999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腸道菌群及其代謝物與非酒精性脂肪性肝病

2023-04-29 06:54:19劉亞萍盧燕張藝文張全波汪漢
心血管病學進展 2023年12期

劉亞萍 盧燕 張藝文 張全波 汪漢

【摘要】總結(jié)相關的實驗研究發(fā)現(xiàn),人體腸道菌群是非酒精性脂肪性肝病(NAFLD)發(fā)生發(fā)展的關鍵因素,除了人體腸道菌群組成的變化外,腸道菌群的代謝物也成為調(diào)節(jié)NAFLD病理過程的關鍵因素;有研究發(fā)現(xiàn),腸道菌群的代謝物如短鏈脂肪酸、膽汁酸、三甲胺和乙醇等通過腸-肝軸途徑影響肝臟代謝功能,從而導致疾病發(fā)生。現(xiàn)從NAFLD患者腸道菌群和代謝物的變化及發(fā)病機制,總結(jié)并探討通過調(diào)節(jié)腸道菌群及其代謝物來治療NAFLD,期望這些治療策略會成為未來優(yōu)化治療NAFLD等代謝性肝病的有效方法。

【關鍵詞】腸道菌群;腸道代謝物;腸肝軸;非酒精性脂肪性肝病

【DOI】10.16806/j.cnki.issn.1004-3934.2023.12.000

Intestinal Flora and Its Metabolites and

Nonalcoholic Fatty Liver Disease

LIU Yaping1,2,LU Yan1,2,ZHANG Yiwen2,ZHANG Quanbo1,2,WANG Han1,2

(1.North Sichuan Medical College,Nanchong 637000,Sichuan,China;2.Department of Cardiology,The Affiliated Hospital of Southwest Jiaotong University,The Third People's Hospital of Chengdu,Cardiovascular Disease Research Institute of Chengdu,Chengdu 610031,Sichuan,China)

【Abstract】Summary of relevant experimental studies found that the human intestinal flora is a key factor in the development of non-alcoholic fatty liver disease (NAFLD). In addition to changes in the composition of human intestinal flora,the metabolites of intestinal flora also become the key factors regulating the pathological process of NAFLD. Some studies have found that metabolites of intestinal flora such as short-chain fatty acids,bile acids,trimethylamine and ethanol affect liver metabolic function through the gut-liver axis pathway,thus leading to disease. Based on the changes and pathogenesis of intestinal flora and metabolites in patients with NAFLD,this paper summarizes and discusses the treatment of NAFLD by regulating intestinal flora and metabolites,hoping that these therapeutic strategies will become effective ways to optimize the treatment of metabolic liver diseases such as NAFLD in the future.

【Key words】Intestinal flora;Intestinal metabolite;Gut-liver axis;Non-alcoholic fatty liver disease

[基金項目: 四川省中醫(yī)藥管理局(2020JC0010); 成都市衛(wèi)健委醫(yī)學科研課題(2021206)

通信作者:汪漢,E-mail: wanghan@swjtu.edu.cn;張全波,E-mail: quanbozhang@126.com] 非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)是全球慢性肝病的主要原因,定義為肝細胞脂肪變性,即甘油三酯在肝臟中的蓄積超過肝臟總重量的5%[1]。有研究[2]發(fā)現(xiàn)NAFLD的全球患病率約為25%,其中非洲患病率最低(約13.5%),中東地區(qū)最高(約31.8%)。隨著NAFLD更名為代謝相關性脂肪性肝病,該類疾病被重新定義為肝臟組織學、影像學表現(xiàn)或?qū)嶒炇覚z查提示存在肝細胞脂肪變性,同時合并肥胖體型、2型糖尿病(type 2 diabetes mellitus,T2DM)等代謝綜合征的任一表現(xiàn)[3]。研究[4]發(fā)現(xiàn)NAFLD患者未經(jīng)良好控制,可進展為非酒精性脂肪性肝炎(non-anlocoholic steatohepatitis,NASH),主要表現(xiàn)為發(fā)生肝臟炎癥和肝損傷,在此惡性條件下,進一步發(fā)展為肝硬化、終末期肝衰竭,甚至最終導致肝細胞癌。除了肝臟疾病相關死亡率外,心血管疾病是NAFLD患者死亡的主要原因,特別是NASH患者發(fā)生心血管疾病的風險顯著增高[5],所以研究者們對于NAFLD的發(fā)病機制及治療手段都有了更深入的研究。本綜述將從NAFLD患者腸道菌群及代謝物的改變、腸道菌群及代謝物引起NAFLD的可能發(fā)病機制及目前對于NAFLD患者的相關治療方面進行了概述。

