






摘 要:針對傳統人工提取特征進行通信信號識別準確率低的問題,本文在支持向量機(SVM)的基礎上,提出了一種基于信息幾何去噪的改進SVM的識別方法。該方法通過Choi-Williams分布(CWD)時頻變換獲得不同通信信號的時頻圖像,然后利用能夠更加準確衡量像素點之間差異性的測地線距離實現時頻圖像的去噪,進而利用AlexNet卷積神經網絡對時頻圖進行特征提取,并基于信息幾何改進的SVM對通信信號進行分類,實現了有效分類識別。仿真結果表明,該方法在0 dB信噪比(SNR)下,識別率仍然能夠達到97%以上,除此之外,該方法在小樣本的情況下仍然有效。
關鍵詞:信息幾何; 圖像去噪; 通信信號; 調制識別; 支持向量機(SVM); 測地線距離; AlexNet
中圖分類號:TJ760
文獻標識碼: A
文章編號:1673-5048(2023)05-0121-06
DOI: 10.12132/ISSN.1673-5048.2023.0003
0 引" 言
在導彈和電子戰的通信對抗中想要通過截獲敵方通信信號來獲取敵方情報,調制識別技術是必不可少的。將信號處理問題通過時頻變換轉化為圖像處理問題是調制識別中常用的方法,但其高準確性很大程度上依賴于時頻圖的預處理。
傳統的圖像去噪方法主要有空間域去噪和變換域去噪兩種。空間域去噪的方法主要包括中值濾波[1]、均值濾波[2]、維納濾波[3]和雙邊濾波[4]等。隨著科研人員的不斷研究,越來越多的技術被應用在圖像去噪中,如低秩聚類算法[5]、統計方法[6]和偏微分方程[7-8]等。變換域去噪中的小波變換[9]是最常用的方法。信息幾何是近幾年發展起來的一門新興學科,是以概率分布為研究對象,深入挖掘不同的概率分布內部蘊含的幾何信息。利用信息幾何的概念可以在保持圖像細節信息的基礎上提高算法的去噪能力。
近年來,隨著機器學習和深度學習的崛起,調制識別技術也進入了智能發展的階段。其中,卷積神經網絡(CNN)在自動特征提取方面有很好的性能。文獻[10]提出了一種基于短時傅里葉變換和CNN的一種識別系統,獲得了良好的性能。但是傳統的CNN難以在小樣本和低信噪比的情況對信號進行分類。而層數更深的AlexNet卷積神經網絡能更多地挖掘圖像的特征,文獻[11]將AlexNet卷積神經網絡應用到調制識別中,證明了AlexNet的有效性。但神經網絡往往需要大量的樣本來獲得高的識別精度,而支持向量機(SVM)為通信信號識別提供了一種有效的替代方法[12-13]。Schlkopf等提出了核映射中的幾何概念[14],并從核函數中導出了核映射的黎曼度量的具體形式,表明可以用信息幾何的方法構造一個與數據相關的核函數。
基于上述結果,本文提出基于信息幾何去噪的改進SVM的識別算法。在該算法中,基于信息幾何對信號的時頻圖進行去噪處理,使用基于遷移學習的AlexNet對去噪后的圖像進行特征提取,通過改進的SVM對提取的特征進行分類識別。
1 信號模型
基本的數字調制方式有多進制頻移鍵控(MFSK)、
多進制振幅鍵控(MASK)、多進制相移鍵控(MPSK)和多進制正交振幅調制(MQAM)。
MFSK,MASK,MPSK調制信號的時域表達式為
5.2 去噪前后對比實驗
為了驗證本文去噪算法的有效性,將基于信息幾何去噪的改進SVM的分類網絡與基于均勻濾波和雙邊濾波的分類網絡進行了對比。整體的識別準確率隨信噪比的變化曲線如圖6所示。從圖6可以看出,三種去噪算法均可提高識別性能,除此之外,本文去噪算法的識別準確率要高于均勻濾波和雙邊濾波的識別準確率。
為了驗證本文去噪算法對整體識別網絡的有效性,分別比較本文提出的改進SVM分類網絡和傳統SVM的分類網絡、Peng等[21]提出的改進AlexNet網絡去噪前后的識別準確率。信噪比為-6~6 dB,步長為2 dB。整體的識別準確率隨信噪比的變化曲線如圖7所示。
從圖7中可以看出,本文去噪算法對不同網絡的識別性能均有一定的提升,驗證了本文去噪算法對整體的識別網絡的有效性。除此之外,在6 dB信噪比下,本文算法的識別率高達98.92%。結果表明,該算法是一種有效的通信信號識別算法,對噪聲具有魯棒性。
5.3 小樣本實驗
SVM模型對小樣本數據具有很強的分類能力,本文算法是基于信息幾何改進的SVM,因此為了進一步說明該算法的魯棒性,對該算法在小樣本下的識別性能進行了仿真。原始實驗樣本數量由原來的每個信號200個減少到50個,而訓練和測試樣本的比例保持不變。在SNR為0 dB下的混淆矩陣如圖8所示。
