[摘要]兒童接觸丙泊酚可能對神經元造成毒性損傷,并且與其成年后長期認知功能下降有關。其原因可能是由于多種機制誘導的神經細胞凋亡和抑制神經所致,其中microRNAs在這一過程中起著關鍵作用。本文對microRNAs在丙泊酚誘導的神經毒性作用中的作用和影響進行綜述,為精準的腦神經保護提供參考依據。
[關鍵詞]二異丙酚;中樞神經系統藥物;神經中毒綜合征;微RNAs;綜述
[中圖分類號]R595.471;R977.9[文獻標志碼]A[文章編號]2096-5532(2023)03-0466-05
doi:10.11712/jms.2096-5532.2023.59.103[開放科學(資源服務)標識碼(OSID)]
[網絡出版]https://link.cnki.net/urlid/37.1517.R.20230807.1616.007;2023-08-0809:10:48
RESEARCH PROGRESS ON ROLE OF MICRORNAS IN PROPOFOL-INDUCED NEUROTOXICITY" ZHUANG Zhao, CAO Hong, DIAO Yujing, WANG Shoushi(Department of Anesthesiology, Qingdao Central Hospital Affiliated to Qingdao University, Qingdao 266042, China)
[ABSTRACT]Exposure to propofol in children may cause damage to neurons and even a long-term cognitive decline in adulthood. This may involve multiple mechanisms that induce neuronal apoptosis and neural inhibition, in which microRNAs play a key role. This paper reviews the role of microRNAs in propofol-induced neurotoxicity, aiming to provide a basis for precise cerebral neuroprotection.
[KEY WORDS]propofol; central nervous system agents; neurotoxicity syndromes; microRNAs; review
妊娠期女性因為與分娩無關的手術而接觸麻醉藥的情況每年都有很多,每年也有數以百萬計嬰幼兒和學齡前兒童因為手術而接觸麻醉藥[1]。全身麻醉已被證明與中樞神經系統異常發育相關,可能誘發嚴重的神經毒性影響發育中的大腦,并最終導致長期的神經行為和神經認知障礙[2-3]。麻醉藥物誘發兒童神經毒性的可能性引起了對小兒麻醉安全性的擔憂。最近,美國食品和藥物管理局警告孕婦和兒童非必要不使用麻醉劑,因為需要進一步的研究來闡明這些麻醉劑對發育中的大腦的影響[4]。本文對microRNAs(miRs)在丙泊酚誘導的神經毒性作用中的作用和影響進行綜述。
1丙泊酚造成神經毒性的證據
丙泊酚是當前臨床麻醉中最常用的靜脈藥物。近年來,已有研究報道了丙泊酚對幼年動物的神經毒性作用[5-8]。對嚙齒動物和非人靈長類動物的臨床和臨床前研究表明,應用丙泊酚麻醉,特別是在孕晚期或幼兒期,可能誘發嚴重的神經毒性影響發育中的大腦,并最終導致長期的神經行為和神經認知缺陷[9-10]。
雖然滿足手術條件所需的丙泊酚可能是無害的,但長期和反復接觸丙泊酚可能會導致認知能力下降[10]。一些被認為與丙泊酚引起的神經毒性有關的機制涉及神經元的凋亡,可能是通過線粒體過度的分裂導致神經元細胞的凋亡從而影響大腦發育[11]。丙泊酚影響大腦發育可能還涉及其他幾個過程,包括神經生成、神經元遷移和分化、動作電位的產生和傳播、突觸生成等[12-14]。因此,神經細胞凋亡可能不是丙泊酚所致的唯一后果。丙泊酚對神經細胞的有害效應的潛在機制很多都已被報道,如鈣超載、線粒體分裂和神經營養素表達失調等。
