








摘" " 要:【目的】自交親和特性的產生可由多種因素導致,其中S-RNase被泛素化標記后移動到26S蛋白酶體中被降解這一途徑,是顯現自交親和的重要原因。探究桃SFBs在S-RNase泛素化降解過程中的作用,為桃自交親和機制的研究提供參考?!痉椒ā客ㄟ^生物信息學方法對PpSFBs和PpSLFLs進行基因定位和共線性分析,使用PCR確定PpSFBs在花器官中的特異表達位置,利用BiFC驗證PpSFBs與S-RNase的互作后,通過S-RNase體外泛素化實驗和寡核苷酸轉染沉默PpSFBs實驗來探究PpSFBs在S-RNase泛素化降解途徑中的作用。【結果】PpSFBs和PpSLFLs無共線性關系;PpS1/2/4-RNase在花柱中特異性表達,PpSFB1m/2m/4m在花粉中特異性表達,PpSLFL1/2/3在不同桃品種中差異性表達,PpSLFL2在龍1-2-4品種中不存在;通過BiFC技術證明,PpS1/2/4-RNase分別與PpSFB1m/2m/4m和PpSLFL1/2/3互作。體外泛素化實驗證明,PpSFB2m具有與PpSLFL2相似的功能,能泛素化PpS2-RNase。寡核苷酸轉染實驗證明PpSFB1m/2m/4m和PpSLFL2/3沉默后可顯著抑制花粉管生長?!窘Y論】PpSFB2m在桃花粉管中發揮與PpSLFLs類似的功能,可泛素化標記S-RNase,泛素化的S-RNase移動到26S蛋白酶體中被降解失活,致使桃自交親和性狀的產生。
關鍵詞:桃;SFB;泛素化;S核酸酶
中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2023)09-1800-11
收稿日期:2023-02-24 接受日期:2023-05-19
基金項目:河北省自然科學基金(C2021407044)
作者簡介:范嵩博,男,在讀碩士研究生,研究方向為果樹自交不親和。E-mail:fansongbo1998@163.com
*通信作者Author for correspondence. E-mail:jason870613@126.com;E-mail:mans5@163.com
Peach SFB2m participates in the ubiquitination degradation of S-RNase
FAN Songbo1, XIAO Yao1, WANG Bao’an1, LI Tianzhong1, LI Wei1*, WU Junkai2*
(1College of Horticulture, China Agricultural University, Beijing 100193, China; 2College of Horticultural Science amp; Technology, Hebei Normal University of Science amp; Technology, Qinhuangdao 066004, Heibei, China)
Abstract: 【Objective】 In flowering plants, the presence of self-incompatibility mechanism allows plants to avoid self-pollination for fruit set and therefore obtain higher genetic diversity, thus ensuring population continuation in the face of complex and variable environments. A variety of fruit trees in the Rosaceae family showed self-incompatibility, such as apple, pear and apricot. In contrast, diploid peach, which belongs to the same family Rosaceae, shows significant self-compatibility in production, and the mechanism behind this remains partially blank. In this study, we investigated the role of peach SFBs in the degradation of S-RNase ubiquitination to provide a reference for the study of peach self-compatibility mechanism. 【Methods】 Gene localization and synteny analysis of PpSFB1m/2m/4m and PpSLFL1/2/3 were performed by bioinformatics. The genome annotation file of Ppersica_ChineseCling_v1.0 was obtained from the Rosaceae Genome Data GDR (https://www.rosaceae.org) website. Blastp (v2.10.1+) was applied to match the 6 genes to the genome as well as the 6 genes for self-matching, respectively, with a threshold control E-value<1e-5, the best match for each gene was obtained. The gene localization display of the best matches of the genes on the genome was made using TBtools (v1.108). The self-comparison screening bit score>100 was the result of having synteny and applying shinyCircos (v2.0) for visualization; PCR reactions of pollen, style and petal cDNAswere peformed using specific primers for PpS1-RNase, PpS2-RNase, PpS4-RNase, PpSFB1m, PpSFB2m, PpSFB4m, PpSLFL1, PpSLFL2 and PpSLFL3. The amplification products were obtained and the obtained PCR products were subjected to agarose gel electrophoresis to detect gene expression, and peach Actin gene expression was used as a control. For example, PCR was performed on pollen cDNA of Long 1-2-4 using the PpSFB1m specific primers, and the amplified products were obtained and subjected to agarose gel electrophoresis. The PpSFB1m was considered to be expressed in Long 1-2-4 pollen if bands of the corresponding size were present in the agarose gel plots; We used BiFC to verify whether PpSFBs and S-RNase have an interaction relationship, and explore whether PpSFB2m can ubiquitously label PpS-RNase in vitro assay; and the oligonucleotide transfection was used to silence PpSFBs to explore the important role of the PpSFB1m/2m/4m in the elongation of peach pollen tubes. 