[摘要]2型糖尿病(T2DM)與非乙醇性脂肪性肝病(NAFLD)是世界性的公共衛生問題,嚴重危害人類健康,且發病率呈逐年增高趨勢。本綜述主要探討T2DM與NAFLD的相互關系及其相互作用機制,為制定T2DM合并NAFLD的防治措施提供依據。
[關鍵詞]糖尿病,2型;非乙醇性脂肪性肝病;綜述
[中圖分類號]R587.1;R575.5[文獻標志碼]A[文章編號]2096-5532(2023)03-0449-05
doi:10.11712/jms.2096-5532.2023.59.082[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230726.1034.003.html;2023-07-2616:23:50
RESEARCH PROGRESS ON RELATIONSHIP BETWEEN TYPE 2 DIABETES MELLITUS AND NONALCOHOLIC FATTY LIVER DISEASE TIAN Jing, ZHANG Xuehui, CHE Kui, WANG Yangang (Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
[ABSTRACT]Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are public health problems across the world, with increasing incidence year by year, posing serious threats to human health. This review focuses on the relationship between T2DM and NAFLD and the interaction mechanism to provide a basis for the prevention and treatment of T2DM with NAFLD.
[KEY WORDS]diabetes mellitus, type 2; non-alcoholic fatty liver disease; review
2型糖尿病(T2DM)是一種慢性代謝性疾病,主要是由于胰腺β細胞功能失調導致胰島素分泌相對不足或者靶器官發生胰島素抵抗(IR),而引起的糖、脂肪和蛋白質代謝紊亂。T2DM持續性的高糖血癥狀態會導致心臟、腦、眼、腎臟、足、血管及周身神經的損傷,進而引起各種急慢性并發癥[1]。非乙醇性脂肪性肝病(NAFLD)可從單純性脂肪肝(NAFL)發展至非乙醇性脂肪性肝炎(NASH),進一步發展為脂肪性肝纖維化,甚至會發展為肝硬化并可能最終導致肝癌的發生,嚴重威脅人類健康[2]。隨著T2DM和肥胖的流行, NAFLD逐漸增多,不僅已成為另一個威脅健康的隱形殺手,還是T2DM、高血壓以及血脂異常的高危因素[3]。目前,中國T2DM、總體肥胖和腹型肥胖患病率逐年增高[4]。T2DM合并NAFLD是亟待解決的公共衛生問題,但是兩者的相互關系及其相互作用機制尚不完全明確,尚無針對性治療的靶向藥物。因此,本文就T2DM與NAFLD的相互關系及其相互作用機制進行綜述。
1T2DM誘導NAFLD的產生
T2DM存在較重的IR,脂肪生成作用被高度刺激,機體存在明顯的高胰島素血癥及高脂血癥,這可能是由于雷帕霉素靶蛋白(mTOR)信號通路被激活亦或是內質網應激所致[5]。高胰島素血癥及高脂血癥可以分別刺激固醇調節元件結合蛋白1(SREBP1c)和碳水化合物反應元件結合蛋白(ChREBP)這兩種脂肪合成的關鍵調節因子的激活,隨后下游的脂肪酸合酶(FAS)、乙酰輔酶A羧化酶(ACCs)等脂肪生成酶活力上調,導致肝臟生成游離脂肪酸(FFA)過量[6]。劉冬戀等[7]研究證實,在T2DM大鼠模型的肝臟中,出現了過氧化物酶體增殖激活受體α(PPARα)蛋白表達的下調,這進一步導致脂肪酸的脂解作用減弱,造成脂肪酸在肝臟異位沉積。