







[摘要]目的探究線粒體翻譯延伸因子Ts(EF-Ts)通過影響線粒體損傷調控病理性心肌細胞肥大的分子機制。方法使用血管緊張素Ⅱ(AngⅡ)制備小鼠心肌肥大的細胞模型與動物模型,采用蛋白免疫印跡(WB)方法檢測心肌肥大時EF-Ts的蛋白表達。用EF-Ts干擾慢病毒干擾小鼠原代心肌細胞中EF-Ts的表達,同時用AngⅡ處理,借助四甲基羅丹明甲酯(TMRM)與鈣黃綠素乙酰氧基甲酯(Calcein AM)染色,應用激光共聚焦顯微鏡觀察心肌細胞線粒體膜電位和線粒體通透性轉換孔(MPTP)水平,并采用WB法檢測心肌肥大標志物心房鈉尿因子(ANF)和鈉尿肽B(NPPB)的變化情況。結果心肌肥大的細胞模型和動物模型中EF-Ts蛋白表達量均明顯降低(t=2.95、14.93,P<0.05)。與對照組相比,AngⅡ誘導的心肌肥大細胞模型中TMRM和Calcein AM染色熒光強度均明顯減弱,在心肌肥大細胞模型中敲低EF-Ts后TMRM和Calcein AM染色熒光強度進一步減弱(F=4.22~22.88,P<0.05),而心肌肥大標志物ANF、NPPB蛋白表達量進一步上升(F=6.52、20.96,P<0.05)。結論EF-Ts缺失可能引起線粒體功能損傷而導致心肌肥大,因此EF-Ts有可能成為干預心肌肥大的重要靶標。
[關鍵詞]肽鏈延伸,翻譯;線粒體;肌細胞,心臟;肥大;小鼠
[中圖分類號]R394;R541[文獻標志碼]A[文章編號]2096-5532(2023)03-0401-06
doi:10.11712/jms.2096-5532.2023.59.108[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.R.20230809.1714.001;2023-08-1013:49:21
ROLE OF MITOCHONDRIAL TRANSLATION ELONGATION FACTOR TS IN CARDIAC HYPERTROPHY AND UNDERLYING MECHANISM ZHANG Deyu, WANG Fei, GAO Yanyan (Institute of Translational Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo explore the molecular mechanism of the mitochondrial translation elongation factor EF-Ts re-gulating pathological cardiomyocyte hypertrophy through affecting mitochondrial injury. MethodsAngiotensin Ⅱ (AngⅡ) was used to prepare cell and animal models of cardiac hypertrophy in mice. Western blot was used to measure the expression of EF-Ts protein in cardiac hypertrophy. EF-Ts-interfering lentivirus was used to interfere the expression of EF-Ts in mouse primary cardiomyocytes. After treatment with Ang Ⅱ and staining with tetramethylrhodamine methyl ester (TMRM) and calcein acetoxymethyl ester (Calcein AM), a laser confocal microscope was used to observe the mitochondrial membrane potential and mitochondrial permeability transition pore level of cardiomyocytes. Western blot was used to determine the changes of atrial natriuretic factor (ANF) and natriuretic peptide B (NPPB), which were the markers of cardiac hypertrophy. ResultsThe expression of EF-Ts protein in both the cell model and animal model of cardiac hypertrophy was decreased significantly (t=2.95,14.93;Plt;0.05). Compared with those in the control group, the fluorescence intensities of TMRM and Calcein AM were significantly decreased in Ang Ⅱ-induced cell model of cardiac hypertrophy, and were further significantly reduced after knocking down EF-Ts in the model of cardiac hypertrophy (F=4.22-22.88,Plt;0.05), while the expression of ANF and NPPB proteins was further significantly increased (F=6.52,20.96;Plt;0.05). ConclusionEF-Ts deletion may cause mitochondrial dysfunction, and thereby lead to cardiac hypertrophy. Therefore, EF-Ts may be a key target for the intervention of cardiac hypertrophy.