【Results】 The main results of this study were as follows: the PpSFB1m/2m/4m were localized on chromosome 3, the PpSLFL1 was localized at the end of chromosome 2, the PpSLFL2 and the PpSLFL3 were both localized at the end of chromosome 6, and the two gene positions were adjacent to each other, and the six genes of the PpSFB1m/2m/4m and the PpSLFL1/2/3 were analyzed for synteny, and the results showed that there were three fragment replication genes, located on chromosome 2 and chromosome 6, respectively, and there was no synteny between the PpSFB1m/2m/4m and the PpSLFL1/2/3. Structural domain analysis of the six genes showed that all the six genes had F-box structural domains, which might perform similar biological functions; To clarify the gene expression patterns of PpS-RNases and PpSFBs and PpSLFLs, three varieties Long 1-2-4 (S1S2), Fei Cheng Hong Li (S2S4) and Bai Nian He (S2S2) were selected for experiments in this study, and RNA was extracted from the styles, pollen and petals of the three varieties and reversed to cDNA. Afterwards, the presence of gene expression was detected using PpS1-RNase, PpS2-RNase, PpS4-RNase, PpSFB1m, PpSFB2m, PpSFB4m, PpSLFL1, PpSLFL2 and PpSLFL3 specific primers. PpS1/2/4-RNase was specifically expressed in the style, the PpSFB1m/2m/4m were specifically expressed, the PpSLFL1/2/3 differentially were specifically expressed in different peach varieties. It is worth noting that the PpSLFL2 was absent in Long 1-2-4 variety; It was demonstrated by BiFC technique that PpS1/2/4-RNase interacted with PpSFB1m/2m/4m and PpSLFL1/2/3, respectively. PpS1-RNase interacting with PpSLFL3, PpS2-RNase interacting with PpSLFL1/2, PpS4-RNase interacting with PpSFB2m/4m showed very strong interactions. In vitro ubiquitination experiments showed a significant drag band of PpS2-RNase when PpSLFL2 was added compared with the control, which represented PpS2-RNase being added with different lengths of ubiquitin. Similarly, PpS2-RNase showed a similar drag band phenomenon when PpSFB2m was added, implying that PpSFB2m ubiquitinated PpS2-RNase, demonstrating that PpSFB2m had a similar function to PpSLFL2 and could ubiquitinate PpS2-RNase; In this study, we designed and synthesized antisense oligonucleotide chains of the PpSFB1m/2m/4m as well as the PpSLFL1/2/3, and used the sense oligonucleotide chains of the PpSFB1m/2m/4m and the PpSLFL1/2/3 as controls for gene transient silencing of trhe peach pollens of the different varieties, followed by incubation using self S-RNase. The experimental results showed that the growth of peach pollen tubes lacking the PpSFB1m/2m/4m and the PpSLFL2/3 gene expression was significantly inhibited compared with the S-ODN (sense oligonucleotide chains) treated group and CK, indicating that the PpSFB1m/2m/4m and the PpSLFL2/3 would play important roles in the growth of peach pollen tubes. 【Conclusion】 The PpSFB2m could also function as part of the SCF complex similar to the PpSLFL, recognizing PpS-RNase and mediating its ubiquitinated degradation, and this gene would play an important role in peach pollen tube elongation. More in-depth studies are still needed to elucidate the mechanism of peach self-compatibility.