2miRs及其生理意義
miRs是一種小型單鏈非編碼RNA,它會對基因表達產生影響[15-16]。基于miRs對RNA表達和翻譯的抑制作用,它們在細胞增殖、細胞遷移、細胞死亡、細胞分化、信號轉導、基因表達、免疫應答和新陳代謝等重要生物學過程中均發揮重要的作用[15]。為了調節基因的表達,miRs與信使RNA(mRNA)中的一個互補序列相結合,稱為3′非翻譯區(3′UTR)[17]。似乎miRs調控著高達65%的人類基因的表達水平。一個miR可以調控不同的基因,一個基因可以被幾個miR調控,從而導致了一個復雜的網絡,所以需要更多的研究來體現其調控的各個方面。許多研究描述了各種人類疾病的miRs失調,如癌癥[18]和神經退行性疾病[19]。在大腦中,miRs通過調節mRNA的表達水平,控制著細胞內的各種生理功能,從而調節許多神經生成過程[20]。近年來,基因組學和微陣列分析領域有了快速進展,這使得對miRs的作用和調控的徹底剖析成為可能。miRs已經被證明可以直接調節軸突與樹突的生長、突觸的生成和神經的生成和凋亡。miRs的表達對發育中和成熟的神經元都至關重要。當受到環境刺激時,miRs的表達出現差異[21]。
一些研究表明,miRs可能通過凋亡信號通路在丙泊酚誘導的神經毒性中發揮關鍵作用[22]。很多研究證明丙泊酚可以調節和改變miRs的表達。因此,確定這些差異表達的miRs的作用靶點,可能有助于闡明丙泊酚對神經造成影響的特定通路。
3miRs在丙泊酚誘導的神經毒性中的作用
自從miRs被發現后,其在各種重要的生物學途徑中的作用引起了人們的廣泛關注。目前,世界各地有多個研究中心對miRs在麻醉藥引起的神經毒性方面的作用進行了研究。有研究表明,在孕晚期或幼兒期使用丙泊酚可能誘發嚴重的神經毒性并影響發育中的大腦[9-10]。丙泊酚的神經毒性可能部分是通過影響miRs介導的。
3.1miR-148b-3p
研究發現,核因子κB(NF-κB)是一種多效性因子,它的過量產生與某些人類中樞神經系統疾病有關,如細菌性腦膜炎、多發性硬化癥和腦型瘧疾等,NF-κB功能的喪失或不足部分破壞了中樞神經系統的完整性[23]。人磷脂酰肌醇三羥基激酶(PI3K)激活的蛋白激酶B(Akt)通過B淋巴細胞瘤-2基因相關啟動子(Bad)、Caspase-9、Forkhead和NF-κB的磷酸化抑制細胞凋亡,Akt是一種重要的抗凋亡調節因子[24]。研究發現,在丙泊酚誘導的PC-12細胞中,miRNA-148B-3p的過表達抑制了PI3K和磷酸化蛋白激酶(p-Akt)蛋白的表達,從而促進了NF-κB的表達,導致了神經毒性和神經炎癥的發生[25]。
3.2miR-455-3p
miR-455-3p被認為是一種潛在的神經保護因子,能夠挽救創傷性腦損傷小鼠的行為缺陷[26]。miR-455-3p還可通過調節淀粉樣前體蛋白提高阿爾茨海默病期間神經母細胞瘤細胞的存活率,同時減少細胞凋亡[27]。對丙泊酚誘導的神經元研究發現,人酪氨酸蛋白激酶受體A4(EphA4)表達水平升高,miR-455-3p可以靶向降低丙泊酚誘導的神經元中EphA4的表達[28]。一些研究發現,EphA4的過表達可以加重腦缺血再灌注損傷[29],EphA4表達下調可抑制缺血-再灌注期間神經細胞凋亡,并抑制海馬突觸功能障礙[30-31]。丙泊酚抑制了miR-455-3p的表達,上調EphA4的表達,從而導致了神經毒性。
3.3miR-21
