlled, double-blind, parallel-group, enriched enrolment randomized withdrawal study (The NMS-Nab Study)[J]. Journal of Neural Transmission, 2019,126(8):1061-1072.
[25]LIU Q R, CANSECO-ALBA A, ZHANG H Y, et al. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol prefe-rence[J]. Scientific Reports, 2017,7(1):17410.
[26]GóMEZ-GáLVEZ Y, PALOMO-GARO C, FERNNDEZ-RUIZ J, et al. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease[J]. Progress in Neuro-Psychopharmacology amp; Biological Psychiatry, 2016,64:200-208.
(本文編輯馬偉平)