Key words: Peach; SFB; Ubiquitination; S-RNase
自交不親和性是顯花植物中一種常見生殖隔離機制,這種機制使得可育雌雄同體的花自交授粉后不能產生合子,促進了遺傳多樣性[1-4]。薔薇科果樹蘋果(Malus)[5]、梨(Pyurs)[6]、杏(Prunus armeniaca)[7]、甜櫻桃(Prunus avium)[8]、李(Prunus salicina)[9]、果梅(Prunus mume)[10]和扁桃(Prunus dulcis)[11]等均表現出S-RNase介導的配子體自交不親和性,自花授粉不能結實。這使得在生產上必須通過配置授粉品種、蟲媒或風媒異花傳粉、人工點粉才能保證坐果和產量,因此,從生產角度看,自交不親和性對于薔薇科果樹并不是“友好”的性狀。
眾所周知,S-RNase介導的配子體自交不親和反應由復等位基因的單一位點(S基因座)控制,包含花柱側(S-RNase)和花粉側F-box(SLF/SFB/SFBB)決定因子[12-16]。其中蘋果、梨等蘋果亞科植物S-locus內的花粉S基因與桃、櫻桃、杏等李亞科植物S-loucs內的花粉S基因在數量上存在差異。蘋果亞科S-locus上存在單一花柱S-RNase基因和多個具有S單元型特異性的花粉SFBB基因,S-RNase與SFBB之間呈現“一對多”的關系,而李亞科S-locus上存在單一花柱S-RNase和單一S單元型特異性花粉SFB,呈“一對一”關系。這就造成二者S-RNase“解毒”機制的差異,前者由SFBB進行“異我識別”,結合并泛素化降解非自我的S-RNase,而后者由SFB以外的不具S單元型特異性的SLFL泛素化結合,并泛素化降解S-RNase,SFB反而可能起“保護”S-RNase的作用,但SFB作為和SLFL同家族的基因,SFB是否真的起“保護”作用或者是否發揮與SLFL蛋白類似的功能協助泛素化S-RNase,此問題還未解析。S-RNase泛素化降解途徑是花粉管降解外源S-RNase以促進花粉管生長的重要途徑。泛素以共價連接的形式給蛋白提供了一個標簽,促使蛋白被派送至蛋白酶體[17]。在泛素化過程中,3種酶起到重要作用,分別是ubiquitin activating enzymes(E1s),ubiquitin conjugating enzymes(E2s)和ubiquitin ligases(E3s)[18-19]。其中E3s行使特異性識別底物的作用,根據與E2s互作區域的不同,E3s被分為多種類型,包括:Homology to E6-Associated Carboxy-Terminus (HECT)、U-box、Really Interesting New Gene(RING)[20]。SCF(SKP1-Cullin1-F-box-Rbx1)復合體是CRL(The cullin-RING ligase)E3泛素連接酶復合體家族中的一個重要代表性亞群[21],在S-RNase泛素化過程中發揮重要作用[22-23]。
桃(Prunus persica Lindl.)屬薔薇科李亞科,不同于蘋果亞科果樹,桃二倍體在生產上表現出明顯的自交親和性。這取決于桃的SLFL1、SLFL2、SLFL3在體外被證明可無差別識別并泛素化不同種類的S-RNase[24]。除了SLFLs,在桃的S-locus中存在與SLFLs同家族的SFB基因,同樣能與S-RNase互作[24],然而SFB基因是否參與桃自交親和反應,又是如何行使功能的還不得而知。鑒于此,筆者在本研究中以3種不同S基因型的桃品種為材料,鑒定并克隆了PpSLFL1/2/3和PpSFB1m/2m/4m基因,旨在通過研究明確PpSLFLs和PpSFBs分別與S-RNases的表達模式和互作關系,探究PpSFB與自交不親和反應的關系,是否通過泛素化作用參與自交不親和過程,從而完善SLFLs和SFB介導的桃自交不親和分子機制,為桃自交親和種質創制和育種提供科學依據。
1 材料和方法
1.1 植物材料
以桃品種龍1-2-4、肥城紅里、白黏核為研究材料。桃樹種植于北京市農林科學院林果所?;ㄆ跁r收集其花粉、花柱、花瓣、萼片、子房等器官,貯存于-80 ℃超低溫冰箱,以便后續實驗使用。
1.2 基因定位和共線性分析
本實驗共涉及6個基因,分別為PpSFB1m/2m/4m和PpSLFL1/2/3。為了確定這些基因在基因組上的位置以及基因間的共線性,從薔薇科基因組數據GDR網站(https://www.rosaceae.org)上下載得到Ppersica_ChineseCling_v1.0的基因組注釋文件,應用Blastp(v2.10.1+)分別將6個基因比對到基因組上以及6個基因進行自我比對,閾值控制E-value<1e-5,取每個基因的最佳匹配結果,使用TBtools(v1.108)將基因在基因組上的最佳匹配進行基因定位展示;自我比對篩選bit score>100的為具有共線性的結果,并應用shinyCircos(v2.0)進行可視化分析。
