999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

對流-擴散-反應方程界面問題的擴展雜交間斷有限元

2023-04-29 15:07:11王慧媛陳豫眉
四川大學學報(自然科學版) 2023年2期
關鍵詞:界面有限元

王慧媛 陳豫眉

本文針對2維和3維對流-擴散-反應方程的界面問題提出了一種基于非貼體網格的擴展雜交間斷有限元方法.該方法在單元的內部分別用分片 k(k≥1)和m(m=k,k-1)次多項式逼近標量函數及其梯度,在單元邊界上用 k 次多項式逼近標量函數的跡,在界面上則用界面單元內部的 k 次多項式在界面上的限制去逼近標量函數的跡.對于弱問題,本文利用 Lax-Milgram定理證明其解的存在唯一性.對于離散格式,本文給出了其解的存在唯一性以及能量范數下的最優誤差估計.

對流-擴散-反應方程; 界面問題; 非貼體網格; 擴展雜交間斷有限元

O241.82A2023.021003

收稿日期: 2022-04-07

基金項目: 國家自然科學基金(11971094)

作者簡介: 王慧媛 (1997-), 女, 碩士研究生, 主要研究方向為偏微分方程數值解. E-mail: 3311484766@qq.com.

通訊作者: 陳豫眉. E-mail: xhshuxue@163.com

An extended HDG finite element for convection-diffusion-reaction equation interface problems

WANG Hui-Yuan1, CHEN Yu-Mei2

(1.School of Mathematics, Sichuan University, Chengdu 610064, China;

2.College of Mathematics Education, China West Normal University, Nanchong 637009, China)

This paper proposes an extended hybridizable discontinuous Galerkin (HDG) finite element for 2D and 3D convection-diffusion-reaction equation interface problems on body-unfitted meshes. This finite element uses piecewise polynomials of degrees k(k≥1)and m(m=k,k-1) to approximate the scalar function and its gradient respectively in the interior of elements, piecewise polynomials of degrees k to approximate the traces of the scalar function on the inter-element boundaries inside the sub-domains and constraints on the interface of piecewise polynomials of degrees k inside interface elements to approximate? the traces of the scalar function on the interface. The existence and uniqueness of weak solution for the weak problem and discrete solution for the discrete scheme are proved respectively. Lax-Milgram theorem is used for the weak problem.The optimal error estimation is derived in the energy norm for the discrete scheme.

Convection-diffusion-reaction equation; Interface problem; Body-unfitted meshes; Extended HDG method

(2010 MSC 65M60)

6 結 論

本文針對對流-擴散-反應方程界面問題提出了一個任意階的擴展雜交間斷 Galerkin 有限元.在假設1.1和1.2成立的條件下,利用 Lax-Milgram 定理證明了弱解的存在唯一性.對離散格式,本文給出了解的存在唯一性結果及其在能量范數下的最優誤差估計.

參考文獻:

[1] Ames W F. Nonlinear partial differential equations in engineering [M]. New York: Academic Press, 1965.

[2] Murray J D. Nonlinear differential equation models in biology [M]. Oxford: Clarendon Press, 1977.

[3] Wang X, Posny D, Wang J. A reaction-convection-diffusion model for cholera spatial dynamics [J]. Discrete Cont Dyn-B, 2016, 21: 2785.

[4] Ribeiro M C, Rego L G C, DAjello P C T. Diffusion, reaction and forced convection in electrochemical cells [J]. J Electroanal Chem, 2009, 628: 21.

[5] Babuka I. The finite element method for elliptic equations with discontinuous coefficients [J]. Computing, 1970, 5: 207.

[6] 許進超. 具有間斷系數的二階橢圓型方程的有限元解的斂速估計[J]. 湘潭大學: 自然科學學報, 1982, 1: 84.

[7] Barrett J W, Elliott C M. Fitted and unfitted finite element methods for elliptic equations with smooth interfaces [J]. IMA J Numer Anal, 1987, 7: 283.

[8] Bramble J H, King J T. A finite element method for interface problems in domains with smooth boundaries and interfaces [J].Adv Comput Math, 1996, 6: 109.

[9] Cai Z, He C, Zhang S. Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates [J]. SIAM J Numer Anal, 2017, 55: 400.

[10] Chen Z, Zou J. Finite element methods and their convergence for elliptic and parabolic interface problems [J]. Numer Math, 1998, 79: 175.

[11] Babuka I, Caloz G, Osborn J E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J Numer Anal, 1994, 31: 945.

[12] Strouboulis T, Babuka I, Copps K. The design and analysis of the generalized finite element method [J]. Comput Method Appl M, 2000, 181: 43.

[13] Abdelaziz Y, Hamouine A. A survey of the extended finite element [J]. Comput Struct,2008,? 86: 1141.

[14] Fries T P, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications [J]. Int J Numer Meth Eng, 2010, 84: 253.

[15] Wu H, Xiao Y. An unfitted hp-interface penalty finite element method for elliptic interface problems [J]. J Comput Math, 2019, 37: 316.

[16] Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsches method, for elliptic interface problems [J]. Comput Method Appl M, 2002, 191: 5537.