在生理情況下,當肝糖原含量占肝臟質量的5%時即接近飽和,肝臟額外吸收的葡萄糖均被用于脂肪酸的合成。肝臟應用糖合成脂肪酸的過程被定義為脂肪的從頭合成(DNL)途徑。機體在正常情況下肝臟脂肪酸的氧化與合成處于動態平衡狀態,從而使肝臟三酰甘油(TG)處于正常水平。正常人的肝臟中,DNL途徑不是肝臟脂肪酸合成的主要途徑。可是一旦機體出現肥胖以及高胰島素血癥,肝臟可通過DNL途徑儲備肝臟脂肪25%以上的脂肪酸[8],出現此種現象的原因可能與IR有關。正常情況下,機體胰島素通過抑制激素敏感性脂肪酶(HSL)達到抑制脂肪脂解的作用。T2DM時由于存在不同途徑的IR,胰島素對HSL的抑制作用減弱,而HSL主要水解二酰甘油(DAG)sn-3位酯鍵,生成一酰甘油和脂肪酸。由此導致脂肪組織的脂解作用大大增強,大量的FFA通過血流進入肝臟,造成脂質在肝臟的異位沉積,從而加速了NAFLD的形成[9]。綜上所述,T2DM在IR情況下,脂質的合成與分解代謝之間的動態平衡被打破,導致肝臟中脂質沉積,肝臟TG含量升高,提示T2DM能誘導NAFLD的發生。
2NAFLD促進T2DM的發生發展
NAFLD代謝異常的基礎為肝臟脂質沉積伴隨脂代謝過程中的β氧化以及酯化的紊亂,從而刺激肝臟慢性低度炎癥的發生,進一步導致肝臟IR,最終發展為糖酵解障礙和肝糖原合成減少;而糖原的分解和糖異生增加,肝糖輸出相對增多,導致T2DM的發生。NAFLD誘導T2DM的發病機制包括脂毒性、氧化應激以及炎癥反應等。
2.1NAFLD啟動肝臟IR誘導T2DM發生
肝臟脂質沉積可導致肝臟代謝異常,也是代謝綜合征(Mets)的肝臟表現,通過多種方式啟動IR。有文獻表明,長鏈飽和脂肪酸(LCSFAs)在其中的作用至關重要。LCSFAs一方面通過脂質合成的中間產物DAG、二棕櫚酰磷脂酸等影響胰島素信號傳導通路,導致血糖升高,誘發T2DM的產生。NAFLD病人中DAG的濃度明顯升高,DAG和二棕櫚酰磷脂酸可激活DAG-PKCε信號通路,進而抑制胰島素受體酪氨酸激酶,使胰島素信號通路受阻,導致肝臟糖原合成減少;叉頭框亞群O(FOXO)磷酸化下降,導致FOXO向細胞核轉運增加,使磷酸烯醇式丙酮酸羧化酶增加,糖異生能力增強,糖原合成激酶3(GSK3)活力下降,導致糖原合成減少,機體血糖水平升高,誘發T2DM的產生[10]。另一方面,LCSFAs可通過增加氧化應激、內質網應激、炎癥反應而影響胰島素信號通路,導致IR。LCSFAs濃度升高,導致細胞內β氧化增強,使線粒體解偶聯同時生成活性氧(ROS),而ROS可直接激活JNK信號通路;高濃度的LCSFAs亦能誘發內質網應激,并進一步激活核因子(NF-κB)和JNK炎癥信號通路[11]。有研究發現,在NASH狀態下肝臟NF-κB信號途徑中的P65表達明顯增高,當NF-κB信號途徑被激活后可誘導促炎細胞因子如腫瘤壞死因子α(TNF-α)、白細胞介素6(IL-6)等的釋放,促炎細胞因子誘導IR的發生,促進T2DM發生的進程[12]。
2.2NAFLD引起胰腺β細胞損傷
研究表明,胰腺β細胞功能的減低,加快糖耐量受損向T2DM的發生發展[13],當機體發生NAFLD時,可引起FFA及TG含量偏高,導致胰腺β細胞對急性血糖升高刺激的敏感性降低,進而引起靶器官胰島素分泌減少。同時還有研究發現,NAFLD晚期病人糖基化產物(AGEs)和脂質過氧化產物(MDA)增多,它們均直接或者間接介導對胰腺β細胞的毒性作用,從而導致胰腺β細胞功能的障礙,加速T2DM的進程[14]。
2.3NAFLD干擾腸促胰島素分泌且影響其功能
常見的腸促胰島素包括腸促胰島素樣肽-1(GLP-1)和葡萄糖依賴性促胰島素分泌多肽(GIP),GIP是空腸K細胞和十二指腸分泌的一種腸肽類激素,其半衰期比較短(2~7 min),在體內很容易被二肽基肽酶-4(DPP-4)降解成GIP(3-42)。GIP(3-42)可競爭性地結合GIP(1-42)受體,導致GIP(1-42)促胰島素分泌作用受到抑制。GLP-1是結腸及回腸L細胞分泌的另外一種腸肽類激素,其半衰期更短(<2 min),其降解主要是由DPP-4完成的,被降解后生成數個無活性的GLP-1(9-36)。GLP-1以胞吐方式釋放,與GLP-1受體(GLP-1R)特異性結合,強化胰腺β細胞的功能[15]。肝臟分泌膽汁酸,膽汁酸與G蛋白、法尼醇受體(FOX)偶聯的膽汁酸受體(TGR5)結合,刺激回腸和結腸的L細胞分泌GLP-1,NAFLD膽汁酸代謝異常,影響GLP-1的分泌,從而影響糖代謝[15-16],誘導T2DM的產生。