1.3 RNA Extraction和RT-PCR
使用天根的RNA提取試劑盒(RNAprep Pure Plant Plus Kit)對3個品種的總RNA進行提取。提取后的RNA濃度使用NanoDrop 2000(Thermo Fisher Scientific)進行測定。使用TUREscript 1st Strand cDNA Synthesis Kit(Aidlab Biotechnologies Co.,Ltd)將3 μg的總RNA反轉為cDNA。使用花粉cDNA作為模板來進行PCR擴增獲得PpSSK1、PpCUL1、PpRbx1、PpSFBs和PpSLFLs基因的CDS片段(表1),使用花柱cDNA為模板進行PCR擴增獲得PpS-RNases基因的CDS片段。使用膠回收試劑盒純化CDS片段后將對應的純化后的產物連接構建至pMD19-Tsimple vector(TaKaRa,Tokyo,Japan)。
1.4 基因的組織特異性表達實驗
使用PpS1-RNase、PpS2-RNase、PpS4-RNase、PpSFB1m、PpSFB2m、PpSFB4m、PpSLFL1、PpSLFL2、PpSLFL3的特異性引物對花粉、花柱和花瓣的cDNA進行PCR反應,獲得擴增產物,將獲得的PCR產物通過瓊脂糖凝膠電泳以檢測基因表達情況,桃Actin基因表達作為對照(引物序列為F:ATAATGGGACAGGAATGGTGAAG,R:ACGGTTTGCCTTAGGGTTGA)。
1.5 雙分子熒光互補(BiFC)實驗
采用同源重組方法將PpS-RNases的CDS片段構建至pCAMBIA1300-YFPc載體(YFPC),PpSFBs、PpSLFLs的CDS片段構建至pCAMBIA1300-YFPn載體(YFPN)。將構建好的質粒分別轉入Agrobacterium tumefaciens strain GV3101農桿菌菌株,在包含卡那霉素的YEP固體培養基上培養2~3 d。挑選陽性克隆后在YEP液體培養基中過夜培養。第2天離心收集菌,采用分光光度計測定菌液OD600的吸光度,根據V=OD600×100-1公式計算需添加的懸浮液體積。并重懸在MES buffer中,每100 mL MES buffer中包含的成分為:1 mol·L-1的MES-KOH 1 mL、1 mol·L-1 MgCl2 1 mL、100 mmol·L-1 AS 100 μL。隨后將菌液置于暗處靜置4 h。注射煙草葉片后暗培養一晚,光下培養3 d,之后使用激光共聚焦顯微鏡LSM880(ZEISS,Oberkochen,Germany)進行觀察。
1.6 標簽蛋白純化
將去掉信號肽的PpS1/2/4-RNase CDS 克隆進入pET-30a載體,并且轉入Rosetta(DE3)pLysS。將10 mL菌液倒入500 mL培養基中,37 ℃培養3 h,轉速180 r·min-1。當OD600達到0.6時加入isopropyl β-D-1-thiogalactopyranoside(IPTG)使其終濃度為0.2 mmol·L-1。之后16 ℃、180 r·min-1,培養10~12 h。使用Ni Sepharose 6 Fast Flow(cytiva)柱料純化帶有His標簽的S-RNase。PpSFB2m、PpSLFL2被克隆連入pMAL-c2x載體,使用Amylose Resin(BioLabs)純化帶有MBP標簽的蛋白。類似的,PpSSK1、PpCUL1和PpRbx1被克隆連入pGEX4T-1載體,之后使用Glutathione Sepharose 4B(cytiva)柱料進行純化GST標簽的蛋白。
1.7 PpS-RNase體外泛素化實驗
泛素化實驗體系為50 μL,每50 μL總體系成分為:50 mmol·L-1 Tris-HCl(pH 7.4),10 mmol·L-1 MgCl2,2 mmol·L-1 dithiothreitol(DTT),5 mmol·L-1 HEPES,2 mmol·L-1 adenosine triphosphate(ATP),0.05% Triton X-100,10 mmol·L-1 creatine phosphate,1 unit of phosphokinase,10 μg ubiquitin,1 mmol·L-1 PMSF,50 nmol·L-1 E1(UBE1,BostonBiochem),500 nmol·L-1 E2(UbcH5a/UBE2D1,BostonBiochem),隨后加入recombinant proteins GST-SSK1、GST-CUL1、GST-Rbx1、His-S-RNase以及根據實驗需要加入MBP-SLFL2或MBP-SFB2m。隨后30 ℃反應2 h。之后進行Western Blot,一抗為S-RNase抗體(1∶3000),二抗為Goat Anti-Rabbit IgG (1∶10 000)。