在0 dB情況下,所有通信信號的識別準確率都達到了85%以上。除此之外,4ASK,2FSK,4FSK和4PSK能夠準確地被識別。此外,與圖4相比,由于訓練樣本數量的減少,整體識別概率從97.5%下降到95.714%。
為了進一步評估該算法中基于信息幾何去噪這一步驟的必要性,對去噪前和去噪后算法的識別準確率進行了對比,對比結果如圖9所示。
由圖9可知,去噪后的算法始終高于去噪前的算法,在各個信噪比下,提高了3%~4%左右,進一步驗證了該算法的有效性。
6 結" 論
本文針對通信信號的調制識別問題,結合信息幾何的相關知識,提出一種基于信息幾何去噪的改進SVM的識別算法。該算法首先采用CWD獲取通信信號的時頻圖,然后利用像素點之間的測地線距離進行加權濾波從而對時頻圖完成去噪,再利用AlexNet提取信號的時頻特征,將特征輸入到基于信息幾何改進的SVM中進行調制類型識別。仿真結果表明,該算法具有較高的識別精度和魯棒性。
參考文獻:
[1] 黃春艷," 張云鵬. 有效的圖像濾波算法[J]. 計算機工程與應用," 2012," 48(23): 165-167.
Huang Chunyan," Zhang Yunpeng. Effective Noise Image Filter Algorithm[J]. Computer Engineering and Applications," 2012," 48(23): 165-167.(in Chinese)
[2] Gonzalez R C," Woods R E. Digital Image Processing[M]. 3rd ed. Upper Saddle River," NJ: Pearson/Prentice Hall," 2008.
[3] Kazubek M. Wavelet Domain Image Denoising by Thresholding and Wiener Filtering[J]. IEEE Signal Processing Letters," 2003," 10(11): 324-326.
[4] Zhang M," Gunturk B K. Multiresolution Bilateral Filtering for I-mage Denoising[J]. IEEE Transactions on Image Processing," 2008," 17(12): 2324-2333.
[5] Gu S H," Zhang L," Zuo W M,nbsp; et al. Weighted Nuclear Norm Minimization with Application to Image Denoising[C]∥ IEEE Conference on Computer Vision and Pattern Recognition," 2014: 2862-2869.
[6] Luisier F," Blu T," Unser M. Image Denoising in Mixed Poisson-Gaussian Noise[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society," 2011," 20(3): 696-708.
[7] Zhang X J . An Adaptive Fourth-Order Partial Differential Equation for Image Denoising[J]. Computers amp; Mathematics with Applications," 2017," 74(10): 2529-2545.
[8] 楊迎春. 基于偏微分方程的圖像去噪算法研究[D]. 太原: 中北大學," 2012.
Yang Yingchun. Research on Image Denoising Based on Partial Differential Equations[D]. Taiyuan: North University of China," 2012. (in Chinese)
[9] Goyal B," Agrawal S," Sohi B S," et al. Noise Reduction in MR Brain Image via Various Transform Domain Schemes[J]. Research Journal of Pharmacy and Technology," 2016," 9(7): 919.