2.4NAFLD肝細胞因子可增加T2DM發病風險
NAFLD病人可分泌多種肝細胞因子,其中有成纖維細胞生長因子21(FGF21)、胎球蛋白A和視黃醇結合蛋白4(RBP4)等。胎球蛋白A作為T2DM發病的獨立危險因素,可以抑制骨骼肌和肝臟中胰島素受體酪氨酸激酶,刺激巨噬細胞、脂肪細胞釋放促炎細胞因子,也可作為TLR-4配體,促進FFA進一步激活TLR-4,導致炎癥信號通路的激活和IR[17],加快T2DM的進程。RBP4和肝臟FGF21可以直接影響胰島素信號通路的傳導、肝糖原的合成和肝臟糖的異生[18-20]。另外,一些體液因子如AGEs、胰島素樣生長因子-1(IGF-1)可誘導IR,干擾葡萄糖代謝過程。肝病時AGEs增多,AGEs與AGEs特異性受體(RAGE)結合,激活NF-κB信號通路,導致促炎癥細胞因子(如IL-6、TNF-α)的釋放,這些細胞因子誘發肝臟IR和胰腺β細胞的損害參與了T2DM的發生[21-22]。IGF-1也是肝臟產生的另外一種體液因子,且具有胰島素樣活性,通過抑制生長激素以及胰島素的分泌過程,增強肝臟胰島素的敏感性,從而使高胰島素血癥得到緩解;IGF-1的調控通過生長激素完成,當機體出現高胰島素血癥時,生長激素的生物活性受到抑制,致使IGF-1生成受阻,導致生長激素等胰島素拮抗激素生成增多,從而加重IR[23],導致糖尿病的發生。
2.5NAFLD的葡萄糖代謝紊亂
肝臟是葡萄糖代謝的主要場所。NAFLD可出現肝酶生成障礙、肝功能受損,外周組織和肝臟對葡萄糖的利用度明顯降低,同時促進糖異生,增加血液中葡萄糖的濃度,導致糖代謝嚴重異常,最終催化糖尿病的發生[24]。當NAFLD發生時,肝臟對體內的生長激素、糖皮質激素、胰高血糖素以及兒茶酚胺類等胰島素拮抗激素的降解明顯減少,由于負反饋調節加強了胰島素的抑制作用,導致高糖血癥發生[25-26]。當NAFLD出現肝硬化時,由于門體分流胰島素可直接進入血液循環,且由于肝功能的減退和肝臟對胰島素的滅活作用減低,導致機體出現高胰島素血癥,進一步誘發IR,最終導致糖尿病[27]。
3腸道菌群對T2DM與NAFLD關系的影響
腸道菌群與人類健康休戚相關,正常情況下,腸道菌群處于動態平衡狀態,在動態情況下與人類處于共生狀態。腸道菌群失調在代謝性疾病的發生、發展中起到重要作用,特別是糖尿病、NAFLD等發生發展與腸道微生物的動態變化有密切關聯[28-29]。
3.1T2DM以及NAFLD時腸道菌群的變化
糖尿病時腸道菌群有如下變化:擬桿菌門/厚壁菌門、擬桿菌屬-普雷沃菌屬、β變性菌綱、硫酸鹽還原菌、黏蛋白降解菌、大腸埃希菌、糞擬桿菌、梭菌等升高,疣狀菌綱、糞桿菌屬、產丁酸鹽細菌(普拉梭菌、直腸真桿菌、羅斯拜瑞菌)等降低[30]。NAFLD時腸道菌群有如下變化:變形菌門、放線菌門、梭桿菌門升高,普雷沃菌屬、擬桿菌門減少[31-32]。另有研究發現,糾正T2DM菌群失調狀態可有效地控制糖化血紅蛋白水平和血糖波動,同時能改善IR[33-34]。有研究顯示,腸道菌群一方面通過調節宿主脂肪儲存基因的表達來促進宿主本身脂肪的堆積,另一方面腸道菌群動態平衡失調可導致機體慢性低水平炎癥反應,最終引起脂代謝異常,從而致使脂肪在肝臟的異常堆積,誘發NAFLD[35]。
3.2腸道菌群失調影響T2DM與NAFLD關系的機制