miR-21具有良好的抗凋亡作用,并在神經元保護中發揮重要作用[32]。一項研究發現,miR-21的過表達可以減輕丙泊酚誘導的人胚胎干細胞來源神經元的細胞死亡,miR-21的敲除加重了丙泊酚的毒性作用。表明miR-21在神經細胞死亡中發揮著重要的作用[33]。信號轉導及轉錄激活因子3(STAT3)本身及其與miR-21表達的改變相結合具有抗凋亡作用[34]。單獨暴露于20 mg/L濃度丙泊酚后,STAT3和miR-21的表達顯著下調,提示這一途徑參與了丙泊酚誘導的細胞死亡[33]。Akt在細胞存活和凋亡中起著重要作用。快速發育生長因子同源蛋白2抗體(sprouty2)是miR-21的直接靶標,可以起到負調節蛋白表達的作用[35]。相關研究發現,sprouty2的表達隨著丙泊酚的增加而增加,同時磷酸化絲氨酸/蘇氨酸蛋白激酶的表達減少,這表明STAT3/miR-21/sprouty2/Akt通路在丙泊酚神經毒性中起著至關重要的作用[33]。
3.4miR-214
已觀察到丙泊酚誘導的神經毒性與促炎因子的釋放有關[36]。丙泊酚誘導胎鼠海馬區神經元促炎因子的釋放,這可能導致神經元谷氨酸的產生增加,從而增加細胞凋亡[37]。研究發現,miR-214過表達促進了丙泊酚處理的神經細胞中炎癥因子的釋放,誘導的神經細胞凋亡,抑制了細胞增殖和細胞周期蛋白D1(cyclinD1)的表達,促進了caspase-3活性和Bax蛋白的表達[38]。
3.5miR-383
MiR-383已在各種類型的癌癥、不孕癥和其他疾病的病人中發現其下調。它的異位表達已被證明與細胞生長、凋亡和凋亡相關蛋白的表達有關。研究表明,丙泊酚介導miR-383表達下調,Bax/Bcl-2上調,突觸后致密蛋白95(PSD-95)和磷酯化環腺苷酸應答元件結合蛋白(p-CREB)表達降低,PI3K/Akt信號通路失活,導致海馬神經元凋亡[39]。
3.6miR-582-5p
長時間使用丙泊酚顯示出明顯的細胞凋亡和β-微管蛋白陽性神經元的減少,不同劑量的丙泊酚對新生小鼠海馬神經元均有明顯的毒副作用[40-41]。丙泊酚處理后,神經元存活率明顯降低,而凋亡相關蛋白的表達明顯增加。值得注意的是,丙泊酚以劑量依賴的方式抑制新生小鼠海馬神經元細胞miR-582的表達,促進Rho關聯含卷曲螺旋結合蛋白激酶1(Rock1)的表達。提示丙泊酚對新生小鼠海馬神經元的毒副作用可能與miR-582-5p和Rock1有關[42]。
3.7miR-665
miR-665可以負調控Bcl-2樣蛋白11(BCL2L11),通過caspase-3介導的機制參與丙泊酚的神經毒性作用。應用丙泊酚后能顯著上調miR-665的表達,而miR-665基因敲除可減輕丙泊酚誘導的人胚胎干細胞(hESC)源性神經元死亡,miR-665的過表達加劇了丙泊酚的毒性作用。
3.8miR-215
有研究表明,miRs與神經系統疾病有關,并且miRs失調在神經毒性中起著重要作用[43-44]。一項研究發現,丙泊酚可以誘導miR-215表達下調,通過上調大型腫瘤抑制因子2(LATS2)表達導致神經細胞的凋亡和氧化應激的發生[45]。此外,miR-215過表達通過靶向LATS2減輕了這一現象。這提示miR-215可能為治療丙泊酚誘導的發育中神經細胞凋亡提供一個新的治療靶點。
3.9miR-496
已有研究證明,miR-496在細胞凋亡和神經損傷方面有重要意義[46-48]。腦缺血再灌注損傷后,miR-496在腦組織中的表達減少,它通過抑制Bcl-2樣蛋白14(BCL2L14)的表達而減輕腦缺血再灌注損傷[46]。在神經毒物3,3′-亞氨基二丙腈(IDPN)引起的神經毒性過程中,miR-496在腦橋和延髓受到相當程度的抑制[47]。有研究發現,PFC神經元miR-496的改變可能參與了丙泊酚誘導的神經毒性,進一步的實驗表明,miR-496過表達可減輕丙泊酚對PFC神經元的神經毒性[48]。提示miR-496可作為神經調節劑調節丙泊酚對PFC神經元的毒性作用。
3.10miR-9-5p
