









摘" " 要:【目的】探究不同O2體積分數的自發氣調(modified atmosphere,MA)處理對桃果實貯藏冷害及風味品質的影響,分析PDC和ADH基因在MA處理誘導乙醇和乙醛積累中的作用,確定桃果實MA處理的適宜O2體積分數。【方法】以湖景蜜露和中華壽桃果實為材料,分別在0 ℃冷藏40、60 d后轉至20 ℃貨架放置3、4 d;設置3種MA處理,即MA1、MA2和MA3,其冷藏中后期O2體積分數控制在1.0%、3.0%和5.0%,以直接冷庫貯藏為對照。測定冷害相關生理指標、乙醛和乙醇含量及PpPDCs和PpADHs基因表達量。【結果】3種MA處理均可有效抑制桃果實冷害,在貨架期結束,湖景蜜露和中華壽桃對照組的褐變指數分別高達0.53和0.69,而MA處理的果實褐變指數均低于0.1。MA1和MA2處理的果實在貯藏期間乙醇和乙醛不同程度積累,而MA3處理對乙醇和乙醛積累無明顯影響。轉貨架后各處理乙醇積累有所減少而乙醛變化不大。在桃基因組中共鑒定出5個PpPDCs和33個PpADHs基因家族成員,其中,PpPDC1、PpPDC2、PpADH1、PpADH2和PpADH3基因在轉錄組中的表達量較高。不同MA處理下PpPDCs和PpADHs基因的表達模式存在較大差異,MA1處理的表達量普遍最高,而MA3處理則普遍較低;相關性分析表明PpPDC2和PpADH1基因表達與乙醇和乙醛含量呈現顯著正相關。【結論】3種最終O2體積分數為1%~5%的MA處理均可有效減輕桃果實冷害,但MA1和MA2處理不同程度地導致乙醇和乙醛積累,PpADH1和PpPDC2基因在此過程中發揮重要作用;MA3處理對PpPDCs和PpADHs基因表達的影響較小,果實乙醇和乙醛積累及異味程度總體而言與對照相近;5%為湖景蜜露和中華壽桃MA的適宜O2體積分數。
關鍵詞:桃;自發氣調;O2體積分數;冷害;乙醛;乙醇;PDC;ADH
中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2023)09-1952-14
收稿日期:2023-03-16 接受日期:2023-05-10
基金項目:國家重點研發計劃項目(2022YFD2100103);浙大山東農研院服務地方經濟發展項目(ZDNY-2021-FWLY01008);山東省農業重大應用技術創新項目
作者簡介:徐思朦,女,在讀碩士生,研究方向為果實品質生物學。E-mail:22016051@zju.edu.cn
*通信作者 Author for correspondence. E-mail:chjxu@zju.edu.cn
Effects of modified atmosphere treatments on chilling injury and flavor quality of peach fruit during storage
XU Simeng1, AI Shaojie1, XUE Lei1, ZHU Changqing1, ZHOU Kaixuan2, LENG Peng2, XU Changjie1*
(1Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; 2Linyi Academy of Agricultural Science, Linyi 276012, Shandong, China)
Abstract: 【Objective】 Peach fruit is perishable and easy to deteriorate at room temperature, and cold storage is an effective way to prolong storage life. Peach fruit is chilling-sensitive, and the loss of fruit quality after postharvest cold storage caused by chilling injury (CI) reduces consumer satisfaction. Modified atmosphere (MA) has been extensively used to alleviate chilling injury (CI) of horticultural produces. However, in some cases, the flavor quality decreases due to excessive deficiency in oxygen and accumulation of carbon dioxide in MA containers. In peach, the effects of MA treatment on fruit flavor quality suffering from CI remain largely unknown. In this study, Hujingmilu and Zhonghuashoutao peach fruits were used as materials to explore the effects of MA treatments with different O2 concentrations, on chilling injury and flavor quality of peach fruit during storage. Meanwhile, through analyzing the correlation between the gene expression of ADH and PDC, and accumulation of acetaldehyde and ethanol, the study aimed to identify the critical members involved. Finally, the study was carried out to determine the most suitable O2 concentration for MA storage of peach fruits. 