[KEY WORDS]peptide chain elongation, translational; mitochondria; myocytes, cardiac; hypertrophy; mice
心肌肥厚是指心臟為適應各類刺激而出現的心肌細胞體積和質量增大的病癥[1]。心肌肥厚形成是一個慢性且復雜的過程,是許多心血管疾病的病理生理基礎[1-5],但其分子機制依然不明確。線粒體在心肌細胞中發揮重要功能,包括ATP生成、活性氧(ROS)產生、代謝調控、鈣平衡等。研究發現,線粒體功能障礙(MD)與心肌肥厚、高血壓等諸多心血管疾病存在聯系[6]。線粒體代謝動力學失衡、鈣穩態失衡、ROS水平升高、線粒體DNA受損均對心肌肥厚的形成、發展起到一定影響[7],因此MD也是心肌肥厚形成、發展的一個關鍵影響因素[8-9]。而線粒體翻譯的正常有序進行,是線粒體功能的重要保
402青島大學學報(醫學版)59卷
證。線粒體翻譯是一個動態平衡的過程,這一過程受到多種因子的調控。線粒體翻譯可以分為起始、延伸、終止3個階段[10],其中延伸階段在蛋白質合成方面發揮著關鍵作用,被視作保守性最強的翻譯階段[11]。當前已知的線粒體翻譯延伸因子(EF)包括EF-Tu、EF-Ts和EF-G1,通過其表達量的變化能夠掌握線粒體的功能與翻譯速度,同時能夠對細胞功能狀態做出有效評估,這些因子突變定然會引發線粒體病變[11-13]。EF-Ts是一種核編碼的線粒體蛋白。有研究采用全外顯子測序方法在嚴重的心肌病病人體內鑒定了TSFM(EF-Ts的編碼基因)的突變[14-16]。這提示EF-Ts的正常表達對維持正常的心肌細胞功能有重要作用,然而關于EF-Ts在心肌肥厚中的作用迄今并無太多研究報道。因此,本研究從病理性心肌肥大的細胞與動物模型入手,探討心肌細胞肥大對EF-Ts表達的影響,以及干預EF-Ts對線粒體功能的作用,為心肌肥厚的臨床研究提供新的靶點與思路。
1材料與方法
1.1實驗材料
日齡1~2 d的C57小鼠乳鼠、C57小鼠(大任富城),血管緊張素Ⅱ(AngⅡ,Abmole),DMEM/F12(SparkJade),胎牛血清(BI),青鏈霉素(美侖生物),胰液素、Ⅱ型膠原酶和TRITC Phalloidin羅丹明標記鬼筆環肽(翊圣生物),四甲基羅丹明甲酯(TMRM) Perchlorate(Abmole),線粒體通透性轉換孔(MPTP)檢測試劑盒(碧云天),EF-Ts干擾慢病毒和HitransG P(吉凱基因),冰臺、眼科剪、彎頭鑷、小燒杯、260目過濾網和生理鹽水(美侖生物),心房鈉尿因子(ANF)抗體和EF-Ts抗體(Abcam),鈉尿肽B(NPPB)抗體(Affinity),Gapdh抗體(CST)。
1.2實驗方法
1.2.1小鼠原代心肌細胞的分離和培養于冰臺上準備3個6 cm培養皿,各加入4 mL PBS。取雌雄不分的1~2 d日齡C57小鼠乳鼠放入一容器中,用體積分數0.75的乙醇清洗小鼠1~2次。于超凈臺中用眼科剪將乳鼠心臟取出,放入盛有PBS的培養皿中,洗3次,用吸管吸掉PBS。將心臟剪碎后加入消化液,轉移到滅菌的50 mL離心管中。37 ℃搖動水浴,每次5 min,將上層液體轉移至小燒杯中,再次加入消化液搖動水浴,反復10次以上直到消化完畢。轉移燒杯內液體到50 mL離心管內,接著再添加4 mL血清,使消化結束。收集消化產物,以800 r/min離心5 min,棄上清,收集沉淀,再用5 mL DMEM/F12輕輕將沉淀懸浮,再以800 r/min離心5 min,棄上清,收集沉淀。在沉淀中加入10 mL含有體積分數0.05血清的DMEM/F12培養液充分重懸,用260目過濾網(先用1 mL培養液潤濕)過濾,將過濾后的液體收集到10 cm培養皿中,置于細胞培養箱內于37 ℃下進行細胞培養。細胞差速貼壁1.0~1.5 h后,收集細胞懸液,此時沒有貼壁的細胞即為心肌細胞。最后將細胞接種于適合的細胞培養皿中,進行后續實驗。
