王彥 張福杰



摘要:丁型肝炎病毒(HDV)是一種乙型肝炎病毒(HBV)的衛星病毒,需借助HBV包膜蛋白完成自身的組裝和復制,進而建立新的感染。慢性HDV感染是病毒性肝炎最嚴重的形式,可加速疾病進展,提高肝癌的發生風險,HDV感染者迫切需要有效的抗病毒治療以緩解疾病進展,但能夠用于抗HDV感染的治療藥物僅包括2020年7月歐洲藥品管理局有條件批準的Bulevirtide以及之前推薦使用的干擾素。目前,針對病毒復制周期的幾種靶向抗病毒藥物正在研究中,且前期臨床試驗結果表現良好。這意味著HDV的抗病毒藥物研發取得了重要突破,為丁型肝炎的治療帶來了希望。本文就目前丁型肝炎抗病毒藥物進行簡要綜述,并對相關的治療方案進行了討論,為丁型肝炎的治療提供參考。
關鍵詞:δ肝炎病毒;? 病毒復制; 抗病毒藥; 藥物療法
基金項目:美國莊馬爾田基金會(2017-G14)
Research advances in antiviral drugs for the treatment of hepatitis D
WANG Yan, ZHANG Fujie. (Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100102, China)
Corresponding author:
ZHANG Fujie, treatment@chinaaids.cn (ORCID:0000-0001-6386-9879)
Abstract:
Hepatitis D virus (HDV) is a satellite virus of hepatitis B virus (HBV) and needs the help of HBV envelope protein to complete its own assembly and replication and then establish a new infection cycle. Chronic HDV infection is considered the most severe form of viral hepatitis, which can accelerate disease progression and increase the risk of liver cancer. Effective antiviral therapy is urgently needed to delay disease progression in patients with HDV infection, but Bulevirtide conditionally approved by European Medicines Agency in July 2020 and interferon previously recommended are the only drugs used for the treatment of HDV infection. At present, studies are being conducted for several antiviral drugs targeting viral replication cycle, and early clinical trials have obtained good results. This means that important breakthroughs have been made in the development of antiviral drugs, bringing hope for the treatment of hepatitis D. This article summarizes the current antiviral drugs for hepatitis D and discusses related treatment regimens, so as to provide a reference for the treatment of hepatitis D.
Key words:Hepatitis Delta Virus;? Virus Replication; Antiviral Agents; Drug Therapy
Research funding:
John C. Martin Foundation (2017-G14)
20世紀70年代,Rizzetto 等在乙型肝炎病毒(HBV)感染者中發現了一種新的RNA病毒,命名為delta,后證實為丁型肝炎病毒(HDV)[1-2]。HDV是一種有缺陷的衛星病毒,需借助HBV包膜蛋白完成病毒的組裝和復制,進而建立新的感染[3]。目前認為HDV的感染主要有兩種模式,即共同感染和重疊感染。不同感染模式的患者預后存在一定差異[4]。盡管HDV的致病機制尚不明確,但經大量臨床隊列研究證實,HDV感染能夠引起非常嚴重的肝損傷,加速肝臟疾病進展,增加肝硬化、肝臟失代償、肝癌甚至死亡的發生風險[5-6]。目前認為有效的抗病毒治療能夠對病毒復制產生一定抑制作用,對于改善臨床預后具有重要意義[7]。本文將對HDV的復制周期以及抗病毒治療藥物的研發進展作簡要綜述。
1 HDV的感染模式
HDV的感染主要包括兩種模式[8-9],一種是HDV和HBV同時感染宿主,稱為共同感染;另一種是在乙型肝炎表面抗原(HBsAg)攜帶者或慢性HBV感染者中發生HDV感染,稱為重疊感染[4,8]。兩種感染模式的急性期和臨床表現具有顯著差異。HDV和HBV共同感染時,會激發宿主較強的免疫應答,感染者很少會進展為慢性HDV感染(低于5%)[9],但急性共同感染較單獨HBV感染會導致更加嚴重的肝損傷,甚至會導致急性肝衰竭。而HDV的重疊感染很少出現自限性恢復,超過80%的重疊感染會進展為慢性HDV感染[10-11]。在重疊感染中,病毒學模式相對一致[8,12]。HDV病毒血癥出現較早,anti-HDV IgM和IgG反應活躍。在重疊感染進展為慢性感染過程中抗體滴度迅速升高,隨著病毒血癥的持續存在,二者維持在較高的滴度水平,而且在肝臟細胞內能夠檢測到HDV抗原(HDAg)[8,12]。此外,在小鼠模型中發現HDV可以在無HBV的情況下感染細胞并復制基因組[13],隨后發生HBV感染時,HDV完成病毒顆粒的組裝和釋放。在部分隊列中也發現患者未發生HBV感染[14],但可以檢測到HDAg,表明HDV存在單獨感染模式。盡管HDV感染會對HBV復制產生一定抑制作用,使HBV DNA滴度降低,但HDV感染可能改變肝細胞,誘導干擾素應答基因,從而導致宿主的疾病,使感染者依然表現出更為嚴重的肝損傷[6,15]。由此可見,HDV可能具有獨特的肝臟侵害機制,靶向HDV感染開展抗病毒治療具有重要臨床意義。
2 HDV的病毒復制
HDV為單股環形負鏈RNA病毒,外殼為嗜肝病毒的包膜蛋白,內核為HDV RNA和HDAg。HDAg有兩種特異性的形式,分別為27 kD的L-HDAg和24 kD的S-HDAg,在HDV RNA的復制和病毒顆粒組裝中發揮重要的調節作用[3]。? HDV感染細胞的主要過程如圖1所示,病毒顆粒首先附著在硫酸肝素蛋白多糖[3,16],然后與牛磺膽酸鈉共轉運多肽(NTCP)結合,經過膜融合過程,將HDV的核糖核蛋白釋放到胞漿中,然后轉運入細胞核,以滾環復制的機制進行RNA的復制,合成新的基因組RNA[17-18]。 HDV基因組及反義基因組含有多個開放閱讀框,能夠用于蛋白的合成[4]。病毒復制過程中,L-HDAg和S-HDAg也能夠轉運至細胞核調節病毒的復制,或者連接到病毒基因組,形成核糖核蛋白轉運到胞漿中[3]。部分L-HDAg被異戊烯化(法尼基化)修飾,通過與HBsAg相互作用形成核糖核蛋白包膜而后由內質網-高爾基體途徑分泌至胞外,完成病毒的感染復制[16]。目前,針對HDV復制過程中的關鍵步驟,如病毒的進入、L-HDAg的修飾等[16],已開發多種靶向藥物并開展臨床試驗,為抗HDV感染的治療帶來了希望。
3 HDV抗病毒治療藥物
HDV感染會引起最為嚴重的肝損傷,急需有效的抗病毒藥物和治療方案遏制疾病進展。前期干擾素被廣泛推薦用于抗HBV和HDV感染的治療[19],但存在藥物副作用和治療后病毒反彈等問題[20]。近幾年HDV靶向藥物的研發成果顯著,開展了多項抗HDV感染的藥物臨床試驗(表1),2020年7月歐洲藥品管理局有條件批準了進入抑制劑Bulevirtide用于丁型肝炎的治療[21]。此外,針對HDV復制過程的其他靶向藥物和增強免疫系統的聯合治療方案也正在開展藥物臨床試驗。