【Methods】 The peach fruits were pre-cooled at 0 ℃ for 12 hours to dissipate the field heat, and then divided into four groups, with final O2 concentrations controlled at 1%, 3%, 5% and non-control for MA1, MA2, MA3 and control, respectively. Hujingmilu and Zhonghuashoutao fruits were stored at 0 ℃ for 40 d and 60 d, and then put on 20 ℃ shelf for 3 d and 4 d, respectively. Firmness, ethylene production, internal browning (IB) index, contents of soluble sugars, organic acids, ethanol and acetaldehyde were measured. The ADH and PDC gene families were analyzed in silico, and the expression of main expressed members PpPDC1 and PpPDC2 as well as PpADH1, PpADH2 and PpADH3 was determined by RT-qPCR. The relationship between gene expression of PpPDCs and PpADHs, and contents of acetaldehyde and ethanol were analyzed. 【Results】 Hujingmilu and Zhonghuashoutao peach fruits suffered from serious IB on shelf following cold storage, with index as high as 0.53 and 0.69, respectively. All three MA treatments effectively inhibited the IB of both cultivars, with indexes all below 0.1. With Hujingmilu, the MA treatment also effectively alleviated the impairment of cold storage on fruit softening. With Zhonghuashoutao, the ethylene production of the fruits with MA1 and MA3 treatments was significantly higher than that of control, indicating that MA treatment guaranteed the normal ripening of the fruit. The ethanol and acetaldehyde contents, however, varied greatly among different treatments. Compared with control, ethanol and acetaldehyde significantly accumulated in fruits of MA1 and MA2, while there was no marked difference in fruits treated with MA3 or control. During the shelf life, the accumulation of ethanol in all treatments was reduced, while for acetaldehyde, no significant change was observed. A total of 5 PpPDCs and 33 PpADHs were identified from genome database of peach. PpPDC1 and PpPDC2, as well as PpADH1, PpADH2 and PpADH3 were identified as highly expressed members and hence used for further analysis. The expression patterns of PpPDCs and PpADHs in the postharvest storage of peach fruits were differential between fruits at cold storage and those on shelf. For example, the expression of PpADH1 during cold storage was significantly higher than that on shelf, with maximum difference being up to 17.19 times, while PpADH2 and PpADH3 showed opposite trends. The expression of PpPDCs during cold storage was generally higher than that on shelf. The expression patterns of PpPDCs and PpADHs were also quite different under MA treatments