[17] Han Y, Chen H, Wang X, et al. EXtended HDG methods for second order elliptic interface problems [J]. J Sci Comput, 2020, 84: 22.

[18] Han Y, Wang X, Xie X. An interface/boundary-unfitted eXtended HDG method for linear elasticity problems [EB/OL].[2022-02-07]. https://www.arxiv.org/pdf/2004.06275v2.pdf.

[19] Reusken A, Nguyen T H. Nitsches method for a transport problem in two-phase incompressible flows [J]. J Fourier Anal Appl, 2009, 15: 663.

[20] Lehrenfeld C, Reusken A. Nitsche-XFEM with streamline diffusion stabilization for a two-phase mass transport problem [J]. SIAM J Sci Comput, 2012, 34: A2740.

[21] Pietro D, Ern A, Guermond J L. Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection [J]. SIAM J Numer Anal, 2008, 46: 805.

[22] Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems [J]. SIAM J Numer Anal, 2009, 47: 1319.

[23] Cockburn B, Dong B, Guzmán J, et al. A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems [J]. SIAM J Sci Comput, 2009, 31: 3827.

[24] Qiu W, Shi K. An HDG method for convection diffusion equation [J]. J Sci Comput, 2016, 66: 346.

[25] Chen G, Feng M, Xie X. A robust WG finite element method for convection-diffusion-reaction equations [J]. J Comput Appl Math, 2017, 315: 107.

[26] Adams R A. Sobolev spaces [M]. New York: Academic Press, 1975.

[27] Brenner S C, Scott L R. The mathematical theory of finite element methods [M]. New York: Springer, 2008.

猜你喜歡
界面有限元
國企黨委前置研究的“四個界面”
當代陜西(2020年13期)2020-08-24 08:22:02
新型有機玻璃在站臺門的應用及有限元分析
上海節能(2020年3期)2020-04-13 13:16:16
基于有限元的深孔鏜削仿真及分析
基于有限元模型對踝模擬扭傷機制的探討
基于FANUC PICTURE的虛擬軸坐標顯示界面開發方法研究
空間界面
金秋(2017年4期)2017-06-07 08:22:16
電子顯微打開材料界面世界之門
人機交互界面發展趨勢研究
手機界面中圖形符號的發展趨向
新聞傳播(2015年11期)2015-07-18 11:15:04
磨削淬硬殘余應力的有限元分析
主站蜘蛛池模板: 国产精品19p| 狠狠五月天中文字幕| 欧美日本激情| 精品国产成人a在线观看| 天天操天天噜| 中文字幕亚洲另类天堂| 国产亚洲精品97在线观看| 91在线国内在线播放老师| 亚洲综合色区在线播放2019| 国产成在线观看免费视频| 亚洲AⅤ永久无码精品毛片| 国产精品无码AV中文| 国产精品免费福利久久播放| 精品欧美一区二区三区在线| 久久国产拍爱| 亚洲男女天堂| 日韩亚洲高清一区二区| 美女免费黄网站| 国产人成网线在线播放va| 欧美日韩国产精品va| 亚洲乱码视频| 欧美自慰一级看片免费| 久久 午夜福利 张柏芝| 国产香蕉在线视频| 国产精品尤物在线| 色老二精品视频在线观看| 欧美成人亚洲综合精品欧美激情| 狠狠躁天天躁夜夜躁婷婷| 一本无码在线观看| 国产免费福利网站| 国产高清精品在线91| 欧洲av毛片| 九色综合视频网| 色综合色国产热无码一| 欧美激情首页| 国产第一福利影院| 尤物精品国产福利网站| 国产一区二区丝袜高跟鞋| 亚洲 欧美 偷自乱 图片| 国产91无码福利在线| 国产偷国产偷在线高清| 国产精品3p视频| 国产欧美在线视频免费| 成年女人a毛片免费视频| 欧洲极品无码一区二区三区| 国产精品女主播| 国产精品自拍合集| 亚洲精品无码日韩国产不卡| 欧美α片免费观看| 国产精品网址在线观看你懂的| 91高清在线视频| 日韩精品专区免费无码aⅴ| 国内自拍久第一页| 国产一区二区三区夜色| 久久婷婷色综合老司机| 日韩免费视频播播| 在线看免费无码av天堂的| 欧美一道本| 久久频这里精品99香蕉久网址| 在线观看欧美国产| 亚洲日本精品一区二区| 亚洲欧洲国产成人综合不卡| 美女国产在线| 亚洲色精品国产一区二区三区| 精品一区二区三区波多野结衣| 国产丝袜无码一区二区视频| 找国产毛片看| 国产午夜看片| 欧美精品啪啪| 亚洲欧美日韩视频一区| 国产精品漂亮美女在线观看| 在线视频亚洲色图| 狠狠色噜噜狠狠狠狠色综合久 | 无码精油按摩潮喷在线播放 | 四虎精品国产AV二区| 无码专区国产精品第一页| 伊人激情综合| 久久久久久久久亚洲精品| 91综合色区亚洲熟妇p| 国产亚洲精久久久久久久91| 老司机午夜精品视频你懂的| 小说 亚洲 无码 精品|