1.8 反義寡核苷酸轉染實驗
此實驗參考前人方法并進行改進[25]。如表2所示,根據PpSFB1m/2m/4m和PpSLFL1/2/3的基因編碼序列設計了特異的反義寡核苷酸以用于降低基因表達水平,此反義寡核苷酸鏈前后3個堿基磷硫?;揎椧员WC其穩定性。其正義寡核苷酸鏈將被作為對照使用?;ǚ墼谝后w培養基中水合30 min后,加入正義寡核苷酸轉染液或反義寡核苷酸轉染液培養15 min。根據實驗要求,將自我S-RNase加入培養基中,90 min后收集花粉管并測量花粉管長度。轉染液的成分:不同種類的寡核苷酸(100 μmol·L-1)各2 μL,28 μL GP3K Diluent(GenePORTER@ 3000)和4 μL Transfection Reagent(GenePORTER@ 3000),提前預混合并在37 ℃下處理15 min。
2 結果與分析
2.1 PpSFBs和PpSLFLs基因進化關系
基因組信息分析表明PpSFB1m/2m/4m定位于3號染色體,PpSLFL1定位于2號染色體末端,PpSLFL2和PpSLFL3均定位于6號染色體末端,且兩個基因位置相鄰(圖1-A)。為了解PpSFBs和PpSLFLs基因的進化關系,分析6個基因間的共線性關系,結果顯示,存在3個片段復制基因,分別位于2號染色體和6號染色體上,PpSFB1m/2m/4m和PpSLFL1/2/3之間沒有共線性,表明兩者可能是獨立進化的(圖1-B)。對6個基因的結構域分析顯示,6個基因均具有F-box結構域,其可能發揮相似的生物學功能(圖2)。
2.2 PpS-RNases、PpSFBs和PpSLFLs組織特異性檢測
為明確PpS-RNases和PpSFBs、PpSLFLs的基因表達模式,選取3個品種[龍1-2-4(S1S2)、肥城紅里(S2S4)、白黏核(S2S2)]進行實驗,分別提取3個品種的花柱、花粉和花瓣的RNA并反轉為cDNA(圖3-A)。之后使用PpS1-RNase、PpS2-RNase、PpS4-RNase和PpSFB1m、PpSFB2m、PpSFB4m特異性引物檢測基因是否存在表達。如圖3-B所示,PpS1-RNase、PpS2-RNase、PpS4-RNase只在花柱中表達,PpSFB1m、PpSFB2m、PpSFB4m只在花粉中表達,而PpSLFLs基因的組織表達位置在不同的品種中存在差異。PpSLFL2在龍1-2-4的DNA中缺失(圖3-C)。
2.3 PpS-RNases和PpSFBs、PpSLFLs之間存在互作關系
泛素化過程需要蛋白存在互作關系,若PpS-RNases可以被PpSFBs或PpSLFLs泛素化,那么它們理論上應存在互作關系。使用BiFC技術驗證PpS1/2/4-RNase與PpSFB1m/2m/4m以及PpS1/2/4-RNase與PpSLFL1/2/3的互作關系。將PpS1/2/4-RNase連入YFPC載體,PpSFB1m/2m/4m和PpSLFL1/2/3連入YFPN載體,轉入GV3101后注射煙草葉片進行觀察。實驗結果表明PpS1/2/4-RNase分別與PpSFB1m/2m/4m以及PpSLFL1/2/3存在互作關系(圖4,圖5)。其中PpS1-RNase與PpSLFL3,PpS2-RNase與PpSLFL1/2,PpS4-RNase與PpSFB2m/4m表現出十分強烈的互作(圖5)。
2.4 PpSFB2m與PpSLFL2相似,也可介導S-RNase的體外泛素化
在桃中的SFBs大部分為已突變類型,選取與多種PpS-RNase均互作的PpSFB2m與PpSLFL2進行對比。如圖6所示,分別在體外泛素化體系中加入PpSLFL2或PpSFB2m,并且以水來代替上述蛋白作為對照來進行實驗。與對照相比,當加入PpSLFL2時,PpS2-RNase出現明顯拖帶,其代表PpS2-RNase被加上不同長度的泛素。與此情況類似,當加入PpSFB2m時PpS2-RNase也出現了相似的拖帶現象(圖6),這意味著PpSFB2m對PpS2-RNase進行了泛素化修飾,促使其片段降解。
2.5 PpSFB1m/2m/4m和PpSLFL2/3基因瞬時沉默后導致S-RNase對花粉管的抑制作用增強
現研究階段普遍認為PpSLFLs是參與PpS-RNases泛素化的重要因子,其參與對PpS-RNases泛素化標記的無差別識別。為了找出PpSFBs在自交不親和反應的作用機制,在體外驗證了PpSFB1m/2m/4m以及PpSLFL1/2/3在PpS-RNases存在的情況下對桃花粉管生長的重要作用。設計并合成PpSFB1m/2m/4m以及PpSLFL1/2/3的反義寡核苷酸鏈,并以PpSFB1m/2m/4m和PpSLFL1/2/3的正義寡核苷酸鏈為對照,對不同品種桃花粉進行基因瞬時沉默,之后使用自我S-RNase進行培養。結果顯示(圖7),與S-ODN(正義寡核苷酸)處理組和對照相比,缺乏PpSFB1m/2m/4m和PpSLFL2/3基因表達的桃花粉管生長受到了顯著抑制,說明其在桃花粉管生長過程中發揮著重要作用。