腸道菌群失調影響T2DM與NAFLD關系的具體機制可能與以下幾個方面有關。①腸道菌群失調導致病原體分子產生過多,致使機體免疫耐受喪失和炎癥反應加劇,腸壁完整性受損,這進一步導致腸道泄露和炎癥相關性疾病的發生發展[36]。其中最典型的為脂多糖(LPS)/內毒素機制,T2DM存在腸道菌群失調,有害菌屬增多,LPS大量流入血液。入血后LPS與脂多糖結合蛋白(LBP)、CD14組成復合物,通過激活肝細胞表面的Toll樣受體4(TLR-4),導致TLR-4/MyD88信號通路的激活,引起免疫細胞的活化,最終導致腸道炎癥持續性加重;Toll樣受體激活后還可激活NF-κB炎癥信號通路,導致促炎因子IL-6、TNF-α等的釋放,這些促炎因子又可反過來刺激NF-κB信號途徑的再次激活,形成炎癥的級聯放大反應,誘導慢性炎癥的持續性存在,加重IR,從而加速NAFLD的形成[37-38]。②短鏈脂肪酸(SCFAs) 主要由乙酸、丙酸和正丁酸組成,是盲腸和結腸中的菌群發酵膳食纖維的終產物。有研究發現,補充SCFAs可使G蛋白偶聯受體(Gpr)如Gpr41、Gpr43在脂肪組織中的表達增高,從而促進脂肪組織中TG水解以及FFA的氧化,抑制慢性炎癥,達到減輕肥胖、降低體質量目的,由此減少由于肥胖誘導的IR,從而減少以IR為發病基礎的T2DM和NAFLD的發生和發展[39]。另有研究發現,SCFAs刺激激活Gpr41并與其結合,導致酪酪肽(PYY)的生成,而PYY可通過抑制腸道蠕動增加機體的飽腹感達到減少機體熱量攝入的目的,從而緩解糖尿病的發生和發展;Gpr41被激活后與SCFAs結合,可減少體內脂肪異常堆積,進一步減少NAFLD的發生,與此同時亦可促進GLP-1釋放入血[40-42]。眾所周知,GLP-1能促進血糖升高引起的胰島素分泌,增加胰島素敏感性,使機體飽腹感增強,延長胃排空時間,起到降低血糖的作用,延緩糖尿病和NAFLD的發生發展。有研究顯示,高脂飲食大鼠糞便中SCFAs明顯降低, 靜脈血漿血糖顯著升高,加速了T2DM的疾病進展,而灌胃丙酸鈉的T2DM小鼠的血糖水平和IR情況均得到明顯改善[43-44]。另外研究表明,SCFAs代謝終產物乙酸對下丘腦的食欲中樞有抑制作用,丙酸對PYY及GLP-1的分泌有促進作用,進一步減少小鼠脂質沉積及進食量,丁酸可通過激活AMP激活的蛋白激酶(AMPK)信號途徑增加脂肪酸氧化,減輕脂肪異常沉積,減少NAFLD發生[45-47]。③膽汁酸(BAs)是由肝臟合成的一類膽烷酸的總稱,是膽固醇在肝臟代謝的產物,包括初級膽汁酸和次級膽汁酸,膽固醇在肝臟代謝為初級膽汁酸后儲存于膽囊,后經膽囊釋放進入腸道,在腸道菌群的作用下初級膽汁酸轉換為次級膽汁酸。當腸道菌群失調后,次級膽汁酸的轉換作用減弱,影響G蛋白偶聯膽汁酸受體1(GPBAR1)和法尼醇X受體(FXR)的表達[48]。膽汁酸代謝產物與相應受體GPBAR1結合后刺激Ⅱ型脫碘酶釋放,使機體甲狀腺激素水平升高,提高脂肪酸代謝,加快機體能量消耗,從而改善IR和預防肥胖的發生,降低糖尿病和脂肪肝的發生率[49]。有研究顯示,雙敲除肝臟FXR和小分子異源二聚體伴侶(SHP)的小鼠,體內糖類和脂類的平衡得到改善,體質量增加得到有效控制,肥胖體型得到改善。由此可見,肝臟FXR的激活可能對全身能量的動態平衡產生影響[50]。業已證實,T2DM中部分病人存在嚴重IR,在這些病人中膽汁酸的合成、12α-羥化膽汁酸的含量增加,且12α-羥化膽汁酸可能對胰島素的功能起負向調節作用[51]。另外有研究結果顯示,12α-羥化膽汁酸的變化可能通過固醇12α羥化酶(CYP8B1)和糖異生調節的轉錄因子叉頭框蛋白O1(FoxO1)相互作用,影響胰島素的信號傳導通路,誘發IR,加重T2DM的病情,從而進一步誘發以“IR” 為發病機制的NAFLD的發生[52]。④基因研究結果顯示,腸道菌群基因豐度高的人群較豐度低的人群較少發生脂質代謝紊亂、IR以及周身肥胖等代謝病[53]。
4小結與展望
T2DM與NAFLD的關系錯綜復雜,互為因果。T2DM可誘導NAFLD的發生,而NAFLD時啟動IR、損害胰腺β細胞、干擾腸促胰島素分泌以及腸道菌群失調等促進T2DM的發生發展。由于T2DM與NAFLD的發病機制尚未完全闡明,因此尚無治療的特效藥物。本文就T2DM與NAFLD相互關系及其相互作用機制做一綜述,為研發T2DM與NAFLD新型治療藥物做一鋪墊。
[參考文獻]