研究表明,小鼠神經干細胞經過丙泊酚處理后miR-9-5p的表達上調,同時caspase-3、Bax等凋亡蛋白表達增加,抗凋亡蛋白Bcl-2表達降低,細胞存活率下降。這些結果提示,丙泊酚似乎是通過miR-9-5p損傷神經干細胞[49]。趨化因子C-X-C-基元受體4(CXCR4)是一種位于細胞膜表面的G蛋白偶聯受體。研究發現,CXCR4存在于神經干細胞中,并與趨化因子C-X-C配體12(CXCL12)一起參與維持神經干細胞的特性[50]。研究發現,CXCR4的表達在丙泊酚處理的神經干細胞中明顯上調,并且miR-9-5p的過表達也增加了CXCR4在神經干細胞中的表達,提示丙泊酚通過miR-9-5p促進CXCR4的表達[51]。
3.11miR-363-3p
越來越多的研究證明,miR-363-3p對多種神經細胞的凋亡似乎都起到了作用[51-52]。接受丙泊酚麻醉的小鼠海馬神經元和暴露在丙泊酚刺激下的SH-SY5Y細胞內的mir-363-3p表達都有上調的改變,促進了神經元的氧化應激和凋亡[51-52]。單磷酸腺苷反應元件結合蛋白(CREB)是真核細胞中的一種核調節因子,在神經元的抗凋亡、突觸形成、學習和記憶等方面發揮著重要的調節作用。研究證實,丙泊酚可調節miR-363-3p/creb信號通路,促進SH-SY5Y細胞的氧化應激和凋亡,從而引起神經毒性[52]。
3.12miR-141-3p
最近的研究結果表明,miRs表達的變化在不同的疾病發展過程中起重要作用,包括神經系統疾病在多種刺激物誘導的細胞凋亡中起重要作用[39,53]。miRs在調節P53上調凋亡調節因子(PUMA)表達和調節細胞存活方面的作用已經得到充分證實[54]。一項研究結果顯示,在人胚胎干細胞中miR-206、PUMA和caspase-3在暴露于丙泊酚后表達顯著上調,miR-206可以負向調控丙泊酚誘導的PUMA和裂解caspase-3表達,敲除PUMA可抑制丙泊酚誘導的細胞死亡和裂解caspase-3激活,但不影響丙泊酚誘導的miR-206上調,這表明miR-206/PUMA通路參與了丙泊酚誘導的細胞死亡[55]。
3.13miR-132
一些早期的研究已經表明,麻醉后的記憶障礙可能會導致海馬樹突棘功能障礙,而樹突棘作為學習和記憶功能的結構基礎已經被認識了相當長的時間[56]。最近的研究發現,miR-132已被證明在海馬神經元的形態發生中發揮關鍵作用,特別是在介導樹突生長和棘突形成方面[57]。一項研究顯示,反復丙泊酚麻醉導致miR-132表達水平顯著下調,海馬區樹突棘數量減少,最終導致學習和記憶功能的障礙[58]。
3.14miR-34a
miR-34a的特點是促進腫瘤細胞的凋亡,是p53的下游靶點[59]。研究發現,miR-34a在調節海馬神經元凋亡中有重要作用,miR-34a及其靶mRNA被認為是通過MAPK/ERK信號通路調節神經元凋亡的關鍵開關,miR-34a可能是術后認知功能障礙的潛在治療靶點[60]。
4小結
綜上所述,miRs參與了丙泊酚誘導的神經毒性,后者甚至會導致認知功能障礙和記憶障礙。但是,關于miRs在丙泊酚誘導的神經毒性中的作用的人體研究數據很少。一些體外實驗,無法在人體內復制,也無法對人類腦組織進行取材分析。下一步的研究方向應該更多地關注miRs表達失衡及其后續靶點如何參與誘導神經毒性。每天都有人因為手術或者需要長時間的鎮靜而應用丙泊酚,所以了解這種機制至關重要。
[參考文獻]
[1]KUCZKOWSKI K M. The safety of anaesthetics in pregnant women[J]." Expert Opinion on Drug Safety, 2006,5(2):251-264.
[2]JEVTOVIC-TODOROVIC V. Exposure of developing brain to general anesthesia: what is the animal evidence[J]?" Anesthe-siology, 2018,128(4):832-839.