3 討 論
二倍體桃具有顯著的自交親和特性,生產中表現出自花授粉能夠結實[26-27]。在李亞科果樹中,花粉側S等位基因同源性較低,但多態性較高的稱為SFB(S-haplotype-specific F-box gene),如扁桃和李中該類基因多態性在68.4%~81.3%之間,而等位基因間同源率在90%以上的花粉側S基因稱為SLF(S-locus F-box gene)。桃中,花粉側PpSFBs同源性較低,僅在8%~24%之間,在PpSFBs基因周圍分布著總計3個同源性較高的PpSLFs(PpSLFL1、PpSLFL2和PpSLFL3),其同源性在50%~74%之間。筆者研究發現,PpSFBs和PpSLFs基因表達可能是介導桃自交親和的關鍵因素,其中PpS1/2/4-RNase在雌蕊中專一性表達,PpSFB1m/2m/4m在花粉中專一性表達,PpSLFL1/2/3在桃的不同品種中存在差異。類似地,郭振宇等[28]在扁桃中發現PdSm和PdSn兩個基因在雌蕊中特異性表達,PSLF1基因在花藥中特異性表達。值得注意的是,在本研究中龍1-2-4的花粉cDNA中并沒有檢測到PpSLFL2的表達,且基因組水平的PpSLFL2基因擴增和凝膠電泳仍未檢測到相應的核酸條帶,證明了桃龍1-2-4中PpSLFL2存在缺失,但此品種依然為自交親和品種,這可能是由其他PpSLFLs基因功能冗余所致,此外,自交親和反應也可能受PpSFBs基因調控。結構域分析表明SLFs和SFBs均具有F-box結構域,屬于同一家族。F-box蛋白以SCF復合體的形式結合并泛素化目的蛋白,被泛素化的目的蛋白將會被26S蛋白酶體降解[29]。在蘋果中已經有報道S-RNase可被SCF復合體結合并泛素化標記[22],那么桃PpS-RNases如果可以被泛素化標記,其與PpSFBs、PpSLFLs的互作將會是先決條件。本研究通過BiFC實驗證明PpS1/2/4與PpSFB1m/2m/4m和PpSLFL1/2/3存在互作關系,此結果也進一步佐證了上述觀點。另一方面,筆者通過體外泛素化反應發現,PpSFB2m和PpSLFL2發揮的作用類似,也可介導PpS-RNase的體外泛素化。由此,為了進一步探究花粉側決定因子PpSFBs是否會通過介導S-RNase泛素化影響桃花粉管生長,本研究通過反義寡核苷酸轉染桃花粉,沉默PpSFB1m/2m/4m和PpSLFL1/2/3基因,結果發現,PpSFB1m/2m/4m和PpSLFL2/3基因的沉默均可抑制花粉管生長,此結果可能是由于SFBs和SLFLs基因被沉默導致S-RNase無法被泛素化,不會發生降解,進而無法抑制花粉管生長。值得注意的是,PpSLFL1沉默后花粉管生長與對照相比沒有被顯著抑制,推測這可能與PpSFB2m和PpSLFL2/PpSLFL3基因冗余功能有關。除桃中存在的泛素化降解途徑外,其他物種中也存在著導致自交親和的機制:在蘋果中無論自我或異我S-RNase的進入都可引起防御蛋白MdD1的表達,MdD1可結合S-RNase活性位點導致其失活[30]。在梨中有些品種因為S-RNase的突變而出現自交親和,鴨梨的二倍體芽變品種閆莊梨(S21MS34)中S21-RNase的C2區因一個甘氨酸殘基的突變造成S21-RNase在翻譯后出現了降解,導致此品種出現自交親和現象[31]。
總之,根據實驗結果,PpSFB2m也能作為SCF復合體的一部分發揮與PpSLFL類似的功能,識別PpS-RNase并介導了其泛素化降解,此基因在桃花粉管伸長過程中發揮重要作用。當然,為闡明桃自交親和的機制,還需更多深入細致的研究。
4 結 論
本研究從桃基因組中克隆出PpSFBs基因,通過生物信息學分析和分子生物學實驗驗證了PpSFB2m可在花粉管中發揮與PpSLFLs類似的生物學功能,即PpSFB2m可泛素化標記S-RNase,從而促進其降解,由此導致桃自交親和性狀的產生。本研究豐富了桃自交親和的分子調控機制,為桃種質資源創新提供了科學依據。
參考文獻 References:
[1] 何敏,谷超,吳巨友,張紹鈴. 果樹自交不親和機制研究進展[J]. 園藝學報,2021,48(4):759-777.
HE Min,GU Chao,WU Juyou,ZHANG Shaoling. Recent advances on self-incompatibility mechanism in fruit trees[J]. Acta Horticulturae Sinica,2021,48(4):759-777.