1? 腸道菌群及代謝物的概括

腸道菌群是一個由數(shù)萬億微生物組成的復雜生態(tài)系統(tǒng),這種微生物群落直接參與維持腸道屏障完整性、抵御外來病原體、調(diào)節(jié)宿主免疫炎癥反應、從中獲取能量及調(diào)節(jié)機體代謝等功能[6]。在健康成人中,腸道菌群主要由厚壁菌門和擬桿菌門組成,其次是放線菌和變形桿菌,它們幾乎占腸道微生物群落的90%[7]。有研究表明NAFLD患者腸道菌群的豐度組成發(fā)生改變,稱為生態(tài)失調(diào)[8],生態(tài)失調(diào)可導致宿主代謝紊亂,引發(fā)多種疾病如T2DM、代謝綜合征和NAFLD等代謝性疾病。此外,腸道細菌產(chǎn)生的代謝物如短鏈脂肪酸(short-chain fatty acid,SCFA)、膽汁酸(bile acid,BA)、三甲胺(trimethylamine,TMA)和乙醇等也廣泛影響宿主的各種生理活動[9]。

2? 腸道菌群與NAFLD的關系

2.1? NAFLD患者體內(nèi)腸道菌群的變化

腸道菌群通過腸-肝軸與肝臟相互作用,人體約有70%供應肝臟的血液來自腸道,因此腸道內(nèi)的產(chǎn)毒細菌及其代謝物可通過門靜脈循環(huán)到達肝臟,又能將肝臟中的膽汁和抗體等物質(zhì)運輸至腸道,稱為腸-肝軸途徑[10],表明腸-肝軸是腸道菌群影響肝臟代謝的關鍵環(huán)節(jié),腸道菌群的紊亂及代謝物的改變可導致NAFLD的發(fā)生。

大量的研究表明,NAFLD患者存在顯著的腸道菌群失調(diào)和菌群豐度的改變。在一項人類模型試驗[11]中發(fā)現(xiàn),NAFLD患者腸道中擬桿菌的增加和厚壁菌的減少與NAFLD的疾病進展有關。Li等[12]的研究分析了NAFLD患者腸道菌群的分類群,包括埃希氏菌、普雷沃氏菌、鏈球菌、糞球菌、普拉梭菌、擬桿菌和乳酸桿菌等,證實埃希氏菌、普雷沃氏菌和鏈球菌在NAFLD患者中的豐度均增加,而糞球菌、普拉梭菌、擬桿菌和乳酸桿菌在NAFLD患者中缺乏。Chierico等[13]的研究比較了NAFLD患者試驗組與健康個體對照組腸道菌群的種類,發(fā)現(xiàn)NAFLD患者腸道內(nèi)的放線菌、厚壁菌、變形桿菌的豐度增加,擬桿菌的豐度降低。累積的臨床試驗和動物實驗研究表明,NAFLD患者腸道菌群的變化與厚壁菌和擬桿菌之間平衡的破壞密切相關。與健康個體相比,在NAFLD患者中觀察到的一致的變化是變形桿菌、腸桿菌、埃希氏菌及厚壁菌等機會性致病菌的相對豐度增加,以及瘤胃球菌、糞球菌、普雷沃氏菌和乳酸桿菌等生理性菌群的豐度降低[14]。

2.2? 腸道菌群及代謝物的改變在NAFLD中的作用機制

NAFLD是一種發(fā)病機制不明的遺傳-環(huán)境-代謝應激相關疾病。“二次打擊學說”[5]解釋了NAFLD的可能發(fā)病機制,第一個打擊是胰島素抵抗(insulin resistance,IR)和過量的脂肪酸,這會導致簡單的肝脂肪變性;第二個打擊主要是體內(nèi)活性氧產(chǎn)生過多引起機體腸道菌群失調(diào)及代謝物改變,導致肝臟進一步發(fā)生氧化應激反應,誘發(fā)肝臟炎癥及肝細胞死亡,最終導致NASH和肝纖維化[15]。也有研究[16]發(fā)現(xiàn)NAFLD的發(fā)病機制存在“多重打擊學說”,該學說涉及肝臟、腸道和脂肪的變化,而氧化應激被認為是導致肝臟損傷和疾病進展的主要原因,導致肝臟過度氧化應激的原因有內(nèi)源性的因素,如IR、肥胖和T2DM等疾病,也有外源性的因素,如病毒感染、過度攝入酒精和藥物不良反應等[17]。現(xiàn)有的研究發(fā)現(xiàn)腸道菌群衍生的代謝物如SCFA(主要是乙酸鹽、丁酸鹽)、TMA、BA和乙醇等也有助于NAFLD的發(fā)展。