3.1 干擾素治療 干擾素具有廣譜的抗病毒活性,可以分為Ⅰ型、Ⅱ型和Ⅲ型三類。其中Ⅰ型和Ⅲ型干擾素用于開發慢性丁型肝炎的抗病毒治療。目前常用的IFNα或PEG-IFNα屬于Ⅰ型干擾素,國內外已開展多項臨床試驗。在兩項較大的前瞻性臨床試驗[22-23]中,僅有20%~30%的患者會出現持續性病毒學應答,且耐受性差,伴隨出現嚴重不良反應,聯合核苷類似物治療時,亦沒有顯著提高患者的病毒學反應。當抗病毒治療結束后,高達
50%的HDV RNA陰性患者出現感染復發的情況[24]。盡管如此,從近期一項長期隨訪的臨床試驗[7]中能夠發現,PEG-IFNα治療顯著抑制或降低HDV RNA的水平,與改善臨床長期預后相關。因此選擇IFNα或PEG-IFNα進行抗HDV感染治療,需要在可能發生的不良事件(流感癥狀、貧血和血小板減少等)與臨床治療效果之間進行權衡[2,6]。目前新型長效型干擾素Ropeginterferon alfa-2b治療慢性丁型肝炎的臨床試驗正在開展(表1)。
PEG-IFNλ屬于Ⅲ型干擾素,其與Ⅲ型IFN受體結合,導致Jak-STAT信號通路的激活[25]。由于Ⅲ型干擾素受體主要在肝細胞中表達,造血細胞和中樞神經系統細胞中表達較少,因此,與IFNα治療相比,產生的副作用較少,具有良好的開發前景[26]。在LIMT HDV研究[27]中顯示,慢性HDV感染者接受PEG-IFNλ單藥治療48周后,50%的患者能夠達到HDV RNA下降2 log10以上或HDV RNA陰性,治療結束隨訪24周后,有36%的患者仍具有持續的病毒學應答,除高膽紅素血癥、肝酶指標升高和流感樣癥狀外,其他不良事件較少。當PEG-IFNλ聯合Lonafarnib和Ritonavir開展治療時[28],24周后96%的患者HDV RNA水平下降2 log10以上,50%的患者HDV RNA水平低于檢測下限或無法檢測到,且安全性良好。目前PEG-IFNλ的三期臨床試驗正在開展(表1)。
3.2 進入抑制劑治療 NTCP是HBV和HDV進入肝細胞并建立感染的關鍵受體,靶向NTCP對于破壞病毒建立感染具有非常重要的作用[3]。目前經美國食品藥品監督管理局批準的NTCP代謝功能抑制類藥物包括Irbesartan、Ezetimibe、Ritonavir和環孢素A等[29-30]。這些藥物經體外細胞模型證實能夠有效阻斷HDV的感染或抑制HBsAg與NTCP的結合,但在臨床隊列中抗病毒治療效果有待證實[29-30]。一項2期臨床試驗[31]顯示,Ezetimibe(10 mg/d)作為單一療法,治療12周后并不能有效抑制患者的病毒載量,可能需要聯合其他靶向藥物或宿主免疫刺激藥物才能實現有效的抗病毒治療。
近期開發的靶向進入抑制劑主要包括Bulevirtide及其前體藥物Myrcludex B[16],該類藥物是一種阻斷HBsAg preS1結構域與NTCP結合的小肽,進而阻止HDV建立感染,保護尚未感染的細胞,從而實現抗病毒功能。經Ⅰb/Ⅱa期研究[32]初步顯示,治療24周時,Myrcludex B或 PEG-IFNα-2a或其聯合治療的隊列人群 HDV RNA顯著下降。與單藥治療相比,聯合治療組的病毒學反應更好,治療過程中也未發生嚴重不良事件,表明Myrcludex B耐受性良好,同時證實Myrcludex B和PEG-IFNα-2a對HDV有較強的協同作用。Ⅱ期臨床試驗顯示Bulevirtide耐受性良好,不良事件主要為輕度和短暫性中性粒細胞減少、血小板減少及嗜酸性粒細胞增多等[33]。但Bulevirtide的抗病毒效果呈現出劑量依賴,Bulevirtide與PEG-IFNα聯合用藥具有顯著的協同抗病毒作用[34-35]。2020年7月Bulevirtide已獲得歐盟批準作為單一療法或與核苷(酸)類似物聯合用藥,用于慢性HDV感染者抗病毒治療,但推薦治療使用時間尚未確定[21]。目前Bulevirtide正在全球多地慢性HDV感染者中開展抗病毒治療的Ⅲ期研究(表1)。