[1]WONG Y H, WONG S H, WONG X T, et al. Genetic asso-ciated complications of type 2 diabetes mellitus[J]." Panminerva Medica, 2022,64(2):274-288.
[2]YANG X F, LU M, YOU L J, et al. Herbal therapy for ame-liorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology[J]." Chinese Medicine, 2021,16(1):62.
[3]SPOREA I, MARE R, POPESCU A, et al. Screening for liver fibrosis and steatosis in a large cohort of patients with type 2 diabetes using vibration controlled transient elastography and controlled attenuation parameter in a single-center real-life experience[J]." Journal of Clinical Medicine, 2020,9(4):1032.
[4]CHEN Y, WANG Y Y, XU K L, et al. Adiposity and long-term adiposity change are associated with incident diabetes: a prospective cohort study in southwest China[J]." International Journal of Environmental Research and Public Health, 2021,18(21):11481.
[5]ZHAO W, CHEN L, ZHOU H, et al. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice[J]." Molecular Medicine Reports, 2021,24(5):741.
[6]YIN J J, CHEN X F, ZHANG F, et al. RMRP inhibition prevents NAFLD progression in rats via regulating miR-206/PTPN1 axis[J]." Mammalian Genome, 2022,33(3):480-489.
[7]劉冬戀,凌保東,譚林,等. 桑葉總黃酮對2型糖尿病大鼠肝臟過氧化物酶體增殖物激活受體α和腺苷酸活化蛋白激酶α2蛋白表達的影響[J]." 中國老年學雜志, 2017,37(22)5521-5523.
[8]VELáZQUEZ A M, BENTANACHS R, SALA-VILA A, et al. ChREBP-driven DNL and PNPLA3 expression induced by liquid fructose are essential in the production of fatty liver and hypertriglyceridemia in a high-fat diet-fed rat model[J]." Molecular Nutrition amp; Food Research, 2022,66(7): e2101115.
[9]HENDERSON G C. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease[J]." Nutrients, 2021,13(8):2590.
[10]YOUNOSSI Z M, GOLABI P, DE AVILA L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis[J]." Journal of Hepatology, 2019,71(4):793-801.