2.2.1? 腸道菌群通過降低腸道屏障通透性和參與免疫炎癥反應導致NAFLD

腸道屏障提供了抵御病原體的第一道防線,而腸道菌群對維持腸道屏障的完整性有重要作用,所以腸道菌群紊亂可使腸道屏障破壞、腸道通透性增加,而腸道通透性增加可能導致細菌通過腸道上皮屏障遷移,同時釋放有毒細菌產(chǎn)物、脂多糖和促炎因子等物質(zhì),這些物質(zhì)作用于肝臟而導致炎癥反應,最終可進展為NAFLD。研究[18]發(fā)現(xiàn)腸道細菌及有毒細菌產(chǎn)物主要是突破受損的腸道屏障與宿主細胞中的Toll樣受體4結(jié)合激活核因子-κB促進肝臟炎癥發(fā)生。此外,在人類和動物糞便移植研究中發(fā)現(xiàn),NAFLD患者的腸道菌群富含產(chǎn)生乙醇的細菌,例如大腸桿菌、肺炎克雷伯菌,其在一定條件下能產(chǎn)生乙醇,因此有人認為,腸道菌群失調(diào)可能比健康個體的微生物群產(chǎn)生更多的乙醇,而乙醇也會激活核因子-κB信號分子,進一步通過損害腸道屏障功能引起組織損傷,使門靜脈中脂多糖濃度增加導致NAFLD發(fā)病機制加速[19]。

2.2.2? 腸道菌群產(chǎn)生的代謝物對NAFLD的影響

SCFA是揮發(fā)性脂肪酸,主要通過腸道菌群發(fā)酵可溶性膳食纖維和不易消化的碳水化合物而產(chǎn)生[20]。人體腸道內(nèi)生產(chǎn)SCFA最多的腸道細菌是毛螺菌科和瘤胃菌科[21],研究發(fā)現(xiàn)乙酸鹽和丙酸鹽大部分是由擬桿菌(屬瘤胃菌科)產(chǎn)生,丁酸鹽主要由厚壁菌(屬毛螺菌科)產(chǎn)生。研究[22]表明SCFA主要通過與G蛋白偶聯(lián)受體結(jié)合來發(fā)揮其代謝活性,當SCFA與GPR76,GPR77和GPR41等受體結(jié)合可調(diào)節(jié)胰島素敏感性影響肝臟脂質(zhì)代謝。Rau等[23]研究發(fā)現(xiàn),與健康對照組相比,NAFLD患者糞便中SCFA濃度更高,產(chǎn)SCFA的細菌也占主導地位,說明SCFA濃度與NAFLD疾病進展的免疫學特征有關。

BA有助于乳化和溶解脂肪,它可通過與G蛋白偶聯(lián)受體結(jié)合來充當信號分子影響人體葡萄糖穩(wěn)態(tài)和脂質(zhì)代謝的調(diào)節(jié)。BA促進NAFLD發(fā)展的機制涉及兩個主要的受體分子:法尼醇X受體(farnesoid x receptor,F(xiàn)XR)(主要由初級BA激活)和武田G蛋白偶聯(lián)受體5(Takeda G protein-coupled receptor 5,TGR5)(主要由次級BA激活)[24]。NAFLD患者的腸道菌群失調(diào)可能影響初級BA向次級BA的轉(zhuǎn)化,使回腸中FXR和TGR5的活化程度降低,導致膽鹽沉積、腸道通透性增加、小腸細菌易位和腸道細菌過度生長,從而導致肝臟疾病[25]。有研究[26]表明,在肝臟中,F(xiàn)XR通過誘導小異源二聚體伴侶受體的表達從而進一步抑制膽固醇7α-羥化酶表達;而在腸道中,F(xiàn)XR增加循環(huán)成纖維細胞生長因子19的水平從而降低膽固醇7α-羥化酶的表達,使BA合成受到抑制。