with different O2 concentrations. Overall, the expression of PpPDCs and PpADHs in fruits of MA1 was highest, while that in fruit of MA3 was lower. At the end of the cold storage period of Hujingmilu and Zhonghuashoutao (40 d and 60 d), the expression level of PpADH1 in fruit of MA3 was only 15.48% and 43.24% of MA1, and for PpPDC2, only 15.11% and 66.93% in two cultivars, respectively. Correlation analysis showed that the expression of PpPDC2 and PpADH1 were significantly and positively correlated with the accumulation of ethanol and acetaldehyde. 【Conclusion】 Compared with control, all MA treatments, with final O2 concentrations ranging from 1% to 5%, can effectively alleviate chilling injury. MA1 and MA2 treatments led to significant accumulation of ethanol and acetaldehyde, while MA3 did not. Among the 5 PpPDCs and 33 PpADHs, PpADH1 and PpPDC2 played important roles in accumulation of acetaldehyde and ethanol during postharvest storage of peach fruit. MA3 treatment inhibited the expression of PpPDCs and PpADHs, and prevented the excessive accumulation of ethanol and acetaldehyde. The MA treatment for peach was optimal with final O2 concentration controlled at 5%.
Key words: Peach; Modified atmosphere (MA); O2 concentration; Chilling injury; Acetaldehyde; Ethanol; PDC; ADH
桃[Prunus persica (L.) Batsch]是薔薇科李屬落葉喬木,是遍布我國南北的重要果樹。桃果實中含有豐富的礦物質、類胡蘿卜素、抗壞血酸和酚類等抗氧化物質,營養價值高,風味佳,深受廣大消費者喜愛[1-2]。桃是典型的呼吸躍變型果實,采后室溫貯藏容易導致果實迅速成熟衰老并發生品質劣變[3]。低溫貯藏是抑制果實呼吸代謝、延緩衰老并延長貯藏期的最常用方法之一。然而,當果實長期暴露于某個低于特定閾值的溫度下時,果實會發生不可逆轉的傷害,稱為“冷害”,冷害的癥狀常表現為果肉褐變和果實不能正常軟化等[4]。
目前,已有一些調控措施被用于減輕果實冷害,例如低溫預貯[5]、茉莉酸甲酯處理[6]、乙烯處理、間歇性升溫、氣調貯藏[7]、甘氨酸甜菜堿處理[8]和褪黑素處理等[9]。氣調貯藏是控制冷害較理想的手段,在桃[10]、李[11]和獼猴桃[12]上有著良好的效果。但是,氣調貯藏依賴氣調庫和氣體發生設備,建庫和使用成本高,限制了其廣泛應用。自發氣調(modified atmosphere,MA)貯藏通過利用果實自身的呼吸代謝調節貯藏環境中的氣體成分,從而達到低O2高CO2的環境,抑制果實呼吸代謝,減輕冷害,在國內外得到了應用。但是,果實在MA過程中常遭遇不適宜的低O2和高CO2環境,導致無氧呼吸[13]、產生異味[14]和果實表面燙傷[15]等不利變化的出現。在桃上的預實驗中發現,完全密閉處理會導致貯藏15 d后O2體積分數降至1%以下甚至近乎耗盡,果實乙醇和乙醛過度積累,產生異味,影響果實品質。
乙醇和乙醛在果實成熟與貯藏期間產生和積累。較低體積分數的乙醛和乙醇可以促進果實風味形成并維持果實品質,但高體積分數時則使果實產生異味[16]。在果實采后貯藏過程中,不適宜的氣體環境會導致果實積累較多的乙醇和乙醛,從而造成果實異味;在楊梅上,減壓包裝會導致乙醇和乙醛過度積累、果實產生異味[17];在鱷梨上,貯藏環境的O2體積分數低于0.5%會導致果實乙醇和乙醛的快速積累[18]。而低溫貯藏時適宜的氣體環境可以有效減少桃[19]、獼猴桃[20]、柑橘[21]、梨[22]和甜瓜[23]等果實乙醛和乙醇積累,防止果實產生異味和品質下降。
乙醇和乙醛來源于乙醇發酵途徑,包括2步,首先是丙酮酸脫羧酶(pyruvate decarboxylase,EC 4.1.1.1,PDC)將丙酮酸轉化為乙醛,然后是乙醇脫氫酶(alcohol dehydrogenase,EC 1.1.1.1,ADH)將乙醛轉化為乙醇[24]。在植物上,PDC基因家族成員在應對低溫或缺氧脅迫中發揮著重要作用,并且不同成員可具有不同的功能[25]。在草莓上,PDC1在果實成熟、香味的產生及響應脅迫中發揮著關鍵作用[26];在甜瓜上,PDC1參與果實乙醛、丙醛和戊醛的生物合成[27]。與PDC相比,關于植物ADH的研究較為廣泛。ADH參與果實生長發育和調控果實成熟,并在響應低氧脅迫中發揮重要作用[28]。之前的研究發現,在楊梅上,MrADH1和MrADH3基因在果實成熟期間乙醛和乙醇積累中起著重要作用,并與減壓包裝導致嚴重異味密切相關[17];在柑橘上,涂蠟處理后果實中的乙醇和乙醛含量不斷積累,在貯藏后期一直高于對照,并且伴有ADH和PDC活性及基因表達上升[29];在桃、甜瓜和獼猴桃等果實上,也有關于ADH基因家族成員參與調控果實成熟和乙醇積累的相關報道[19,28,30]。