[10] Jeong S," Lee U," Kim S C. Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network[C]∥10th International Conference on Ubiquitous and Future Networks (ICUFN)," 2018.
[11] 郭立民," 陳鑫," 陳濤. 基于AlexNet模型的雷達信號調制類型識別[J]. 吉林大學學報: 工學版," 2019," 49(3): 1000-1008.
Guo Limin," Chen Xin," Chen Tao. Radar Signal Modulation Type Recognition Based on AlexNet Model[J]. Journal of Jilin University: Engineering and Technology Edition," 2019," 49(3): 1000-1008.(in Chinese)
[12] 李紅光," 郭英," 眭萍," 等. 基于時頻能量譜紋理特征的跳頻調制方式識別[J]. 通信學報," 2019," 40(10): 20-29.
Li Hongguang," Guo Ying," Sui Ping," et al. Frequency Hopping Modulation Recognition Based on Time-Frequency Energy Spectrum Texture Feature[J]. Journal on Communications," 2019," 40(10): 20-29.(in Chinese)
[13] Ke C X," Cheng W," Peng C X," et al. A Modulation Classification Method for Communication Signals Using TFA and Two-Stream Convolutional Networks[C]∥ IEEE 4th Advanced Information Management," Communicates," Electronic and Automation Control Conference (IMCEC)," 2021.
[14] Schlkopf B," Burges C J C," Smola A J. Advances in Kernel Methods: Support Vector Learning[M]. Cambridge: MIT Press," 1999.
[15] Costas J P. A Study of a Class of Detection Waveforms Having nearly Ideal Range-Doppler Ambiguity Properties[J]. Proceedings of the IEEE," 1984," 72(8): 996-1009.
[16] Amari S I. Information Geometry on Hierarchy of Probability Distributions[J]. IEEE Transactions on Information Theory," 2001," 47(5): 1701-1711.
[17] 趙興剛," 王首勇. 雷達目標檢測的信息幾何方法[J]. 信號處理," 2015," 31(6): 631-637.
Zhao Xinggang," Wang Shouyong. Information Geometry Method to Radar Target Detection[J]. Journal of Signal Processing," 2015," 31(6): 631-637.(in Chinese)
[18] Krizhevsky A," Sutskever I," Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM," 2017," 60(6): 84-90.
[19] Vapnik V N," Chervonenkis A Y. A Class of Algorithms for Pattern Recognition Learning[J]. Avtomatka i Telemekhanika," 1964," 25(6): 937-945.
[20] Amari S," Wu S. Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J]. Neural Networks," 1999," 12(6): 783-789.
[21] Peng S L," Jiang H Y," Wang H X," et al. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning[J]. IEEE Transactions on Neural Networks and Learning Systems," 2019," 30(3): 718-727.
Improved SVM Communication Signal Recognition
Based on Information Geometry Denoising
Cheng Yuqing1,Guo Muran1*,Wang Leping2
(1. College of Information and Communication Engineering," Harbin Engineering University," Key Laboratory of
Advanced Marine Communication and Information Technology," Ministry of
Industry and Information Technology," Harbin 150001," China;
2. College of Communication Engineering, Army Engineering University of PLA," Nanjing 210000," China)
Abstract: Aiming the problem of low accuracy of communication signal recognition by traditional manual feature extraction," an improved SVM recognition method based on information geometry denoising is proposed exploiting the support vector machine (SVM). The proposed method obtains the time-frequency images of different communication signals through the Choi-Williams distribution (CWD) time-frequency transform," and uses the geometric ground distance to accurately measure the difference between pixels for denoising. Then," the AlexNet is used to extract features from the time-frequency maps. Finally," by using the improved SVM based on the information geometry," the classification of communication signal is made to achieve effective classification and recognition. The simulation results show that the recognition rate of the proposed method achieves more than 97% at 0 dB signal-to-noise ratio (SNR). In addition," the method is still effective in the case of small samples.
Key words:" information geometry; image denoising; communication signal; modulation identification; support vector machine(SVM); ground distance measurement; AlexNet