[2] WATANABE M,SUWABE K,SUZUKI G. Molecular genetics,physiology and biology of self-incompatibility in Brassicaceae[J]. Proceedings of the Japan Academy. Series B,Physical and Biological Sciences,2012,88(10):519-535.
[3] KUBO K I,ENTANI T,TAKARA A,WANG N,FIELDS A M,HUA Z H,TOYODA M,KAWASHIMA S I,ANDO T,ISOGAI A,KAO T H,TAKAYAMA S. Collaborative non-self recognition system in S-RNase-based self-incompatibility[J]. Science,2010,330(6005):796-799.
[4] DE NETTANCOURT D. Incompatibility and incongruity in wild and cultivated plants[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2001.
[5] JANSSENS G A,GODERIS I J,BROEKAERT W F,BROOTHAERTS W. A molecular method for S-allele identification in apple based on allele-specific PCR[J]. Theoretical and Applied Genetics,1995,91(4):691-698.
[6] SASSA H,HIRANO H,IKEHASHI H. Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear,Pyrus serotina Rehd.[J]. Molecular and General Genetics MGG,1993,241(1):17-25.
[7] BURGOS L,PéREZ-TORNERO O,BALLESTER J,OLMOS E. Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot[J]. Sexual Plant Reproduction,1998,11(3):153-158.
[8] SONNEVELD T,ROBBINS T P,BO?KOVI? R,TOBUTT K R. Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection[J]. Theoretical and Applied Genetics,2001,102(6):1046-1055.
[9] SAPIR G,STERN R,EISIKOWITCH D,GOLDWAY M. Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis[J]. The Journal of Horticultural Science and Biotechnology,2004,79(2):223-227.
[10] YAEGAKI H,SHIMADA T,MORIGUCHI T,HAYAMA H,HAJI T,YAMAGUCHI M. Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.)[J]. Sexual Plant Reproduction,2001,13(5):251-257.
[11] ORTEGA E,SUTHERLAND B G,DICENTA F,BOSKOVIC R,TOBUTT K R. Determination of incompatibility genotypes in almond using first and second intron consensus primers:Detection of new S alleles and correction of reported S genotypes[J]. Plant Breeding,2005,124(2):188-196.
[12] SASSA H,KAKUI H,MINAMIKAWA M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae[J]. Sexual Plant Reproduction,2010,23(1):39-43.
[13] MCCUBBIN A G,KAO T H. Molecular recognition and response in pollen and pistil interactions[J]. Annual Review of Cell and Developmental Biology,2000,16:333-364.