3.3 異戊烯化(法尼基化)抑制劑治療 L-HDAg的異戊烯化修飾是HDV病毒顆粒組裝成熟的關鍵步驟,抑制該修飾將破壞病毒的組裝,進而降低功能性HDV病毒顆粒的釋放,是潛在的有效干預靶點[3,36]。目前研發的主要靶向藥物為法尼基轉移酶抑制劑Lonafarnib,已經開展了階段Ⅰ和Ⅱ期的臨床研究。2A期臨床試驗[37]顯示,治療28天后,低劑量組(100 mg)HDV RNA水平降低0.73 log10,高劑量組(200 mg)降低1.54 log10,呈現劑量依賴性。不良事件主要包括胃腸道副作用,如腹瀉和惡心,以及體質量下降等[37]。在LOWR HDV-1研究[38]中,更高劑量的Lonafarnib(300 mg)更能降低HDV病毒載量,同時會增加胃腸道相關的不良事件發生頻率。當低劑量(100 mg)Lonafarnib聯合Ritonavir或PEG-IFNα治療時,抗病毒反應效果更好,并且副作用較小[28,38]。在優化治療方案中,三重聯合治療方案獲得了最佳的病毒學應答,在治療結束時8/9的患者HDV RNA降低了2 log10及以上[39]。由此可見,盡管Lonafarnib單獨治療能夠顯著降低HDV病毒載量,但聯合Ritonavir或PEG-IFNα以及三種藥物聯合可以減少Lonafarnib的劑量,在保持抗病毒療效的同時減少胃腸道副作用[28,37-39]。目前Lonafarnib的三期臨床試驗正在開展(表1)。
3.4 核酸聚合物 核酸聚合物能夠抑制HBsAg包被的病毒顆粒組裝和釋放,因此也是一種潛在的抗HDV和HBV感染的方法[40]。REP 2139是首個開展藥物臨床試驗用于HDV治療的核酸聚合物[41]。12例患者經REP 2139單藥治療15周,隨后REP 2139降低劑量聯合PEG-IFNα治療15周,然后PEG-IFNα單獨治療33周,研究[41]結果顯示,在治療和隨訪期間HBsAg水平顯著下降,REP 2139單獨治療期,63.6%的患者HBsAg降低,隨訪期間有90.9%患者呈現下降趨勢。11例患者中有7例表現為HDV RNA陰性,實現HDV功能治愈。在這些患者中,3例表現出持續的HBV病毒學抑制,4例實現HBsAg血清學轉化。持續隨訪3.5年后[42],僅2例病毒學反彈的患者出現ALT輕微升高,沒有觀察到其他安全性或耐受性問題。REP 2139表現出良好的可耐受性,與PEG-IFNα聯合的治療方案為HDV功能治愈、HBV病毒學控制/功能治愈和HBsAg血清學轉化提供了選擇。
3.5 RNA干擾療法 RNA干擾療法利用小干擾RNA分子(siRNA)靶向沉默病毒共價閉合環狀DNA的RNA轉錄本,從而抑制病毒蛋白的產生。因此推測siRNA能夠清除HBsAg,進而抑制HDV的感染。ARC-520是第一種靶向HBV轉錄本的RNA干擾療法,已在HBV單感染患者中開展臨床試驗[43],聯合核苷(酸)類似物,高劑量組(2 mg/kg)ARC-520能夠顯著降低患者HBsAg水平,治療結束后仍可維持對HBV的抑制療效。僅觀察到2例可能與研究藥物有關的發熱,表明ARC-520耐受性良好[43]。除此之外,該公司還研發出升級后的siRNA,即JNJ-3989也能夠用于HBV感染的治療,一項Ⅱa期研究[44]顯示,40例患者每月接受不同劑量的JNJ-3989聯合核苷酸類似物治療3個月,治療期間HBsAg水平迅速下降,39例患者HBsAg較基線下降1.0 log10,56%的患者在末次給藥后9個月內HBsAg持續下降,其不良事件多為注射部位反應。該研究表明 JNJ-3989短期治療也可持續抑制HBsAg。目前JNJ-3989在HBV/HDV合并感染的患者中安全性和有效性的Ⅱ期臨床試驗正在進行(表1)。盡管siRNA 對于改善感染者HBsAg水平表現良好,但臨床試驗中仍需采用與核苷酸類似物聯合的治療方案。
3.6 中藥治療 早期研究[45-46]顯示,中藥單獨或中藥與IFNα聯合用藥對HBV/HDV重疊感染者具有一定收益,如小柴胡湯治療方案和IFNα配伍活血化瘀保肝中草藥治療[46]。86例HDV抗體陽性的乙型慢性活動性肝炎患者隨機分為3組,分別應用小柴胡湯、聯苯雙酯和小柴胡湯與聯苯雙酯聯合治療,經過3個月的治療后,小柴胡湯能夠使90.9%的患者ALT水平恢復正常,HBsAg均有不同程度的下降,表現出良好的治療效果[46]。不僅如此,IFNα配伍活血化瘀保肝中草藥治療HBV/HDV重疊感染者[45],1個月后患者ALT水平全部恢復正常,療程結束后HBeAg陰轉率為65%, HBV DNA檢出率也顯著下降,表明IFNα配伍活血化瘀中草藥的治療方法成果顯著。由于該研究方案以葡萄糖、維生素C和氨基酸等常規保肝藥為對照,因此,治療方案中IFNα可能主要起到抗病毒作用,而活血化瘀類中草藥主要功能可能是改善肝臟微循環,促進肝細胞再生,調節免疫功能等[45]。由此可見,抗病毒治療藥物與免疫調節藥物聯合用藥對HBV/HDV重疊感染者肝功能的恢復具有顯著療效。