[3]VUTSKITS L, XIE Z C. Lasting impact of general anaesthesia on the brain: mechanisms and relevance[J]." Nature Reviews Neuroscience, 2016,17(11):705-717.
[4]STOCKWELL S. FDA anesthesia warning for pregnant women, children[J]." The American Journal of Nursing, 2017,117(4):18.
[5]CHIDAMBARAN V, COSTANDI A, D’MELLO A. Propofol: a review of its role in pediatric anesthesia and sedation[J]." CNS Drugs, 2015,29(7):543-563.
[6]YANG B, LIANG G, KHOJASTEH S, et al. Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane[J]." PLoS One, 2014,9(6):e99171.
[7]GUO P P, HUANG Z B, TAO T, et al. Zebrafish as a model for studying the developmental neurotoxicity of propofol[J]." Journal of Applied Toxicology, 2015,35(12):1511-1519.
[8]KAJIMOTO M, ATKINSON D B, LEDEE D R, et al. Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex[J]." Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2014,34(3):514-521.
[9]CREELEY C, DIKRANIAN K, DISSEN G, et al. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal andneonatal rhesus macaque brain[J]." British Journal of Anaes-thesia, 2013,110(Suppl 1): i29-i38.
[10]GAO J, PENG S J, XIANG S Q, et al. Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats[J]." Neuroscience Letters, 2014,560:62-66.
[11]TWAROSKI D M, YAN Y S, ZAJA I, et al. Altered mitochondrial dynamics contributes to propofol-induced cell death in human stem cell-derived neurons[J]." Anesthesiology, 2015,123(5):1067-1083.
[12]HUANG J, JING S, CHEN X, et al. Propofol administration during early postnatal life suppresses hippocampal neurogenesis[J]." Molecular Neurobiology, 2016,53(2):1031-1044.
[13]JEVTOVIC-TODOROVIC V. General anesthetics and neurotoxicity: how much do we know[J]?nbsp; Anesthesiology Clinics, 2016,34(3):439-451.
[14]POPI J, PEI V, MILANOVI D, et al. Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia[J]." International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience, 2015,44:22-32.
[15]OLCUM M, TUFEKCI K U, GENC S. microRNAs in genetic etiology of human diseases[M]//miRNomics. New York: Humana, 2022:255-268.
[16]TFEKCI K U, ONER M G, MEUWISSEN R L J, et al. The role of microRNAs in human diseases[J]." Methods in Molecular Biology (Clifton, N J), 2014,1107:33-50.
[17]ALI SYEDA Z, LANGDEN S S S, MUNKHZUL C, et al. Regulatory mechanism of microRNA expression in cancer[J]." International Journal of Molecular Sciences, 2020,21(5):1723.
[18]HUSSEN B M, HIDAYAT H J, SALIHI A, et al. micro-RNA: a signature for cancer progression[J]." Biomedicine amp; Pharmacotherapy, 2021,138:111528.
[19]CHU A J, WILLIAMS J M. Astrocytic microRNA in ageing, inflammation, and neurodegenerative disease[J]." Frontiers in Physiology, 2022,12:826697.
[20]NAMPOOTHIRI S S, RAJANIKANT G K. Decoding the ubiquitous role of microRNAs in neurogenesis[J]. Molecular Neurobiology, 2017,54(3):2003-2011.
[21]LIN D, LIU J Y, HU Z H, et al. Neonatal anesthesia exposure impacts brain microRNAs and their associated neurodevelopmental processes[J]." Scientific Reports, 2018,8(1):10656.
[22]SUN W C, LIANG Z D, PEI L. Propofol-induced rno-miR-665 targets BCL2L1 and influences apoptosis in rodent developing hippocampal astrocytes[J]." NeuroToxicology, 2015,51:87-95.
[23]HUANG H, HUANG Q J, WANG F X, et al. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins[J]." Journal of Neuroinflammation, 2016,13(1):227.
[24]ZUO D Y, LIN L, LIU Y M, et al. Baicalin attenuates ke-tamine-induced neurotoxicity in the developing rats: involvement of PI3K/Akt and CREB/BDNF/bcl-2 pathways[J]." Neurotoxicity Research, 2016,30(2):159-172.