TMA主要由腸道菌群通過膳食膽堿如磷脂酰膽堿、甜菜堿等進行分解代謝產(chǎn)生,經(jīng)門靜脈循環(huán)到達肝臟[27],研究發(fā)現(xiàn)腸道菌群可將TMA進一步代謝為三甲胺-N-氧化物,后者可通過多種機制誘導NAFLD的發(fā)展,例如加重肝臟IR、增加脂肪組織炎癥和降低酶產(chǎn)生的BA水平[28]。

3? 通過調(diào)節(jié)腸道菌群及代謝物治療NAFLD

目前,NAFLD無直接的藥物治療,主要治療方法是生活方式的改變?nèi)缯{(diào)整飲食、適當運動和降低體脂率等,以及潛在危險因素的糾正如嚴格控制T2DM、高脂血癥等代謝性疾病和預防心血管疾病的發(fā)生[29]。現(xiàn)有的實驗研究[30]已提出了通過調(diào)節(jié)腸道菌群生態(tài)平衡來改善NAFLD等代謝性疾病的新治療方法,如給予足夠劑量的益生菌、益生元和合生元,中醫(yī)中藥治療,糞便微生物群移植(fecal microbiota transplantation,F(xiàn)MT)以及腸道代謝物如SCFA、FXR激動劑等方法來調(diào)節(jié)腸道菌群及代謝物的組成,以干預NAFLD的發(fā)生發(fā)展和改善預后。

3.1? 益生菌、益生元和合生元

目前主要研究的益生菌屬是乳酸桿菌和雙歧桿菌,當給予足夠劑量時對宿主腸道健康表現(xiàn)出有益作用[31]。Ahn及其同事[32]的試驗觀察到,補充含乳酸桿菌和雙歧桿菌等在內(nèi)的益生菌混合物12周,增加了NAFLD患者腸道菌群中微生物的相對豐度,特別是嗜酸乳桿菌、戊酸桿菌、乳酸雙歧桿菌等生理性菌群的豐度,降低了厚壁菌門、埃希氏菌等機會性致病菌的豐度。在另一項小鼠模型[33]中,益生菌對c-Jun N端激酶和核因子-κB介導的氧化和炎癥性肝損傷具有積極影響,這與腫瘤壞死因子α調(diào)節(jié)和IR相關,實驗結(jié)果顯示,益生菌使NAFLD小鼠的肝臟組織學表現(xiàn)有所改善,主要是肝內(nèi)脂肪沉積和肝損傷減少、血清丙氨酸氨基轉(zhuǎn)移酶水平降低。

益生元是由非淀粉多糖和低聚果糖組成,主要表現(xiàn)為刺激腸道有益菌群的生長,合生元是益生菌和益生元的混合物[34]。益生元和合生元對NAFLD的有益作用可歸因為減少新生脂肪生成、降低體脂率、改善體內(nèi)葡萄糖耐量、恢復腸道正常菌群和降低炎癥反應[35]。在給NAFLD小鼠使用由低聚果糖、乳酸桿菌和嗜熱鏈球菌組成的合生元混合物12周,實驗結(jié)果表明雙歧桿菌、乳酸桿菌、大腸桿菌和腸球菌等非致病菌的相對豐度增加[36]。總之,這些結(jié)果表明,使用益生菌、益生元和合生元增加了腸道有益菌群的豐度,降低了腸道致病菌的豐度,同時降低了肝酶活性和血脂水平,從而改善了NAFLD患者腸道菌群的生態(tài)失調(diào),說明益生菌、益生元和合生元治療NAFLD患者可能是一種有前途的新治療策略。