1.2.2心肌肥大細胞模型的構建與鑒定分離的小鼠原代心肌細胞培養24 h后,用DMEM/F12無血清培養液預處理24 h,將培養液更換為含體積分數0.10血清的DMEM/F12培養液。實驗分2組,其中實驗組加入1.5 μmol/L的AngⅡ,對照組加入同等體積的PBS,處理48 h后提取細胞總蛋白,進行WB檢測。
1.2.3心肌肥大動物模型的構建與鑒定將小鼠稱質量后分為2組,每天于同一時間點,實驗組腹腔注射1.5 mg/kg的Ang Ⅱ(生理鹽水配制),對照組注射等體積的生理鹽水,2周后兩組腹腔注射30 g/L的水合氯醛,待小鼠徹底麻醉后斷頸處死取出心臟。取部分心臟組織加入RIPA裂解液(每20 mg組織加入150 μL)于組織研磨器中充分研磨后,在冰上裂解1 h(每10 min渦旋震蕩10 s),4 ℃下以12 000 r/min離心15 min,收集上清用于WB檢測。
1.2.4肥大相關蛋白的WB檢測將處理好的細胞用冰冷的PBS漂洗2次,加入RIPA裂解液(含1×PMSF和1×cooktail)在冰上裂解30 min(每10 min渦旋震蕩10 s),4 ℃下以12 000 r/min離心15 min。收集上清,加入4×蛋白上樣緩沖液,98 ℃煮沸10 min。根據所需檢測的蛋白大小選擇適合濃度的SDS-PAGE凝膠分離蛋白并轉移到PVDF膜上,用50 g/L的脫脂牛奶封閉非特異性結合位點1 h后,將膜和按比例稀釋的一抗4 ℃孵育過夜,以TBST洗膜3次(每次10 min)后,用抗鼠或者抗兔二抗孵育1.5 h,再次以TBST洗膜3次(每次10 min),最后用ECL顯影液顯影并通過化學發光儀檢測信號,以Gapdh為參照分析條帶灰度。實驗重復3次。
1.2.5細胞病毒感染當心肌細胞生長到密度為70%~80%時,即可以進行EF-Ts慢病毒感染,以multiplicity of infection(MOI)=15的病毒量感染細胞,同時根據培養皿大小加入適量促感染試劑HitransG P,24 h后更換培養液。細胞感染72 h收集細胞用于后續實驗。
1.2.6心肌細胞線粒體膜電位檢測將原代心肌細胞接種于35 mm玻底培養皿中,并將細胞分為空白對照組(A組)、Ang Ⅱ處理組(B組)、NC+Ang Ⅱ處理組(C組)和shEF-Ts+Ang Ⅱ處理組(D組)。病毒感染處理同1.2.5,Ang Ⅱ處理同1.2.2。將培養液吸除干凈,用PBS沿壁清洗細胞1或2次。在1 mL無血清培養液中加入150 nmol/L的TMRM,與細胞37 ℃共孵育60 min。用PBS溶液清洗1次,借助激光共聚焦顯微鏡觀察熒光強度的變化,TMRM的激發波長和發射波長分別為543、580 nm。實驗重復3次。
1.2.7心肌細胞MPTP測定將原代心肌細胞接種于35 mm的玻底培養皿中,細胞分組及處理同1.2.6。MPTP測定嚴格按照MPTP試劑盒說明書進行操作。Calcein AM的激發波長和發射波長分別為494、517 nm。實驗重復3次。
1.3統計學方法
應用軟件GraphPad Prism 5進行統計分析。計量數據結果以±s表示,兩組比較采用t檢驗,多組比較采用單因素方差分析,以P<0.05為差異有統計學意義。
2結果
2.1心肌肥大模型的建立及EF-Ts蛋白表達
與對照組相比,心肌肥大細胞模型的指標蛋白ANF、NPPB的表達量明顯升高,EF-Ts蛋白的表達量明顯降低(t=2.95~4.01,P<0.05)。在心肌肥大動物模型中,同樣能檢測到ANF、NPPB的表達量明顯升高,EF-Ts的表達量明顯降低(t=3.90~14.93,P<0.05)。見圖1和表1、2。
2.2各組心肌細胞線粒體膜電位比較
與空白對照組比較,Ang Ⅱ處理組熒光強度大幅減弱,表明線粒體膜電位下降,線粒體膜出現損傷,傷及線粒體膜功能;敲低EF-Ts后線粒體膜電位進一步降低,表明線粒體膜功能受損更加嚴重。見圖2。空白對照組、Ang Ⅱ處理組、NC+Ang Ⅱ處理組和shEF-Ts+Ang Ⅱ處理組的平均熒光強度分別為124.200±4.575、92.580±3.868、94.130±5.152和74.520±3.400(n=3),差異具有統計學意義(F=22.88,P<0.05)。