[25]WANG M Y, SUO L Y, YANG S, et al. CircRNA 001372 reduces inflammation in propofol-induced neuroinflammation and neural apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p[J]." Journal of Investigative Surgery: the Official Journal of the Academy of Surgical Research, 2021,34(11):1167-1177.
[26]GUO S W, ZHEN Y W, ZHU Z Q, et al. Cinnamic acid rescues behavioral deficits in a mouse model of traumatic brain injury by targeting miR-455-3p/HDAC2[J]." Life Sciences, 2019,235:116819.
[27]KUMAR S, REDDY A P, YIN X L, et al. Novel microRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease[J]." Biochimica et Biophysica Acta Molecular Basis of Disease, 2019,1865(9):2428-2440.
[28]ZHU X J, LI H F, TIAN M, et al. miR-455-3p alleviates propofol-induced neurotoxicity by reducing EphA4 expression in developing neurons[J]." Biomarkers, 2020,25(8):685-692.
[29]CHEN F B, LIU Z Y, PENG W, et al. Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood-brain barrier following cerebral ischemia-reperfusion via the Rho/ROCK signaling pathway[J]." Experimental and Therapeutic Medicine, 2018,16(3):2651-2658.
[30]LI J G, LIU N H, WANG Y, et al. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons[J]." Neuroscience Letters, 2012,518(2):92-95.
[31]FU A K, HUNG K W, HUANG H Q, et al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease[J]." Proceedings of the National Academy of Sciences of the United States of America, 2014,111(27):9959-9964.
[32]BULLER B, LIU X S, WANG X L, et al. microRNA-21 protects neurons from ischemic death[J]." The FEBS Journal, 2010,277(20):4299-4307.
[33]TWAROSKI D M, YAN Y S, OLSON J M, et al. Down-re-gulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons[J]." Anesthesiology, 2014,121(4):786-800.
[34]SHEN X H, HAN Y J, ZHANG D X, et al. A link between the interleukin-6/Stat3 anti-apoptotic pathway and microRNA-21 in preimplantation mouse embryos[J]." Molecular Reproduction and Development, 2009,76(9):854-862.
[35]FENG Y H, WU C L, SHIAU A L, et al. microRNA-21-mediated regulation of Sprouty2 protein expression enhances the cytotoxic effect of 5-fluorouracil and metformin in colon cancer cells[J]." International Journal of Molecular Medicine, 2012,29(5):920-926.
[36]AN K, SHU H, HUANG W, et al. Effects of propofol on pulmonary inflammatory response and dysfunction induced by cardiopulmonary bypass[J]." Anaesthesia, 2008,63(11):1187-1192.
[37]ZHOU C H, ZHU Y Z, ZHAO P P, et al. Propofol inhibits lipopolysaccharide-induced inflammatory responses in spinal astrocytes via the toll-like receptor 4/MyD88-dependent nuc-lear factor-κB, extracellular signal-regulated protein Kinases1/2, and p38 mitogen-activated protein kinase pathways[J]." Anesthesia and Analgesia, 2015,120(6):1361-1368.
[38]GUO X K, CHENG M H, KE W Q, et al. microRNA-214 suppresses propofol-induced neuroapoptosis through activation of phosphoinositide 3-kinase/protein kinase B signaling by targeting phosphatase and tensin homolog expression[J]." International Journal of Molecular Medicine, 2018,42(5):2527-2537.
[39]WANG X L, DING G Y, LAI W, et al. microRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment[J]." Experimental and Therapeutic Medicine, 2018,15(4):3181-3188.
[40]LIU F, LIU S L, PATTERSON T A, et al. Protective effects of xenon on propofol-induced neurotoxicity in human neural stem cell-derived models[J]." Molecular Neurobiology, 2020,57(1):200-207.
[41]JIANG L L, YANG F Y, ZHAO Q, et al. microRNA-665 mediates propofol-induced cell apoptosis in human stem cell-derived neurons[J]." Bioengineered, 2019,10(1):493-500.