3.2? 中醫(yī)中藥治療

如今,傳統(tǒng)中醫(yī)已被世界公認為一種補充和替代療法。在使用小鼠和大鼠模型的多數(shù)研究[37]中發(fā)現(xiàn),中醫(yī)藥配方翻白草含有多種天然活性化合物(如黃酮類、萜類、有機酸、甾體和鞣質(zhì)),可通過抗氧化、抗炎、改善脂質(zhì)代謝和IR、調(diào)節(jié)腸道菌群等作用對治療NAFLD表現(xiàn)出有益作用。還有草藥黃芪中的黃芪多糖等成分可通過腸道菌群發(fā)酵成SCFA,其中主要是乙酸產(chǎn)生抗NAFLD作用,其各種中草藥成分可通過相應的機制降低肝臟脂肪變性的程度和改善IR,減少氧化應激和肝臟炎癥,調(diào)節(jié)腸道菌群,特別是減少了厚壁菌的產(chǎn)生和增加了擬桿菌的豐度[38]。還有中藥配方也被證明有降脂作用[39],在患NAFLD小鼠的研究[40]中,使用天黃治療的小鼠糞便中腸道微生物群組成改變,主要表現(xiàn)為增加了腸道和肝臟中乳酸桿菌的豐度和5-甲氧基吲哚乙酸酯的含量,提高了肝內(nèi)谷胱甘肽和超氧化物歧化酶的水平,從而改善了氧化性的肝損傷。

總之,根據(jù)現(xiàn)有的研究表明,通過中醫(yī)中藥治療來調(diào)節(jié)腸道菌群的穩(wěn)態(tài)從而改善NAFLD的發(fā)展也是一種有效的治療方法。

3.3? FMT治療

FMT是指通過鼻胃管、鼻十二指腸管、直腸灌腸或結(jié)腸鏡的活檢通道將健康供體的腸道細菌引入患者體內(nèi),用來治療多種疾病的方法[41]。有研究[42]證實FMT可用于治療NAFLD在內(nèi)的代謝性疾病,通過FMT可降低NAFLD小鼠的肝內(nèi)脂質(zhì)沉積、IR和促炎因子的生成,甚至可能恢復腸道正常菌群及改善受損的腸黏膜屏障。Zhou等[43]研究了兩組高脂肪飲食喂養(yǎng)的小鼠,其中一只NAFLD小鼠接受了健康小鼠的FMT,與未接受FMT的小鼠相比,NAFLD小鼠存在典型的組織學表現(xiàn),即肝細胞內(nèi)脂質(zhì)和促炎細胞因子濃度顯著降低。在通過FMT干預后的小鼠也增加了腸道內(nèi)乳酸桿菌等有益菌群的豐度,顯著恢復了高脂肪飲食誘導的NASH小鼠模型中紊亂的腸道菌群[44]。當然,在某些情況下,F(xiàn)MT可能存在未知的感染風險,以及外來細菌進入宿主腸道的穩(wěn)定性有限,是否會降低其長期生存率和治療效果,需更多的實驗及臨床研究來明確FMT的益處。

3.4? 通過腸道代謝物及改善腸道屏障功能治療NAFLD

3.4.1? SCFA

SCFA代表一類重要的細菌代謝物,包括乙酸鹽、丙酸鹽和丁酸鹽等,它們具有很強的抑制腸道炎癥和防止病原體入侵的能力,以及維持腸道屏障完整性的能力[45]。動物研究表明,SCFA可激活單磷酸腺苷活化蛋白激酶來加速脂肪酸氧化并抑制肝臟脂肪生成,從而減少肝脂肪堆積,Araújo等[46]發(fā)現(xiàn)大腸桿菌產(chǎn)生的乙酸鹽被腸上皮細胞吸收并代謝成乙酰輔酶A和單磷酸腺苷,并上調(diào)AMPK/PGC-1α/PPARα途徑,隨后促進脂質(zhì)氧化。另一項研究[47]通過丁酸鹽給藥減少了肝內(nèi)脂質(zhì)堆積(甘油三酯和磷脂含量)和減輕肝臟重量并改善了高脂肪飲食誘導的小鼠肝脂肪變性。

SCFA對維持腸道屏障的完整性也表現(xiàn)出有益作用,其防止腸道毒素(例如脂多糖)經(jīng)腸上皮吸收而侵入肝臟;在結(jié)腸上皮細胞中,SCFA通過與GPR3結(jié)合激活NOD樣受體熱蛋白結(jié)構(gòu)域相關蛋白3炎癥小體,調(diào)節(jié)胱冬肽酶-1的活化和促進白細胞介素-18釋放,從而促進腸道上皮修復[48]。而丁酸鹽可通過降低Toll樣受體4和CD14的表達,改善腸道生態(tài)失調(diào)和腸道屏障功能(增加claudin-1和ZO-1表達)來降低內(nèi)毒素水平和肝臟炎癥(增加claudin-27和ZO-28表達)[49]。因此,SCFA可被視為預防和緩解NAFLD和NASH等肝病的新型可行的治療藥物。