雖然MA處理在果蔬采后保鮮中得到了較廣泛的應用,但關于不適宜的氣體環境導致果實產生異味的機制及適宜O2體積分數的報道較少,在桃上也缺乏相關研究。筆者在本研究中旨在設計不同O2體積分數的MA處理,探討其對冷害和果實風味的影響;同時,鑒定桃中高表達的PDC和ADH基因家族成員,并探究其在不同MA處理的桃果實中的表達模式及其與乙醛和乙醇積累的關系,以期找到既能有效減輕桃果實冷害,又避免果實產生異味的MA處理的適宜O2體積分數,為桃果實的采后貯藏技術水平的提升提供理論和實踐依據。
1 材料和方法
1.1 試驗材料與處理
以桃[Prunus persica (L.) Batsch]為試材,選取水蜜桃和硬溶質桃中的典型主栽品種湖景蜜露和中華壽桃,以分析MA處理在不同類型桃果實上的普適性。湖景蜜露果實采自浙江省嘉興市果園,中華壽桃果實采自山東省臨沂市果園。果實達到商業成熟度后采摘,并于當日運抵實驗室。挑選出大小均勻、無明顯機械傷且無病蟲害的桃果實,放入0 ℃冷庫預冷12 h。將預冷后的桃果實隨機分為4組,包括MA1、MA2、MA3處理(其貯藏中后期O2體積分數控制在1.0%、3.0%和5.0%)和對照(直接冷庫貯藏)。果實在0 ℃冷藏40(湖景蜜露)或60 d(中華壽桃),對照組果實不經密閉,MA處理組將果實裝入置有通氣軟管但末端封閉的密閉箱中,每天測定箱內O2體積分數;當達到設定O2體積分數時,通過在通氣軟管上刺插適宜孔徑(在本研究中初始針頭孔徑分別為0.55、0.70、0.90 mm,后續根據每日測定O2體積分數后進行調整)的通氣針頭將箱內O2體積分數控制在(1.0±0.1)%、(3.0±0.3)%、(5.0±0.5)%,CO2體積分數不作控制。冷藏結束后,將果實轉移至20 ℃貨架,放置3(湖景蜜露)或4 d(中華壽桃)。每一試驗組設置3個生物學重復,每個生物學重復包含3個果實。在冷藏期及貨架期結束后取樣,取樣時將果肉切成小塊后迅速置于液氮中速凍,并貯存在-80 ℃下用于后續測試分析。
1.2 O2和CO2體積分數的測定
O2和CO2體積分數用美國Felix-F-950便攜式食品果蔬三氣分析儀進行測定。
1.3 乙烯的測定
乙烯的測定參照Wang等[5]的方法。每組處理隨機挑選9個果實,每3個果實為1個重復放入3 L的樂扣盒中,在與冷藏/貨架相同的溫度條件下密封1 h,抽取1 mL氣體檢測乙烯含量。乙烯測定使用Agilent Technologies 7890A GC System(Santa Clara, CA, USA),裝配有離子火焰檢測器和Propak Q 柱(2 m × 0.32 cm)。爐溫、進樣口及檢測器溫度分別是100、140、230 ℃。
1.4 硬度分析
在桃果實縫合線兩側的對稱部位用削皮刀去除1 mm外果皮,用質構儀(TA-XT2i Plus;Stable Micro System Ltd.,Surrey,UK)裝備直徑為7.5 mm的探頭進行測定。穿刺速度為1 mm·s-1,深度為10 mm。
1.5 褐變分析
褐變指數參照Wang等[5]的方法測定。根據褐變程度分為5級。0級表示果肉的褐變區域面積為0%,即無褐變;1級代表1%~25%的褐變面積;2級代表26%~50%的褐變面積;3級代表51%~75%的褐變面積;4級代表76%~100% 的褐變面積。褐變(internal browning,IB)指數=Σ[(褐變等級)×(具有不同褐變等級果實的數量)]/[4×果實的總數]。
1.6 果實感官評價
貨架期結束后由10位評價者對4組不同處理的桃果實的異味程度(0無、1輕、2中、3重、4非常重)進行賦分評價。
1.7 可溶性糖與有機酸含量的測定
果實可溶性糖與有機酸的測定參照Zhang等[31]的方法。將果實樣品研磨成粉末,稱取0.1 g,加入1.4 mL經-20 ℃預冷的色譜純甲醇,提取15 min,經過渦旋、離心得到樣品液。樣品液經雙硫代烷化(BSTFA)衍生化后用氣相色譜(Agilent, 7890N-5975, CA, USA)進行檢測,色譜柱為HP-5MS,升溫程序為100 ℃保持1 min,2.5 ℃·min-1升至185 ℃,再以0.35 ℃·min-1升至190 ℃,然后以8 ℃·min-1升至250 ℃并保持5 min,最后以5 ℃·min-1升至280 ℃并保持3 min。進樣口、離子源和檢測器溫度分別為250、230、280 ℃,進樣量為1 μL,分流比為10∶1。
1.8 乙醇和乙醛含量測定
乙醇和乙醛含量測定參照Min等[32]的方法。果肉經液氮充分研磨成粉末,稱取3 g于10 mL離心管中,加入4 mL飽和NaCl溶液,充分渦旋混勻;吸取3 mL勻漿至頂空萃取瓶,60 ℃水浴加熱1 h后在氣相色譜儀(Agilent 7890A)上進行靜態頂空氣相色譜(gas chromatography,GC)檢測,選擇HP-INNOW AX(30 m × 250 μm × 0.25 μm)色譜柱,以氮氣為載氣,流速為1 mL·min-1,進樣口溫度為150 ℃,進樣口分流比為1∶24。色譜柱柱溫、進樣口和檢測器溫度分別為100、150、160 ℃。
1.9 桃PDC和ADH基因家族成員鑒別
桃PDC和ADH基因家族成員鑒別參照黃小榕等[17]描述的方法,并結合實驗室已有的錦繡和中華壽桃果肉樣品的RNA-Seq數據,以FPKM數值為判斷依據,從中篩選獲得果肉中高表達的ADH和PDC基因家族成員。通過ExPASy在線網站(https://web.expasy.org/protparam/)獲得桃PDC、ADH蛋白分子質量并預測蛋白等電點。
1.10 RNA提取與cDNA合成
桃果實總RNA提取參照Shan等[33]描述的十六烷基三甲基溴化銨法(cetyltrimethyl ammonium bromide,CTAB)。測定總RNA濃度后,參照HiScript?Ⅱ Q RT SuperMix for qPCR(+gDNA wiper)說明書(Vazyme),取300 ng總RNA,去除基因組DNA后進行逆轉錄反應合成cDNA。