4 小結與展望
盡管乙型肝炎疫苗的實施能夠有效降低HDV的感染率[47],但由于移民遷移、HIV感染以及靜脈吸毒等風險因素[48-50],使全球部分地區HDV的感染率仍處于較高水平[51-52]。預計全球HDV感染者有4 800萬~7 400萬[51-54]。15%的慢性丁型肝炎患者會在1~2年發展成肝硬化[55],70%~80%的患者在5~10年發展成肝硬化,30年后肝硬化發生的風險提高到77%[4,53,55]。對慢性丁型肝炎患者實施有效的抗病毒治療迫在眉睫。
隨著研究的深入,HDV病毒復制及其致病機制漸趨明朗,為靶向藥物的研發提供了堅實基礎。2020年進入抑制劑Lonafarnib的獲批,給更多新藥研發提供了動力,也為丁型肝炎患者的抗病毒治療帶來了希望。由目前開展的藥物臨床研究可以看出,靶向藥物聯合干擾素,靶向藥物聯合核苷酸類似物,以及三種藥物聯合治療,可協同提高抗病毒活性,降低單藥的毒副作用,避免可能出現的耐藥問題,對臨床抗病毒治療更有意義。
利益沖突聲明:所有作者均聲明不存在利益沖突。
作者貢獻聲明:王彥負責查閱和收集資料,撰寫論文;張福杰負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]
RIZZETTO M, CANESE MG, ARIC S, et al. Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers[J]. Gut, 1977, 18(12): 997-1003. DOI: 10.1136/gut.18.12.997.
[2]GILMAN C, HELLER T, KOH C. Chronic hepatitis delta: A state-of-the-art review and new therapies[J]. World J Gastroenterol, 2019, 25(32): 4580-4597. DOI: 10.3748/wjg.v25.i32.4580.
[3]LUCIFORA J, DELPHIN M. Current knowledge on Hepatitis Delta Virus replication[J]. Antiviral Res, 2020, 179: 104812. DOI: 10.1016/j.antiviral.2020.104812.
[4]TAYLOR JM. Infection by hepatitis delta virus[J]. Viruses, 2020, 12(6): 648. DOI: 10.3390/v12060648.
[5]ALFAIATE D, CLMENT S, GOMES D, et al. Chronic hepatitis D and hepatocellular carcinoma: A systematic review and meta-analysis of observational studies[J]. J Hepatol, 2020, 73(3): 533-539. DOI: 10.1016/j.jhep.2020.02.030.
[6]KOH C, HELLER T, GLENN JS. Pathogenesis of and new therapies for hepatitis D[J]. Gastroenterology, 2019, 156(2): 461-476. DOI: 10.1053/j.gastro.2018.09.058.
[7]WRANKE A, SERRANO BC, HEIDRICH B, et al. Antiviral treatment and liver-related complications in hepatitis delta[J]. Hepatology, 2017, 65(2): 414-425. DOI: 10.1002/hep.28876.
[8]NEGRO F. Hepatitis D virus coinfection and superinfection[J]. Cold Spring Harb Perspect Med, 2014, 4(11): a021550. DOI: 10.1101/cshperspect.a021550.