3.4.2? FXR激動劑

FXR除了在BA代謝中發(fā)揮重要作用外,它還與脂質(zhì)、葡萄糖和脂蛋白的代謝密切相關,因此也成為了治療NAFLD的新靶點[50],F(xiàn)XR激動劑包括奧貝膽酸、鵝去氧膽酸等,它們可預防肥胖和IR嚙齒動物的肝脂肪變性。一項試驗[51]表明口服奧貝膽酸改善了NASH合并T2DM患者的IR、改善了受損的腸道屏障并降低了肝酶和脂質(zhì)水平。但是,F(xiàn)XR激動劑引起的不良反應需引起重視并需進一步的臨床試驗來評估奧貝膽酸等藥物臨床治療NASH等肝病的有效性和安全性。

4? 總結(jié)與展望

目前的研究對于NAFLD的確切發(fā)病機制尚未完全闡明,總結(jié)大多數(shù)研究表明,腸道菌群及代謝物的改變在NAFLD的發(fā)生和發(fā)展中有著極其重要的作用。本文通過腸道菌群及代謝物的變化進一步總結(jié)了其在NAFLD中可能的作用機制,并概述以腸道菌群及代謝物為一個新型靶點治療NAFLD,希望可以通過早期檢測腸道菌群及代謝物成分的改變來糾正或預防疾病的發(fā)生。總之,以腸道菌群及代謝物為靶點研究為未來治療NAFLD等代謝性肝病打開了一扇新窗口,期望有更深入的研究闡明腸道微生物群及代謝物在NAFLD中更具體的作用,從而建立起腸道微生物群靶向治療的個體化方法。

參 考 文 獻(已改)

[1]Fabbrini E,Magkos F. Hepatic steatosis as a marker of metabolic dysfunction[J]. Nutrients,2015,7(6):4995-5019.

[2]Younossi ZM,Koenig AB,Abdelatif D,et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,incidence,and outcomes[J]. Hepatology,2016,64(1):73-84.

[3]Eslam M,Newsome PN,Sarin SK,et al. A new definition for metabolic dysfunction-associated fatty liver disease:an international expert consensus statement[J]. J Hepatol,2020,73(1):202-209.

[4]Romeo S. Notch and nonalcoholic fatty liver and fibrosis[J]. N Engl J Med,2019 Feb 14;380(7):681-683.

[5]Friedman SL,Neuschwander-Tetri BA,Rinella M,et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med,2018,24(7):908-922.

[6]Thursby E,Juge N. Introduction to the human gut microbiota[J]. Biochem J,2017,474(11):1823-1836.

[7]Rinninella E,Raoul P,Cintoni M,et al. What is the healthy gut microbiota composition? A changing ecosystem across age,environment,diet,and diseases[J]. Microorganisms,2019,7(1):14.

[8]Quesada-Vázquez S,Bone C,Saha S,et al. Microbiota dysbiosis and gut barrier dysfunction associated with non-alcoholic fatty liver disease are modulated by a specific metabolic cofactors' combination[J]. Int J Mol Sci,2022,23(22):13675.

[9]Albillos A,de Gottardi A,Rescigno M. The gut-liver axis in liver disease:Pathophysiological basis for therapy[J]. J Hepatol,2020,72(3):558-577.

[10]Hu H,Lin A,Kong M,et al. Intestinal microbiome and NAFLD:molecular insights and therapeutic perspectives[J]. J Gastroenterol,2020,55:142-158.

[11]Wang B,Jiang X,Cao M,et al. Altered Fecal Microbiota Correlates With Liver Biochemistry In Nonobese Patients With Non-Alcoholic Fatty Liver Disease[J]. Sci Rep,2016,6:32002.

[12]Li F,Ye J,Shao C,et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients:a systematic review and meta-analysis[J]. Lipids Health Dis,2021,20(1):22.

[13]Del Chierico F,Nobili V,Vernocchi P,et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology,2017,65:451-464.

[14]Aron-Wisnewsky J,Vigliotti C,Witjes J,et al. Gut microbiota and human NAFLD:disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol,2020,17(5):279-297.

[15]Luo W,Ye L,Hu XT,et al. MD2 deficiency prevents high-fat diet-induced AMPK suppression and lipid accumulation through regulating TBK1 in non-alcoholic fatty liver disease[J]. Clin Transl Med,2022,12(3):e777.