2.3各組心肌細胞MPTP的比較
與空白對照組相比,Ang Ⅱ處理組的熒光強度在5和10 min時均有所減弱,敲低EF-Ts后,熒光強度降低更加明顯(F=4.22、14.03,P<0.05)。表明敲低EF-Ts加重了Ang Ⅱ所造成的MPTP開放和線粒體膜通透性增強。見圖3、表3。
2.4EF-Ts敲低后肥大心肌細胞中肥大標記物ANF和NPPB的變化
與空白對照組比較,Ang Ⅱ處理組心肌細胞中心肌肥大標記物ANF和NPPB的蛋白表達量明顯升高,使用慢病毒敲低EF-Ts后其表達量進一步上升(F=6.52、20.96,P<0.05),表明敲低EF-Ts有一定的促心肌肥大的作用。見圖4、表4。
3討論
肥厚型心肌病被發現已有60多年,該病是具有高猝死風險的遺傳性疾病,其臨床表型多樣[17-20]。心肌肥厚的發生發展涉及多種化學物質和信號通路[20]。心臟作為機體代謝最活躍的器官,線粒體的密度非常高,它參與心肌細胞代謝過程中的能量生成、信號傳導、ROS生成、細胞凋亡等活動,在維持正常的心臟功能中發揮著重要作用[21-26]。有研究發現,在心肌肥厚的發生發展進程中,線粒體呼吸鏈復合體的活性降低、ATP合成能力下降[27-28]、鈣穩態失衡以及ROS水平升高都是線粒體功能紊亂的重要表現[8]。既往有文獻報道,MD與心肌肥大、高血壓以及心肌缺血灌注損傷有關[29-30]。線粒體能量代謝、氧化應激以及線粒體參與的鈣穩態等都與心肌肥大的發生和發展有著密切關聯,越來越多的證據表明MD可能是心肌肥厚過程中的一個關鍵的因素[31]。所以,將MD作為心肌肥厚治療及預防的靶點具有極高的價值。
正常心肌產生的ATP中95%以上來自線粒體的氧化磷酸化。有研究表明,在心肌肥大過程中,線粒體最大氧化能力下降的部分原因是呼吸鏈復合物的活性降低,線粒體膜電位下降和ATP合成酶活性降低影響ATP的產生[32]。心肌肥大向心力衰竭轉變過程中便伴隨著線粒體功能的衰退及氧化磷酸化能力的降低。EF-Ts參與線粒體基因組編碼的13個多肽的翻譯[33-34],這13個多肽都是線粒體呼吸鏈復合體中的核心組分[35-36]。EF-Ts的正常表達對維持線粒體電子傳遞鏈功能和氧化磷酸化水平的正常至關重要[11,37]。有研究顯示,TMSF突變造成的EF-Ts缺陷會導致肥厚型、擴張型心肌病和腦心肌病的發生,部分肥厚型心肌病病人線粒體復合體Ⅰ、Ⅳ和Ⅴ活性顯著降低,線粒體翻譯障礙、功能受損,這表明EF-Ts缺陷有可能是通過影響線粒體功能導致心肌肥大[14,16,38]。近年有研究報告了1例TSFM基因中新的復合雜合子變體,病人的組織樣本中EF-Ts蛋白大量減少,線粒體復合體Ⅰ和Ⅳ活性降低,線粒體翻譯功能受損,造成嚴重的線粒體功能紊亂,導致線粒體心肌病[15],從而確認TSFM是心臟功能障礙的主要靶點。
本研究結果顯示,Ang Ⅱ誘導的心肌肥大的細胞與動物模型中,EF-Ts蛋白表達量明顯降低,而在心肌肥大細胞模型中干擾EF-Ts表達,線粒體膜電位受損和MPTP開放程度以及肥大標志物ANF、NPPB的表達量進一步增加。這表明EF-Ts通過影響線粒體功能對心肌細胞的肥大過程造成影響,EF-Ts缺失可能引起線粒體功能損傷而導致心肌肥大。在后續工作中我們將進一步探究EF-Ts在心肌細胞肥大過程中的具體調控通路,從而為心血管疾病的預防和治療提供新的思路和靶標。
[參考文獻]
[1]NAKAMURA M, SADOSHIMA J. Mechanisms of physiolo-gical and pathological cardiac hypertrophy[J]." Nature Reviews Cardiology, 2018,15(7):387-407.