1.11 實時熒光定量PCR檢測
應用實時熒光定量PCR(real-time quantitative PCR,RT-qPCR)測定PpPDC1、PpPDC2、PpADH1、PpADH2和PpADH3基因的表達量,以PpTEF2作為內參基因[34]。試驗所用引物見表1,RT-qPCR反應體系與程序參照ChamQ Universal SYBR? qPCR Master Mix說明書(Vazyme)。
1.12 數據分析
使用Excel 2019對試驗數據進行統計和繪圖,應用SPSS 26.0軟件進行Pearson相關性分析及差異顯著性檢驗(p<0.05)。
2 結果與分析
2.1 自發氣調處理對桃果實褐變、硬度及乙烯釋放速率的影響
對MA處理箱內的氣體成分進行分析,發現在貯藏前期,隨著貯藏時間延長,箱內的O2體積分數不斷降低;在貯藏10 d左右,箱內O2逐漸降至設定體積分數,隨后在通氣軟管上插入適宜孔徑的通氣針頭,密閉箱內的O2體積分數始終維持在設定體積分數。在貯藏過程中,CO2體積分數隨著貯藏時間的延長不斷上升。湖景蜜露和中華壽桃分別貯藏40、60 d后,MA1、MA2和MA3處理的CO2體積分數分別高達23%、20%和16%,品種間沒有明顯差異。
為了探究不同O2體積分數的MA處理對桃果實冷害的影響,將湖景蜜露和中華壽桃的桃果實分別在0 ℃條件下貯藏40、60 d,然后在20 ℃貨架期放置3和4 d。結果顯示,在2個桃品種中,對照的果實均出現了明顯的褐變癥狀,而MA處理后的果實未觀察到明顯的果肉褐變(圖1-A)。對褐變指數進行統計分析,發現湖景蜜露和中華壽桃對照組果實的褐變指數分別高達0.53和0.69,而MA處理組果實的褐變指數均低于0.1(圖1-B~C)。果實在冷藏后能否正常成熟對果實的品質至關重要,在湖景蜜露中,對照的果實不能正常軟化,硬度保持在30 N以上,而MA處理后的果實硬度顯著低于對照組(圖2-A~B),說明MA處理可有效緩解冷害造成的果實軟化障礙。中華壽桃MA與對照間并未出現顯著差異,但果實乙烯釋放速率分析表明,MA1和MA3處理組果實的乙烯釋放速率顯著高于對照,表明處理保障了果實正常成熟(圖2-C~D)。
2.2 自發氣調處理對桃果實可溶性糖與有機酸含量的影響
可溶性糖和有機酸是構成果實風味的重要成分。為了探究不同MA處理對桃果實風味品質的影響,利用氣相色譜檢測了貨架期桃果實可溶性糖和有機酸含量的變化。在桃果實中共檢測到蔗糖、葡萄糖、果糖和山梨糖醇4種可溶性糖,以及蘋果酸和奎寧酸2種有機酸。在可溶性糖中蔗糖所占比例最高,山梨糖醇所占比例最低,有機酸中蘋果酸含量略高于奎寧酸。在0 ℃冷藏條件下,3種O2體積分數的MA處理與對照相比可溶性糖總量及有機酸總量大多未發生顯著變化;可溶性糖組分有所變化,蔗糖含量顯著升高,還原糖含量顯著降低(圖3)。
2.3 桃果實貯藏期間果實異味、乙醇含量、乙醛含量與醇醛比值的變化
貨架期結束時對2個品種的果實進行感官評價,發現MA1處理的果實異味最重,MA3處理的果實異味最輕,說明控制MA處理的O2終體積分數在5%對避免異味、維持果實品質有較好的效果(表2)。
MA處理對桃果實乙醇和乙醛含量影響較大。在中華壽桃冷藏期及貨架期,MA1和MA2處理的桃果實乙醇和乙醛含量均出現明顯升高,而MA3處理的桃果實乙醇和乙醛含量較低,在貨架期結束時與對照沒有顯著差異。冷藏期間MA1處理下中華壽桃果實的乙醇和乙醛含量分別為對照的56.56和7.97倍;MA2處理下則為49.65倍和8.19倍。在湖景蜜露上情形類似,MA3處理果實的乙醇和乙醛含量與對照沒有顯著差異。貯藏期間醇醛比值的變化趨勢與乙醇含量變化基本一致(圖4)。這些結果表明,O2體積分數過低會誘導果實乙醇和乙醛大量積累。
2.4 桃高表達PDC和ADH基因家族成員鑒別
通過HMM和BLASTP檢索并剔除相似度過高序列,最后在桃中共鑒定出5個PDC和33個ADH基因家族成員。結合實驗室已有的錦繡和中華壽桃果肉樣品的RNA-Seq數據,以2個品種FPKM數值的平均值為判斷依據,從中篩選獲得桃果實中高表達的ADH和PDC基因家族成員作為后續基因表達分析的對象。依據ADH基因在桃果實RNA-Seq數據庫中表達豐度的高低依次命名為PpADH1~PpADH33。在PDC基因中,PpPDC1和PpPDC2的命名參考NCBI數據庫,剩余的3個則依據PDC基因在桃果實RNA-Seq數據庫中表達豐度的高低依次命名為PpPDC3~PpPDC5。其中,PpADH1、PpADH2和PpADH3的表達量之和占PpADHs的70%以上,PpPDC1和PpPDC2表達量之和占PpPDCs的95%以上。高表達成員在基因組中的編號和染色體定位、開放閱讀框(open reading frame,ORF)長度、編碼蛋白的氨基酸殘基數、分子質量及等電點等信息如表3所示。
2.5 桃果實貯藏期間PDC和ADH基因表達分析
RT-qPCR定量分析結果顯示,2個桃品種的PpPDC2基因的表達量均高于PpPDC1基因,并且PpPDCs基因在中華壽桃中的表達量低于湖景蜜露。PpPDC1和PpPDC2基因在2個桃品種不同貯藏階段的表達模式存在差異,湖景蜜露冷藏40 d時PpPDCs基因的表達量明顯高于貨架期,而中華壽桃這種變化不明顯。就3種MA處理而言,MA1和MA2處理的果實中PpPDC1和PpPDC2基因的表達量較高,而MA3處理則較低,且與對照相近(圖5)。
PpADHs基因的表達量在兩種桃果實采后貯藏的不同階段存在較大差異。在湖景蜜露中,PpADH1基因在低溫貯藏期表達量明顯高于貨架期,最大差異達17.19倍;PpADH2和PpADH3基因的表達模式存在差異,對照組果實在低溫貯藏期的表達量較高,而MA處理的果實在貨架期的表達量較高,結果表明PpADH1基因的表達可能受低O2誘導,而PpADH2和PpADH3基因的表達則受溫度(從低溫轉至貨架常溫)誘導;在低溫貯藏期,MA處理下PpADH1基因的表達量普遍高于PpADH2和PpADH3基因,在貨架期則出現了相反的變化趨勢;在3種MA處理中,MA1和MA2處理果實的PpADH1基因表達量高于對照,分別為對照的11.84和4.77倍,而MA3處理則與對照相近。中華壽桃中PpADHs基因的表達模式與湖景蜜露類似(圖6)。