[9]CAREDDA F, ROSSI E, DARMINIO MONFORTE A, et al. Hepatitis B virus-associated coinfection and superinfection with delta agent: indistinguishable disease with different outcome[J]. J Infect Dis, 1985, 151(5): 925-928. DOI: 10.1093/infdis/151.5.925.
[10]KIESSLICH D, CRISPIM MA, SANTOS C, et al. Influence of hepatitis B virus (HBV) genotype on the clinical course of disease in patients coinfected with HBV and hepatitis delta virus[J]. J Infect Dis, 2009, 199(11): 1608-1611. DOI: 10.1086/598955.
[11]SMEDILE A, FARCI P, VERME G, et al. Influence of delta infection on severity of hepatitis B[J]. Lancet, 1982, 2(8305): 945-947. DOI: 10.1016/s0140-6736(82)90156-8.
[12]TAYLOR JM. Virology of hepatitis D virus[J]. Semin Liver Dis, 2012, 32(3): 195-200. DOI: 10.1055/s-0032-1323623.
[13]GIERSCH K, HELBIG M, VOLZ T, et al. Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection[J]. J Hepatol, 2014, 60(3): 538-544. DOI: 10.1016/j.jhep.2013.11.010.
[14]CHEMIN I, PUJOL FH, SCHOLTS C, et al. Preliminary evidence for hepatitis delta virus exposure in patients who are apparently not infected with hepatitis B virus[J]. Hepatology, 2021, 73(2): 861-864. DOI: 10.1002/hep.31453.
[15]GIERSCH K, ALLWEISS L, VOLZ T, et al. Hepatitis Delta co-infection in humanized mice leads to pronounced induction of innate immune responses in comparison to HBV mono-infection[J]. J Hepatol, 2015, 63(2): 346-353. DOI: 10.1016/j.jhep.2015.03.011.
[16]SANDMANN L, CORNBERG M. Experimental drugs for the treatment of hepatitis D[J]. J Exp Pharmacol, 2021, 13: 461-468. DOI: 10.2147/JEP.S235550.
[17]CASEY JL. Control of ADAR1 editing of hepatitis delta virus RNAs[J]. Curr Top Microbiol Immunol, 2012, 353: 123-143. DOI: 10.1007/82_2011_146.
[18]CHEN R, LINNSTAEDT SD, CASEY JL. RNA editing and its control in hepatitis delta virus replication[J]. Viruses, 2010, 2(1): 131-146. DOI: 10.3390/v2010131.
[19]YURDAYDIN C, KESKIN O, KALKAN , et al. Interferon treatment duration in patients with chronic delta hepatitis and its effect on the natural course of the disease[J]. J Infect Dis, 2018, 217(8): 1184-1192. DOI: 10.1093/infdis/jix656.
[20]SAGNELLI C, SAGNELLI E, RUSSO A, et al. HBV/HDV co-infection: epidemiological and clinical changes, recent knowledge and future challenges[J]. Life (Basel), 2021, 11(2): 169. DOI: 10.3390/life11020169.
[21]KANG C, SYED YY. Bulevirtide: first approval[J]. Drugs, 2020, 80(15): 1601-1605. DOI: 10.1007/s40265-020-01400-1.
[22]WEDEMEYER H, YURDAYDIN C, HARDTKE S, et al. Peginterferon alfa-2a plus tenofovir disoproxil fumarate for hepatitis D (HIDIT-II): a randomised, placebo controlled, phase 2 trial[J]. Lancet Infect Dis, 2019, 19(3): 275-286. DOI: 10.1016/S1473-3099(18)30663-7.
[23]WEDEMEYER H, YURDAYDN C, DALEKOS GN, et al. Peginterferon plus adefovir versus either drug alone for hepatitis delta[J]. N Engl J Med, 2011, 364(4): 322-331. DOI: 10.1056/NEJMoa0912696.
[24]HEIDRICH B, YURDAYD1N C, KABAAM G, et al. Late HDV RNA relapse after peginterferon alpha-based therapy of chronic hepatitis delta[J]. Hepatology, 2014, 60(1): 87-97. DOI: 10.1002/hep.27102.
[25]LAZEAR HM, SCHOGGINS JW, DIAMOND MS. Shared and distinct functions of type I and type III interferons[J]. Immunity, 2019, 50(4): 907-923. DOI: 10.1016/j.immuni.2019.03.025.