[42]ZHANG Z J, XU Y, CHI S Y, et al. microRNA-582-5p reduces propofol-induced apoptosis in developing neurons by targeting ROCK1[J]." Current Neurovascular Research, 2020,17(2):140-146.
[43]ASIKAINEN S, RUDGALVYTE M, HEIKKINEN L, et al. Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models[J]." Journal of Molecular Neuroscience, 2010,41(1):210-218.
[44]KAUR P, ARMUGAM A, JEYASEELAN K. microRNAs in neurotoxicity[J]." Journal of Toxicology, 2012,2012:870150.
[45]TANG F, ZHAO L L, YU Q, et al. Upregulation of miR-215 attenuates propofol-induced apoptosis and oxidative stress in developing neurons by targeting LATS2[J]." Molecular Medicine (Cambridge, Mass), 2020,26(1):38.
[46]YAO X X, YAO R, YI J P, et al. Upregulation of miR-496 decreases cerebral ischemia/reperfusion injury by negatively regulating BCL2L14[J]." Neuroscience Letters, 2019,696:197-205.
[47]OGATA K, KUSHIDA M, MIYATA K, et al. Alteration of microRNA expressions in the pons and medulla in rats after 3,3′-iminodipropionitrile administration[J]." Journal of Toxicologic Pathology, 2016,29(4):229-236.
[48]MAO Z M, WANG W J, GONG H X, et al. Upregulation of miR-496 rescues propofol-induced neurotoxicity by targeting rho associated coiled-coil containing protein kinase 2 (ROCK2) in prefrontal cortical neurons[J]." Current Neurovascular Research, 2020,17(2):188-195.
[49]ZHANG W X, LIU Q, ZHU H, et al. Propofol induces the apoptosis of neural stem cells via microRNA-9-5p/chemokine CXC receptor 4 signaling pathway[J]." Bioengineered, 2022,13(1):1062-1072.
[50]HO S Y, LING T Y, LIN H Y, et al. SDF-1/CXCR4 signaling maintains stemness signature in mouse neural stem/progenitor cells[J]." Stem Cells International, 2017,2017:2493752.
[51]JIANG C S, LOGAN S, YAN Y S, et al. Signaling network between the dysregulated expression of microRNAs and mRNAs in propofol-induced developmental neurotoxicity in mice[J]." Scientific Reports, 2018,8(1):14172.
[52]YAO Y, ZHANG J J. Propofol induces oxidative stress and apoptosis in vitro via regulating miR-363-3p/CREB signalling axis[J]." Cell Biochemistry and Function, 2020,38(8):1119-1128.
[53]CHIPUK J E, GREEN D R. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis[J]." Cell Cycle, 2009,8(17):2692-2696.
[54]DING S L, WANG J X, JIAO J Q, et al. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis[J]." The Journal of Biological Chemistry, 2013,288(37):26865-26877.
[55]LI Y, JIA C X, ZHANG D L, et al. Propofol-induced neurotoxicity in hESCs involved in activation of miR-206/PUMA signal pathway[J]." Cancer Biomarkers: Section A of Disease Markers, 2017,20(2):175-181.
[56]NUNZI M G, MILAN F, GUIDOLIN D, et al. Dendritic spine loss in hippocampus of aged rats. Effect of brain phosphatidylserine administration[J]." Neurobiology of Aging, 1987,8(6):501-510.
[57]PATHANIA M, TORRES-REVERON J, YAN L, et al. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons[J]." PLoS One, 2012,7(5):e38174.
[58]ZHANG S, LIANG Z D, SUN W C, et al. Repeated propofol anesthesia induced downregulation of hippocampal miR-132 and learning and memory impairment of rats[J]." Brain Research, 2017,1670:156-164.
[59]KOFMAN A V, LETSON C, DUPART E, et al. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses[J]." Medical Hypotheses, 2013,81(1):62-67.
[60]LI G F, LI Z B, ZHUANG S J, et al. Inhibition of micro-RNA-34a protects against propofol anesthesia-induced neuroto-xicity and cognitive dysfunction via the MAPK/ERK signaling pathway[J]." Neuroscience Letters, 2018,675:152-159.
(本文編輯周曉彬)