[16]Parthasarathy G,Revelo X,Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis:an overview[J]. Hepatol Commun,2020,4(4):478-492.

[17]Ferro D,Baratta F,Pastori D,et al. New insights into the pathogenesis of non-alcoholic fatty liver disease:gut-derived lipopolysaccharides and oxidative stress[J]. Nutrients,2020,12(9):2762.

[18]Arab JP,Karpen SJ,Dawson PA,et al. Bile acids and nonalcoholic fatty liver disease:molecular insights and therapeutic perspectives[J]. Hepatology,2017,65(1):350-362.

[19]Xu J,Lai KKY,Verlinsky A,et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK[J]. J Hepatol,2011,55(3):673-682.

[20]den Besten G,van Eunen K,Groen AK,et al. The role of short-chain fatty acids in the interplay between diet,gut microbiota,and host energy metabolism[J]. J Lipid Res,2013,54(9):2325-2340.

[21]Baxter NT,Schmidt AW,Venkataraman A,et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers[J]. mBio,2019,10(1):e02566-18.

[22]Kimura I,Ozawa K,Inoue D,et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43[J]. Nat Commun,2013,4:1829.

[23]Rau M,Rehman A,Dittrich M,et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease[J]. United European Gastroenterol J,2018,6(10):1496-1507.

[24]Mouzaki M,Loomba R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease:rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol,2019,12:1756284819858470.

[25]Sinal CJ,Tohkin M,Miyata M,et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis[J]. Cell,2000,102(6):731-744.

[26]Zheng W,Lu Y,Tian S,et al. Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR[J]. J Biol Chem,2018,293(32):12535-12541.

[27]Fennema D,Phillips IR,Shephard EA. Trimethylamine and trimethylamine N-Oxide,a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease[J]. Drug Metab Dispos,2016,44(11):1839-1850.

[28]Chu H,Duan Y,Yang L,et al. Small metabolites,possible big changes:a microbiota-centered view of non-alcoholic fatty liver disease[J]. Gut,2019,68(2):359-370.

[29]Brunner KT,Henneberg CJ,Wilechansky RM,et al. Nonalcoholic fatty liver disease and obesity treatment[J]. Curr Obes Rep,2019,8(3):220-228.

[30]Aron-Wisnewsky J,Warmbrunn MV,Nieuwdorp M,et al. Nonalcoholic fatty liver disease:modulating gut microbiota to improve severity?[J]. Gastroenterology,2020,158(7):1881-1898.

[31]Binda S,Hill C,Johansen E,et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements[J]. Front Microbiol,2020,11:1662.

[32]Ahn SB,Jun DW,Kang BK,et al. Randomized,double-blind,placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease[J]. Sci Rep,2019,9(1):5688.

[33]Ma X,Hua J,Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT [J]. J Hepatol,2008,49(5):821-830.

[34]Bomhof MR, Parnell JA, Ramay HR,et al. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial[J]. Eur J Nutr,2019,58(4):1735-1745.

[35]Vallianou N,Christodoulatos GS,Karampela I,et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease:current evidence and perspectives[J]. Biomolecules,2021,12(1):56.

[36]Manzhalii E,Virchenko O,F(xiàn)alalyeyeva T,et al. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis:a pilot trial[J]. J Dig Dis,2017,18(12):698-703.

[37]Ji L,Li Q,He Y,et al. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD:a promising drug potentilla discolor bunge[J]. Acta Pharm Sin B,2022,12(9):3529-3547.

[38]Hong Y,Sheng L,Zhong J,et al. Desulfovibrio vulgaris,a potent acetic acid-producing bacterium,attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes,2021,13(1):1-20.

[39]Li KP,Yu Y,Yuan M,et al. Tian-Huang formula,a traditional Chinese medicinal prescription,improves hepatosteatosis and glucose intolerance targeting AKT-SREBP nexus in diet-induced obese rats[J]. Evid Based Complement Alternat Med,2021,2021:6617586.

[40]Luo D,Yang L,Pang H,et al. Tianhuang formula reduces the oxidative stress response of NAFLD by regulating the gut microbiome in mice[J]. Front Microbiol,2022,13:984019.

[41]de Groot PF,F(xiàn)rissen MN,de Clercq NC,et al. Fecal microbiota transplantation in metabolic syndrome:History,present and future[J]. Gut Microbes,2017,8(3):253-267.