[26]CHAN H, AHN SH, CHANG TT, et al. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B)[J]. J Hepatol, 2016, 64(5): 1011-1019. DOI: 10.1016/j.jhep.2015.12.018.
[27]ETZION O, HAMID S, LURIE Y, et al. End of study results from LIMT HDV study: 36% durable virologic response at 24 weeks post-treatment with pegylated interferon lambda monotherapy in patients with chronic hepatitis delta virus infection[J]. J Hepatol, 2019, 70(Suppl 1): e32.
[28]KOH C, HERCUN J, RAHMAN F, et al. A phase 2 study of peginterferon lambda, lonafarnib and ritonavir for 24 weeks: end-of-treatment results from the LIFT HDV study[J]. J Hepatol, 2020, 73(Suppl 1): S130.
[29]NKONGOLO S, NI Y, LEMPP FA, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor[J]. J Hepatol, 2014, 60(4): 723-731. DOI: 10.1016/j.jhep.2013.11.022.
[30]BLANCHET M, SUREAU C, LABONT P. Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle[J]. Antiviral Res, 2014, 106: 111-115. DOI: 10.1016/j.antiviral.2014.03.017.
[31]ABBAS Z, SAAD M, ASIM M, et al. The effect of twelve weeks of treatment with ezetimibe on HDV RNA level in patients with chronic hepatitis D[J]. Turk J Gastroenterol, 2020, 31(2): 136-141. DOI: 10.5152/tjg.2020.18846.
[32]BOGOMOLOV P, ALEXANDROV A, VORONKOVA N, et al. Treatment of chronic hepatitis D with the entry inhibitor Myrcludex B: First results of a phase Ib/IIa study[J]. J Hepatol, 2016, 65(3): 490-498. DOI: 10.1016/j.jhep.2016.04.016.
[33]WEDEMEYER H, BOGOMOLOV P, BLANK A, et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of Myrcludex B in combination with Tenofovir in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2018, 68(Suppl 1): S3.
[34]WEDEMEYER H, SCHNEWEIS K, BOGOMOLOV PO, et al. 48 weeks of high dose (10 mg) bulevirtide as monotherapy or with peginterferon alfa-2a in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2020, 73(Suppl 1): S52-S53.
[35]WEDEMEYER H, SCHNEWEIS K, BOGOMOLOV PO, et al. GS-13-Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection[J]. J Hepatol, 2019, 70(Suppl 1): e81.
[36]GLENN JS, WATSON JA, HAVEL CM, et al. Identification of a prenylation site in delta virus large antigen[J]. Science, 1992, 256(5061): 1331-1333. DOI: 10.1126/science.1598578.
[37]KOH C, CANINI L, DAHARI H, et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial[J]. Lancet Infect Dis, 2015, 15(10): 1167-1174. DOI: 10.1016/S1473-3099(15)00074-2.
[38]YURDAYDIN C, KESKIN O, KALKAN , et al. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: The LOWR HDV-1 study[J]. Hepatology, 2018, 67(4): 1224-1236. DOI: 10.1002/hep.29658.
[39]WEDEMEYER H, PORT K, DETERDING K, et al. PS-039 - A phase 2 dose-escalation study of lonafarnib plus ritonavir in patients with chronic hepatitis D: final results from the Lonafarnib with ritonavir in HDV-4 (LOWR HDV-4) study[J]. J Hepatol, 2017, 66(Suppl 1): S24.
[40]SHEKHTMAN L, COTLER SJ, HERSHKOVICH L, et al. Modelling hepatitis D virus RNA and HBsAg dynamics during nucleic acid polymer monotherapy suggest rapid turnover of HBsAg[J]. Sci Rep, 2020, 10(1): 7837. DOI: 10.1038/s41598-020-64122-0.
[41]BAZINET M, PNTEA V, CEBOTARESCU V, et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): a non-randomised, open-label, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2017, 2(12): 877-889. DOI: 10.1016/S2468-1253(17)30288-1.
[42]BAZINET M, PNTEA V, CEBOTARESCU V, et al. Persistent control of hepatitis B virus and hepatitis delta virus infection following REP 2139-Ca and pegylated interferon therapy in chronic hepatitis B virus/hepatitis delta virus coinfection[J]. Hepatol Commun, 2021, 5(2): 189-202. DOI: 10.1002/hep4.1633.