[2]GIBB A A, HILL B G. Metabolic coordination of physiological and pathological cardiac remodeling[J]." Circulation Research, 2018,123(1):107-128.
[3]LI Y Q, LIANG Y J, ZHU Y J, et al. Noncoding RNAs in cardiac hypertrophy[J]." Journal of Cardiovascular Translatio-nal Research, 2018,11(6):439-449.
[4]MCMULLEN J R, JENNINGS G L. Differences between pathological and physiological cardiac hypertrophy: novel the-rapeutic strategies to treat heart failure[J]." Clinical and Expe-rimental Pharmacology amp; Physiology, 2007,34(4):255-262.
[5]THAM Y K, BERNARDO B C, OOI J Y, et al. Pathophy-siology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]." Archives of Toxicology, 2015,89(9):1401-1438.
[6]惠汝太. 肥厚型心肌病是一個最早能夠看見解決答案的心血管疾病[J]?" 中國分子心臟病學雜志, 2018,18(2):2393-2395.
[7]WALTERS J W, AMOS D, RAY K, et al. Mitochondrial re-dox status as a target for cardiovascular disease[J]." Current Opinion in Pharmacology, 2016,27:50-55.
[8]胡歡,李萍,程曉曙. 線粒體功能障礙與心肌肥厚的研究進展[J]." 重慶醫學, 2018,47(23):3081-3083.
[9]ZHOU L Y, LIU J P, WANG K, et al. Mitochondrial function in cardiac hypertrophy[J]." International Journal of Car-diology, 2013,167(4):1118-1125.
[10]DESAI N, YANG H T, CHANDRASEKARAN V, et al. Elongational stalling activates mitoribosome-associated quality control[J]." Science (New York, N Y), 2020,370(6520):1105-1110.
[11]OTT M, AMUNTS A, BROWN A. Organization and regulation of mitochondrial protein synthesis[J]." Annual Review of Biochemistry, 2016,85:77-101.
[12]SCHULZ C, SCHENDZIELORZ A, REHLING P. Unlocking the presequence import pathway[J]." Trends in Cell Biology, 2015,25(5):265-275.
[13]MAI N, CHRZANOWSKA-LIGHTOWLERS Z M A, LIGHTOWLERS R N. The process of mammalian mitochondrial protein synthesis[J]." Cell and Tissue Research, 2017,367(1):5-20.
[14]SMEITINK J A, ELPELEG O, ANTONICKA H, et al. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs[J]." American Journal of Human Genetics, 2006,79(5):869-877.
[15]PERLI E, PISANO A, GLASGOW R I C, et al. Novel compound mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe cardiomyopathy with myo-cardial fibro-adipose replacement[J]." Scientific Reports, 2019,9(1):5108.
[16]EMPERADOR S, BAYONA-BAFALUY M P, FERNN-DEZ-MARMIESSE A, et al. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy[J]." European Journal of Human Genetics, 2017,25(1):153-156.
[17]TEARE D. Asymmetrical hypertrophy of the heart in young adults[J]." British Heart Journal, 1958,20(1):1-8.
[18]HERSHBERGER R E, GIVERTZ M M, HO C Y, et al. Correction: Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG)[J]." Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2019,21(10):2406-2409.