[42]Witjes JJ,Smits LP,Pekmez CT,et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis[J]. Hepatol Commun,2020,4(11):1578-1590.

[43]Zhou D,Pan Q,Shen F,et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep,2017,7(1):1529.

[44]Kelly CJ,Zheng L,Campbell EL,et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function[J]. Cell Host Microbe,2015,17(5):662-671.

[45]Zhang Z,Tang H,Chen P,et al. Demystifying the manipulation of host immunity,metabolism,and extraintestinal tumors by the gut microbiome[J]. Signal Transduct Target Ther,2019,4:41.

[46]Araújo JR,Tazi A,Burlen-Defranoux O,et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe,2020,27(3):358-375.e7.

[47]Shimizu H,Masujima Y,Ushiroda C,et al. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3[J]. Sci Rep,2019,9(1):16574.

[48]Zhang S,Zhao J,Xie F,et al. Dietary fiber-derived short-chain fatty acids:a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J]. Obes Rev,2021,22(11):e13316.

[49]Liu W,Luo X,Tang J,et al. A bridge for short-chain fatty acids to affect inflammatory bowel disease,type 1 diabetes,and non-alcoholic fatty liver disease positively:by changing gut barrier[J]. Eur J Nutr,2021,60(5):2317-2330.

[50]Han X,Cui ZY,Song J,et al. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner[J]. Chem Biol Interact,2019,311:108794.

[51]Mouries J,Brescia P,Silvestri A,et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol,2019,71(6):1216-1228.

收稿日期:2023-03-05

主站蜘蛛池模板: AV网站中文| 成人福利在线观看| 四虎永久在线精品国产免费| 在线国产你懂的| 亚洲精品国产精品乱码不卞| 亚洲视频影院| 在线视频亚洲色图| 爱色欧美亚洲综合图区| 欧美区一区二区三| 性网站在线观看| 国产成人三级| 亚洲一区无码在线| 91九色国产porny| 欧美国产在线看| 日韩在线第三页| 亚洲va欧美ⅴa国产va影院| 91高清在线视频| 呦视频在线一区二区三区| 日韩国产综合精选| 欧美日一级片| 成人一区专区在线观看| 欧美色综合网站| 国产精品综合久久久| 999国内精品视频免费| 国产精品蜜臀| 九色91在线视频| 日本成人福利视频| 免费毛片视频| 国产小视频免费观看| 麻豆精品在线视频| 国产视频你懂得| 婷婷中文在线| 美臀人妻中出中文字幕在线| 亚洲国产一成久久精品国产成人综合| 蝴蝶伊人久久中文娱乐网| 亚洲天堂精品在线观看| 日韩精品免费一线在线观看| 东京热一区二区三区无码视频| 欧美一级高清视频在线播放| 成人午夜免费观看| 免费人成黄页在线观看国产| 少妇被粗大的猛烈进出免费视频| 免费激情网址| 中文字幕一区二区人妻电影| 99热免费在线| 午夜福利在线观看入口| 女人毛片a级大学毛片免费| 久久这里只有精品免费| 久草热视频在线| av一区二区三区高清久久| 亚洲av无码牛牛影视在线二区| 男女性色大片免费网站| 92午夜福利影院一区二区三区| 99尹人香蕉国产免费天天拍| 久久天天躁夜夜躁狠狠| 亚洲午夜天堂| 欧美日韩国产成人在线观看| 亚洲 日韩 激情 无码 中出| 日本欧美中文字幕精品亚洲| 色噜噜综合网| 亚洲伦理一区二区| 亚洲天堂.com| 色网站免费在线观看| 国产成人精品一区二区不卡 | 毛片大全免费观看| 伊人婷婷色香五月综合缴缴情| 青青草原国产| 国产亚洲视频中文字幕视频| 波多野结衣爽到高潮漏水大喷| 国产精品自在在线午夜区app| 四虎AV麻豆| 亚洲日本中文字幕乱码中文| 四虎影视永久在线精品| 国产精品免费电影| 亚洲成在线观看| 欧美激情视频一区二区三区免费| 亚洲一区免费看| av一区二区三区高清久久| 国产成人无码久久久久毛片| 国产婬乱a一级毛片多女| 欧美不卡视频一区发布| 中文字幕免费视频|