[11]SENGA S, KOBAYASHI N, KAWAGUCHI K, et al. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells[J]." Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2018,1863(9):1057-1067.
[12]LIU G C, CUI Z, GAO X Y, et al. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways[J]." Phytotherapy Research, 2021,35(9):5214-5226.
[13]HAYDEN M R. An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible me-chanisms[J]." Cells, 2020,9(11):2475.
[14]SAMSUZZAMAN M, LEE J H, MOON H, et al. Identification of a potent NAFLD drug candidate for controlling T2DM-mediated inflammation and secondary damage in vitro and in vivo[J]." Frontiers in Pharmacology, 2022,13:943879.
[15]MANTOVANI A, DALBENI A. Treatments for NAFLD: state of art[J]." International Journal of Molecular Sciences, 2021,22(5):2350.
[16]JONSSON I, BOJSEN-M ?倝 LLER K N, KRISTIANSEN V B, et al. Effects of manipulating circulating bile acid concentrations on postprandial GLP-1 secretion and glucose metabolism after roux-en-Y gastric bypass[J]." Frontiers in Endocrinology, 2021,12:681116.
[17]JI Y, LEE H, KAURA S, et al. Effect of bariatric surgery on metabolic diseases and underlying mechanisms[J]." Biomolecules, 2021,11(11):1582.
[18]PARLATI L, RGNIER M, GUILLOU H, et al. New targets for NAFLD[J]." JHEP Reports, 2021,3(6):100346.
[19]MOABELO K L, LERGA T M, JAUSET-RUBIO M, et al. A label-free gold nanoparticles-based optical aptasensor for the detection of retinol binding protein 4[J]." Biosensors, 2022,12(12):1061.
[20]TORABI R, GHOURCHIAN H. Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages[J]." Scientific Reports, 2020,10(1):594.
[21]WU Q, FENG Y N, OUYANG Y, et al. Inhibition of advanced glycation endproducts formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-AGEs-diet mice[J]." Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2021,156:112481.
[22]LI J S, JI T, SU S L, et al. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway[J]." Journal of Ethnopharmacology, 2022,283:114713.
[23]RACHDAOUI N. Insulin: the friend and the foe in the deve-lopment of type 2 diabetes mellitus[J]." International Journal of Molecular Sciences, 2020,21(5):1770.
[24]TARGHER G, COREY K E, BYRNE C D, et al. The complex link between NAFLD and type 2 diabetes mellitus-mechanisms and treatments[J]." Nature Reviews Gastroenterology amp; Hepatology, 2021,18(9):599-612.
[25]VETRANO E, RINALDI L, MORMONE A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies[J]." Biomedicines, 2023,11(2):468.
[26]TANASE D M, GOSAV E M, COSTEA C F, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD)[J]." Journal of Diabetes Research, 2020,2020:3920196.
[27]DEWIDAR B, KAHL S, PAFILI K, et al. Metabolic liver di-sease in diabetes-From mechanisms to clinical trials[J]." Metabolism: Clinical and Experimental, 2020,111S:154299.
[28]TANG C, KONG L Y, SHAN M Y, et al. Protective and ameliorating effects of probiotics against diet-induced obesity: a review[J]." Food Research International (Ottawa, Ont), 2021,147:110490.
[29]ZHAO W Y, GUO M, FENG J, et al. Myristica fragrans extract regulates gut microbes and metabolites to attenuate hepatic inflammation and lipid metabolism disorders via the AhR-FAS and NF-κB signaling pathways in mice with non-alcoholic fatty liver disease[J]." Nutrients, 2022,14(9):1699.
[30]ADESHIRLARIJANEY A, GEWIRTZ A T. Considering gut microbiota in treatment of type 2 diabetes mellitus[J]." Gut Microbes, 2020,11(3):253-264.
[31]SMIRNOVA E, MUTHIAH M D, NARAYAN N, et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD[J]." Hepatology (Baltimore, Md), 2022,76(6):1811-1824.
[32]LEUNG H, LONG X X, NI Y Q, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development[J]." Science Translational Medicine, 2022,14(648): eabk0855.
[33]SUN Y, HUANG Y C, YE F H, et al. Effects of probiotics on glycemic control and intestinal dominant flora in patients with type 2 diabetes mellitus: a protocol for systematic review and meta-analysis[J]." Medicine, 2020,99(46):e23039.