[19]MARIAN A J, BRAUNWALD E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]." Circulation Research, 2017,121(7):749-770.
[20]MARIAN A J. Molecular genetic basis of hypertrophic cardiomyopathy[J]." Circulation Research, 2021,128(10):1533-1553.
[21]GOFFART S, VON KLEIST-RETZOW J C, WIESNER R J. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy[J]." Cardiovascular Research, 2004,64(2):198-207.
[22]JIANG D S, WEI X, ZHANG X F, et al. IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling[J]." Nature Communications, 2014,5:3303.
[23]PUTINSKI C, ABDUL-GHANI M, STILES R, et al. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy[J]." Proceedings of the National Academy of Sciences of the United States of America, 2013,110(43):E4079-E4087.
[24]WENDE A R, O’NEILL B T, BUGGER H, et al. Enhanced cardiac Akt/protein kinase B signaling contributes to patholo-gical cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes[J]." Molecular and Cellular Biology, 2015,35(5):831-846.
[25]DWORATZEK E, MAHMOODZADEH S, SCHUBERT C, et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta[J]." Cardiovascular Research, 2014,102(3):418-428.
[26]ANDERSSON D C, FAUCONNIER J, YAMADA T, et al. Mitochondrial production of reactive oxygen species contri-butes to the β-adrenergic stimulation of mouse cardiomycytes[J]." The Journal of Physiology, 2011,589(Pt 7):1791-1801.
[27]SPERL W, JESINA P, ZEMAN J, et al. Deficiency of mitochondrial ATP synthase of nuclear genetic origin[J]." Neuromuscular Disorders, 2006,16(12):821-829.
[28]O’DONNELL J M, FIELDS A, XU X Y, et al. Limited functional and metabolic improvements in hypertrophic and healthy rat heart overexpressing the skeletal muscle isoform of SERCA1 by adenoviral gene transfer in vivo[J]." American Journal of Physiology Heart and Circulatory Physiology, 2008,295(6):H2483-H2494.
[29]FU Y L, TAO L, PENG F H, et al. GJA1-20k attenuates Ang Ⅱ-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function[J]." Acta Pharmacologica Sinica, 2021,42(4):536-549.
[30]MCDERMOTT-ROE C, YE J M, AHMED R, et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function[J]." Nature, 2011,478(7367):114-118.
[31]WST R C I, DE VRIES H J, WINTJES L T, et al. Mitochondrial complex I dysfunction and altered NAD(P)H kine-tics in rat myocardium in cardiac right ventricular hypertrophy and failure[J]." Cardiovascular Research, 2016,111(4):362-372.
[32]MANN D L, ZIPES D P, LIBBY P, et al. Braunwald’s heart disease: a textbook of cardiovascular medicine[M]." Amsterdam: Elsevier, 2015.
[33]LEE D E, BROWN J L, ROSA M E, et al. Translational machinery of mitochondrial mRNA is promoted by physical activity in Western diet-induced obese mice[J]." Acta Physiologica, 2016,218(3):167-177.
[34]MERCER T R, NEPH S, DINGER M E, et al. The human mitochondrial transcriptome[J]." Cell, 2011,146(4):645-658.
[35]YOKOKAWA T, MORI R, SUGA T, et al. Muscle denervation reduces mitochondrial biogenesis and mitochondrial translation factor expression in mice[J]." Biochemical and Biophysical Research Communications, 2020,527(1):146-152.
[36]YOKOKAWA T, KIDO K, SUGA T, et al. Exercise-induced mitochondrial biogenesis coincides with the expression of mitochondrial translation factors in murine skeletal muscle[J]." Physiological Reports, 2018,6(20):e13893.
[37]LIN Y Y, LI F J, HUANG L L, et al. eIF3 associates with 80S ribosomes to promote translation elongation, mitochon-drial homeostasis, and muscle health[J]." Molecular Cell, 2020,79(4):575-587.e7.
[38]SCALA M, BRIGATI G, FIORILLO C, et al. Novel homozygous TSFM pathogenic variant associated with encephalocardiomyopathy with sensorineural hearing loss and peculiar neuroradiologic findings[J]." Neurogenetics, 2019,20(3):165-172.
(本文編輯馬偉平)