[43]YUEN MF, SCHIEFKE I, YOON JH, et al. RNA interference therapy with ARC-520 results in prolonged hepatitis B surface antigen response in patients with chronic hepatitis B infection[J]. Hepatology, 2020, 72(1): 19-31. DOI: 10.1002/hep.31008.
[44]GANE E, LOCARNINI S, LIM T, et al. Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitis B surface antigen supression in patients with chronic hepatitis B receiving nucleos(t)ide analogue treatment[J]. J Hepatol, 2020, 73(Suppl 1): S20.
[45]JIAO WJ, ZHANG F, AI QG, et al. Study on the treatment of human interferon-α combined with traditional Chinese medicine on HBV/HDV co-infection[J]. Heilongjiang Med Pharm, 1993(4): 11-12.
焦文舉, 張甫, 艾欽光, 等. 精制人白細胞α—干擾素配伍中藥治療乙、丁型肝炎病毒重疊感染的研究[J]. 黑龍江醫藥, 1993(4): 11-12.
[46]CHEN NL, GU F, JIA KM, et al. Treatment on 26 cases with HBV/HDV co-infection with Xiao Chaihu decoction[J]. Chin J Intern Med, 1990, 29(3): 144-146.
陳乃玲, 顧芳, 賈克明, 等. 小柴胡湯對26例乙型、丁型肝炎重疊感染治療的探討[J]. 中華內科雜志, 1990, 29(3): 144-146.
[47]LIN HH, LEE SS, YU ML, et al. Changing hepatitis D virus epidemiology in a hepatitis B virus endemic area with a national vaccination program[J]. Hepatology, 2015, 61(6): 1870-1879. DOI: 10.1002/hep.27742.
[48]SORIANO V, SHERMAN KE, BARREIRO P. Hepatitis delta and HIV infection[J]. AIDS, 2017, 31(7): 875-884. DOI: 10.1097/QAD.0000000000001424.
[49]SERVANT-DELMAS A, LE GAL F, GALLIAN P, et al. Increasing prevalence of HDV/HBV infection over 15 years in France[J]. J Clin Virol, 2014, 59(2): 126-128. DOI: 10.1016/j.jcv.2013.11.016.
[50]CHANG SY, YANG CL, KO WS, et al. Molecular epidemiology of hepatitis D virus infection among injecting drug users with and without human immunodeficiency virus infection in Taiwan[J]. J Clin Microbiol, 2011, 49(3): 1083-1089. DOI: 10.1128/JCM.01154-10.
[51]SHEN DT, HAN PC, JI DZ, et al. Epidemiology estimates of hepatitis D in individuals co-infected with human immunodeficiency virus and hepatitis B virus, 2002-2018: A systematic review and meta-analysis[J]. J Viral Hepat, 2021, 28(7): 1057-1067. DOI: 10.1111/jvh.13512.
[52]STOCKDALE AJ, KREUELS B, HENRION M, et al. The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis[J]. J Hepatol, 2020, 73(3): 523-532. DOI: 10.1016/j.jhep.2020.04.008.
[53]WANG L, ZHUANG H. Advances in hepatitis D epidemiology[J]. Chin J Viral Dis, 2021, 11(6): 420-426. DOI: 10.16505/j.2095-0136.2021.0053.
王麟, 莊輝. 丁型肝炎流行病學進展[J]. 中國病毒病雜志, 2021, 11(6): 420-426. DOI: 10.16505/j.2095-0136.2021.0053.
[54]CHEN HY, SHEN DT, JI DZ, et al. Prevalence and burden of hepatitis D virus infection in the global population: a systematic review and meta-analysis[J]. Gut, 2019, 68(3): 512-521. DOI: 10.1136/gutjnl-2018-316601.
[55]FATTOVICH G, BOSCARO S, NOVENTA F, et al. Influence of hepatitis delta virus infection on progression to cirrhosis in chronic hepatitis type B[J]. J Infect Dis, 1987, 155(5): 931-935. DOI: 10.1093/infdis/155.5.931.
收稿日期:
2022-10-08;錄用日期:2022-11-08
本文編輯:葛俊