Pearson相關性分析結果表明,乙醇含量、醇醛比值與PpADH1基因的表達量呈極顯著正相關,相關系數分別為0.756和0.834(p<0.01)。PpPDC2基因的表達量與乙醇含量呈極顯著正相關,相關系數為0.621(p<0.01),與乙醛含量呈顯著相關,且PpADH1和PpPDC2基因的表達量也呈極顯著正相關(表4)。此外,PpADH2和PpADH3基因的表達量與乙醇和乙醛含量無顯著相關性,PpPDC1基因的表達量與乙醛含量無顯著相關性。這些結果表明PpADH1和PpPDC2基因在乙醇和乙醛的積累中可能發揮著關鍵作用。
3 討 論
桃是典型的呼吸躍變型果實,采后室溫貯藏容易導致果實迅速成熟衰老并且腐爛變質[3],冷藏是延長桃果實貯藏壽命的有效方法。然而,果實長期貯藏在不適宜的低溫環境中容易發生冷害,影響品質,降低消費者滿意度。氣調及MA處理通過調節低溫貯藏庫中O2和CO2體積分數從而控制冷害并延長貯藏期[10]。筆者在本研究中選取了湖景蜜露和中華壽桃為研究對象,在O2終體積分數為1.0%~5.0%的自發氣調環境中進行低溫貯藏,結果表明均可有效抑制桃果實褐變,減輕冷害,并且在湖景蜜露果實中發現MA處理還可有效緩解冷害造成的果實軟化障礙。Liu等[10]將湖景蜜露果實貯藏在體積分數5% O2+體積分數10% CO2的氣調環境中,發現氣調處理對果實褐變及軟化障礙具有減緩作用,本研究結果與之類似。中華壽桃是硬溶質桃,貯藏期間硬度變化幅度小,處理與對照間并未出現顯著差異;但是,果實乙烯釋放速率分析表明,MA1和MA3處理組果實的乙烯釋放速率顯著高于對照,表明MA處理保障了果實正常成熟。理想的氣體組分減輕冷害的現象在其他果實上也有報道,并且不同水果的適宜氣體組分不同。如在番石榴上,體積分數2%~5% O2的氣調處理可以有效控制冷害并降低腐爛率[35];在李上,體積分數1%~5% O2+體積分數2.5%~10% CO2氣調處理有利于緩解果實冷害,維持果實品質[36]。因此,在實際生產過程中要根據具體果蔬的特點選擇適宜的氣體組分。目前關于氣調處理減輕冷害的機制研究仍不夠深入,關于減輕冷害的效果具體主要來源于低O2還是高CO2仍沒有確切的結論,后續還應進行深入研究。
適宜的氣調/自發氣調在控制果實冷害的同時,不會對果實風味品質產生不利影響。然而,如貯藏環境氣體成分不適,O2體積分數過低或是CO2體積分數過高都會對果實造成傷害。不同果實對高體積分數CO2的耐受性不同。富士蘋果長期貯藏在氣調環境中會遭受CO2傷害,果實發生褐變[37],而本研究中桃果實對高體積分數CO2有較強的耐受性。異味的產生主要是果實無氧呼吸代謝產生的乙醇和乙醛等物質過度積累所致,如乙醇含量超過一定閾值會使冬棗果實品質劣化[38]。隨果實種類與品種不同,適宜的氣體組分也各不相同。如貯藏在O2體積分數2.5%的氣調環境中的李果實中的乙醇和乙醛含量較高[35];在葡萄上,體積分數1% O2的氣調環境會引起果實中乙醇和乙醛含量升高,而體積分數5% O2的氣調處理則可使乙醇和乙醛含量處于較低水平[39];體積分數5%~6% O2 +體積分數0%~1% CO2是貯藏黃金梨的理想氣體指標,可以有效延緩梨果實的衰老,減少乙醇、乙醛等物質的積累,但若環境中O2體積分數低于5%時,會誘發果實無氧呼吸并加速黃金梨的酒軟[40]。在本研究中,O2終體積分數為1%或3%的MA處理會明顯促進桃果實乙醛和乙醇的積累并使果實呈現嚴重的異味,而O2終體積分數為5%的MA處理可以有效避免乙醇、乙醛的過度積累,避免果實異味,是桃果實貯藏的適宜O2體積分數。綜上,5%是多種水果氣調/自發氣調處理的適宜O2體積分數(CO2體積分數需根據具體果實種類進行控制,在桃上可不作控制),可有效避免乙醇和乙醛的大量積累,維持果實采后品質。
乙醇和乙醛的積累來源于乙醇發酵途徑,ADH和PDC在此途徑中發揮著關鍵作用。在甜瓜中,CmPDC1基因參與果實乙醛、丙醛和戊醛的生物合成[27];在楊梅上,MrADH1和MrADH3基因在果實成熟期間乙醛和乙醇積累中起著重要作用,并與減壓包裝導致嚴重異味密切相關[17]。筆者在本研究中發現,在不同O2體積分數MA處理后的果實中,MA1處理的桃果實PpADHs、PpPDCs基因的表達量普遍最高,MA3處理的桃果實PpADHs、PpPDCs基因的表達量普遍偏低。相關性分析表明,PpADH1和PpPDC2基因在調節桃果實貯藏期間乙醇和乙醛積累中發揮著重要作用。在MA1、MA2和MA3處理中,MA3處理的桃果實中PpADH1和PpPDC2基因的表達量均為最低,從而有效避免乙醇、乙醛的過度積累,減輕果實異味。
傳統的MA易使果實處于O2體積分數過低的氣體環境中,因無氧呼吸而導致嚴重異味等傷害。在前期的預實驗中發現完全密閉處理在貯藏20 d左右O2近乎耗盡,并且處理后果實中乙醇含量(w,后同)高達4500 μg·g-1,乙醛含量高達50 μg·g-1,果實產生嚴重異味。筆者在本研究中通過控制MA環境中的O2體積分數,解決了傳統MA導致果實無氧呼吸產生嚴重異味的問題,有利于保持果實品質,并且操作簡便,可大規模推廣應用。
4 結 論
MA處理可以有效減輕湖景蜜露和中華壽桃果實冷害,并且5% O2體積分數的MA處理還可避免異味產生,在2個桃品種上具有一致的效果。分析確定了PpPDC1、PpPDC2、PpADH1、PpADH2和PpADH3基因為高表達成員,其中PpADH1和PpPDC2基因在桃果實采后貯藏期間乙醇和乙醛的積累中發揮重要作用。5% O2體積分數的MA處理對PpPDCs和PpADHs基因的表達影響較小,從而防止果實乙醇和乙醛過度積累產生異味,適宜桃果實貯藏。
參考文獻 References:
[1] CHOI H R,JEONG M J,BAEK M W,CHOI J H,LEE H C,JEONG C S,TILAHUN S. Transcriptome analysis of pre-storage 1-MCP and high CO2-treated ‘Madoka’ peach fruit explains the reduction in chilling injury and improvement of storage period by delaying ripening[J]. International Journal of Molecular Sciences,2021,22(9):4437.
[2] VERDE I,ABBOTT A G,SCALABRIN S,SHU S Q,MARRONI F,ZHEBENTYAYEVA T,DETTORI M T,GRIMWOOD J,CATTONARO F,ZUCCOLO A,ROSSINI L,JENKINS J,VENDRAMIN E,MEISEL L A,DECROOCQ V,SOSINSKI B,PROCHNIK S,MITROS T,POLICRITI A,CIPRIANI G,DONDINI L,FICKLIN S,GOODSTEIN D M,XUAN P F,DEL FABBRO C,ARAMINI V,COPETTI D,GONZALEZ S,HORNER D S,FALCHI R,LUCAS S,MICA E,MALDONADO J,LAZZARI B,BIELENBERG D,PIRONA R,MICULAN M,BARAKAT A,TESTOLIN R,STELLA A,TARTARINI S,TONUTTI P,ARúS P,ORELLANA A,WELLS C,MAIN D,VIZZOTTO G,SILVA H,SALAMINI F,SCHMUTZ J,MORGANTE M,ROKHSAR D S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity,domestication and genome evolution[J]. Nature Genetics,2013,45(5):487-494.
[3] LURIE S,CRISOSTO C H. Chilling injury in peach and nectarine[J]. Postharvest Biology and Technology,2005,37(3):195-208.
[4] LEE E J. Chilling injury and phytochemical composition of peach fruits as affected by high carbon dioxide treatment before cold storage[J]. Horticulture,Environment,and Biotechnology,2014,55(3):190-195.
[5] WANG K,YIN X R,ZHANG B,GRIERSON D,XU C J,CHEN K S. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit[J]. Plant,Cell and Environment,2017,40(8):1531-1551.
[6] CHEN M S,GUO H M,CHEN S Q,LI T T,LI M Q,RASHID A,XU C J,WANG K. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of Agricultural and Food Chemistry,2019,67(35):9958-9966.
[7] GIRARDI C L,CORRENT A R,LUCCHETTA L,ZANUZO M R,DA COSTA T S,BRACKMANN A,TWYMAN R M,NORA F R,NORA L,SILVA J A,ROMBALDI C V. Effect of ethylene,intermittent warming and controlled atmosphere on postharvest quality and the occurrence of woolliness in peach (Prunus persica cv. Chiripá) during cold storage[J]. Postharvest Biology and Technology,2005,38(1):25-33.
[8] RODRIGUES C,GASPAR P D,SIM?ES M P,SILVA P D,ANDRADE L P. Review on techniques and treatments toward the mitigation of the chilling injury of peaches[J]. Journal of Food Processing and Preservation,2020,46(8):e14358.
[9] CAO S F,SONG C B,SHAO J R,BIAN K,CHEN W,YANG Z F. Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage[J]. Journal of Agricultural and Food Chemistry,2016,64(25):5215-5222.
[10] LIU H R,HE H,LIU C X,WANG C F,QIAO Y J,ZHANG B. Changes of sensory quality,flavor-related metabolites and gene expression in peach fruit treated by controlled atmosphere (CA) under cold storage[J]. International Journal of Molecular Sciences,2022,23(13):7141.