[14] YAMANE H,IKEDA K,USHIJIMA K,SASSA H,TAO R. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry,Prunus cerasus and P. avium[J]. Plant and Cell Physiology,2003,44(7):764-769.
[15] USHIJIMA K,SASSA H,DANDEKAR A M,GRADZIEL T M,TAO R,HIRANO H. Structural and transcriptional analysis of the self-incompatibility locus of almond:identification of a pollen-expressed F-box gene with haplotype-specific polymorphism[J]. The Plant Cell,2003,15(3):771-781.
[16] SASSA H,KAKUI H,MIYAMOTO M,SUZUKI Y,HANADA T,USHIJIMA K,KUSABA M,HIRANO H,KOBA T. S locus F-box brothers:Multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear[J]. Genetics,2007,175(4):1869-1881.
[17] CIECHANOVER A. Intracellular protein degradation:From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting[J]. Best Practice amp; Research Clinical Haematology,2017,30(4):341-355.
[18] SMALLE J,VIERSTRA R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology,2004,55:555-590.
[19] GLICKMAN M H,ADIR N. The proteasome and the delicate balance between destruction and rescue[J]. PLoS Biology,2004,2(1):13.
[20] STONE S L,CALLIS J. Ubiquitin ligases mediate growth and development by promoting protein death[J]. Current Opinion in Plant Biology,2007,10(6):624-632.
[21] 俞宙. SCF復合體SCFFBXO21在抗病毒天然免疫中的功能及其機制研究[D]. 杭州:浙江大學,2015.
YU Zhou. Regulation of anti-viral innate immune response by SCF complex SCFFBXO21 and the underlying mechanisms[D]. Hangzhou:Zhejiang University,2015.
[22] HUA Z H,KAO T H. Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility[J]. The Plant Cell,2006,18(10):2531-2553.
[23] YUAN H,MENG D,GU Z Y,LI W,WANG A D,YANG Q,ZHU Y D,LI T Z. A novel gene,MdSSK1,as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple[J]. Journal of Experimental Botany,2014,65(12):3121-3131.
[24] CHEN Q J,MENG D,GU Z Y,LI W,YUAN H,DUAN X W,YANG Q,LI Y,LI T Z. SLFL genes participate in the ubiquitination and degradation reaction of S-RNase in self-compatible peach[J]. Frontiers in Plant Science,2018,9:227.
[25] YU J,WANG B A,FAN W Q,FAN S B,XU Y,LIU C S,LV T X,LIU W D,WU L,XIAN L F,LI T Z. Polyamines involved in regulating self-incompatibility in apple[J]. Genes,2021,12(11):1797.
[26] 許高歌,吳華清,吳俊,王超,齊開杰,張紹鈴. 桃自交親和性的分子機制及遺傳特性研究[J]. 園藝學報,2012,39(6):1035-1044.
XU Gaoge,WU Huaqing,WU Jun,WANG Chao,QI Kaijie,ZHANG Shaoling. Molecular mechanism and genetic characterization of self-compatibility in peach[J]. Acta Horticulturae Sinica,2012,39(6):1035-1044.
[27] MENG D,GU Z Y,YUAN H,WANG A D,LI W,YANG Q,ZHU Y D,LI T Z. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple[J]. Plant and Cell Physiology,2014,55(5):977-989.
[28] 郭振宇,常鳳啟,謝華,徐勇,馬榮才. 扁桃SLF基因和S-RNase基因的克隆及表達分析[J]. 園藝學報,2006,33(6):1185-1192.
GUO Zhenyu,CHANG Fengqi,XIE Hua,XU Yong,MA Rongcai. Cloning and expression analysis of the SLF and S-RNase genes in almond[J]. Acta Horticulturae Sinica,2006,33(6):1185-1192.
[29] TAO R,IEZZONI A F. The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features[J]. Scientia Horticulturae,2010,124(4):423-433.
[30] GU Z Y,LI W,DOUGHTY J,MENG D,YANG Q,YUAN H,LI Y,CHEN Q J,YU J,LIU C S,LI T Z. A gamma-thionin protein from apple,MdD1,is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition[J]. Plant Biotechnology Journal,2019,17(11):2184-2198.
[31] LI M F,LI X F,HAN Z H,SHU H R,LI T Z. Molecular analysis of two Chinese pear (Pyrus bretschneideri Rehd.) spontaneous self-compatible mutants,Yan Zhuang and Jin Zhui[J]. Plant Biology,2009,11(5):774-783.