[34]XIONG R, ZHAO C Y, ZHONG M, et al. Effects of Shenqi compound on intestinal microbial metabolites in patients with type 2 diabetes: a protocol for systematic review and meta analysis[J]." Medicine, 2020,99(48): e23017.
[35]FENG J Y, LIU Y J, CHEN J J, et al. Marine chitooligosaccharide alters intestinal flora structure and regulates hepatic inflammatory response to influence nonalcoholic fatty liver di-sease[J]." Marine Drugs, 2022,20(6):383.
[36]DROD K, NABRDALIK K, HAJZLER W, et al. Metabo-lic-associated fatty liver disease (MAFLD), diabetes, and cardiovascular disease: associations with fructose metabolism and gut microbiota[J]." Nutrients, 2021,14(1):103.
[37]KUO Y S, HU M H, CHAN W H, et al. Evaluation of the preventive effects of fish oil and sunflower seed oil on the pathophysiology of Sepsis in endotoxemic rats[J]." Frontiers in Nutrition, 2022,9:857255.
[38]LI Y, WANG C W, LU J Y, et al. PPAR δ inhibition protects against palmitic acid-LPS induced lipidosis and injury in cultured hepatocyte L02 cell[J]." International Journal of Medical Sciences, 2019,16(12):1593-1603.
[39]LI D, LI Y J, YANG S J, et al. Diet-gut microbiota-epigene-tics in metabolic diseases: from mechanisms to therapeutics[J]." Biomedecine amp; Pharmacotherapie, 2022,153:113290.
[40]ZOU J J, XIANG Q, TAN D N, et al. Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition[J]." Biomedecine amp; Pharmacotherapie, 2023,157:114002.
[41]CHEN H R, SUN Y, ZHAO H D, et al. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and mo-dulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice[J]." Food amp; Function, 2022,13(19):9878-9892.
[42]JIN W J, CHO S, LAXI N, et al. Hepatoprotective effects of Ixeris chinensis on nonalcoholic fatty liver disease induced by high-fat diet in mice: an integrated gut microbiota and metabolomic analysis[J]." Molecules (Basel, Switzerland), 2022,27(10):3148.
[43]潘虹,王俏梅. 高脂膳食所致大鼠高血糖及其與腸道菌群、代謝產物的相關性實驗研究[J]." 藥物分析雜志, 2019,39(2):280-285.
[44]朱曉振,張菡菡,孟現堯,等. 短鏈脂肪酸改善2型糖尿病小鼠胰島素抵抗和胰腺損傷[J]. 現代食品科技, 2020,36(8):1-7.
[45]DENG M J, QU F, CHEN L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J]." The Journal of Endocrinology, 2020,245(3):425-437.
[46]HONG Y, SHENG L L, ZHONG J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]." Gut Microbes, 2021,13(1):1-20.
[47]WANG P, WANG J, LI D T, et al. Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis[J]." The Journal of Nutritional Biochemistry, 2020,81:108363.
[48]CHEN J Z, VITETTA L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J]." International Journal of Molecular Sciences, 2020,21(15):5214.
[49]YANG T T, YANG H, HENG C, et al. Amelioration of no-nalcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice[J]." Food amp; Function, 2020,11(12):10675-10689.
[50]LI H S, XI Y F, LIU H L, et al. Gypenosides ameliorate high-fat diet-induced non-alcoholic steatohepatitis via farnesoid X receptor activation[J]." Frontiers in Nutrition, 2022,9:914079.
[51]FANG X Y, MIAO R Y, WEI J H, et al. Advances in mul-tiomics study of biomarkers of glycolipid metabolism disorder[J]." Computational and Structural Biotechnology Journal, 2022,20:5935-5951.
[52]ZHONG S Q, CHèVRE R, CASTA?O MAYAN D, et al. Haploinsufficiency of CYP8B1 associates with increased insulin sensitivity in humans[J]." The Journal of Clinical Investigation, 2022,132(21): e152961.
[53]áLVAREZ J, FERNNDEZ REAL J M, GUARNER F, et al. Gut microbes and health[J]." Gastroenterologia y Hepatologia (English Edition), 2021,44(7):519-535.
(本文編輯牛兆山)