[11] 李建華,王華瑞,趙迎麗,閆根柱,劉聯生,陳會燕. 自發氣調(MA)結合高效乙烯去除劑對黑寶石李貯藏效果的研究[J]. 保鮮與加工,2013,13(6):20-22.
LI Jianhua,WANG Huarui,ZHAO Yingli,YAN Genzhu,LIU Liansheng,CHEN Huiyan. Effect of modified atmosphere combined with ethylene absorbent on fruit quality of post-harvest friar plum during cold storage[J]. Storage and Process,2013,13(6):20-22.
[12] 郭樂音. 溫度和限氣包裝對‘翠香’獼猴桃冷害及品質的影響[D]. 楊凌:西北農林科技大學,2019.
GUO Leyin. Effect of temperature and different modified atmosphere packaging on chilling injury and quality in postharvest ‘Cuixiang’ kiwifruit[D]. Yangling:Northwest A amp; F University,2019.
[13] WOOD R M,THEWES F R,REYNAUD M,KITTEMANN D,SAUTTER C K,WüNSCHE J N,NEUWALD D A. Apple fruit recovery from anoxia under controlled atmosphere storage[J]. Food Chemistry,2022,371:131152.
[14] FORNEY C F,JORDAN M A,PENNELL K M,FILLMORE S. Controlled atmosphere storage impacts fruit quality and flavor chemistry of five cultivars of highbush blueberry (Vaccinium corymbosum)[J]. Postharvest Biology and Technology,2022,194:112073.
[15] ALI S,KHAN A S,ULLAH MALIK A,ANWAR R,AKBAR ANJUM M,NAWAZ A,SHAFIQUE M,NAZ S. Combined application of ascorbic and oxalic acids delays postharvest browning of litchi fruits under controlled atmosphere conditions[J]. Food Chemistry,2021,350:129277.
[16] PESIS E. The role of the anaerobic metabolites,acetaldehyde and ethanol,in fruit ripening,enhancement of fruit quality and fruit deterioration[J]. Postharvest Biology and Technology,2005,37(1):1-19.
[17] 黃小榕,薛蕾,張澤煌,朱長青,林旗華,徐昌杰. PDC和ADH基因家族成員在楊梅果實成熟和包裝處理期間的表達及其與乙醛和乙醇積累的關系[J]. 果樹學報,2022,39(10):1784-1797.
HUANG Xiaorong,XUE Lei,ZHANG Zehuang,ZHU Changqing,LIN Qihua,XU Changjie. Expression analysis of PDC and ADH gene family members and their relationship with the accumulation of acetaldehyde and ethanol during fruit ripening and packaging treatments of Chinese bayberry[J]. Journal of Fruit Science,2022,39(10):1784-1797.
[18] BURDON J,LALLU N,YEARSLEY C,BURMEISTER D,BILLING D. The kinetics of acetaldehyde and ethanol accumulation in ‘Hass’ avocado fruit during induction and recovery from low oxygen and high carbon dioxide conditions[J]. Postharvest Biology and Technology,2007,43(2):207-214.
[19] ZHANG B,XI W P,WEI W W,SHEN J Y,FERGUSON I,CHEN K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit[J]. Postharvest Biology and Technology,2011,60(1):7-16.
[20] 李盼盼,鐘雨,戚雯燁,宋亦超,鄭小林. 美味獼猴桃‘布魯諾’果實貯藏過程中乙醇代謝與揮發性成分的變化[J]. 果樹學報,2016,33(7):865-873.
LI Panpan,ZHONG Yu,QI Wenye,SONG Yichao,ZHENG Xiaolin. Changes in ethanol fermentation metabolism and volatile metabolites in kiwifruit ‘Bruno’ during storage at room and low temperature[J]. Journal of Fruit Science,2016,33(7):865-873.
[21] CAO J P,WANG C Y,XU S T,CHEN Y Z,WANG Y,LI X,SUN C D. The effects of transportation temperature on the decay rate and quality of postharvest Ponkan (Citrus reticulata Blanco) fruit in different storage periods[J]. Scientia Horticulturae,2019,247:42-48.
[22] 王志華,高劍利,王文輝,賈朝爽,姜云斌. 不同貯藏溫度對‘紅香酥’梨果實品質和相關生理指標的影響[J]. 中國果樹,2020(5):13-19.
WANG Zhihua,GAO Jianli,WANG Wenhui,JIA Chaoshuang,JIANG Yunbin. Effects of different storage temperature on fruit quality and related physiological indexes of ‘Hongxiangsu’ pear[J]. China Fruits,2020(5):13-19.
[23] 邵青旭,高湘荃,時曉雪,齊紅巖. 低溫貯藏對薄皮甜瓜果實風味品質的影響[J]. 沈陽農業大學學報,2020,51(1):62-69.
SHAO Qingxu,GAO Xiangquan,SHI Xiaoxue,QI Hongyan. The effects of low temperature storage on the flavor qualities of oriental melon[J]. Journal of Shenyang Agricultural University,2020,51(1):62-69.
[24] TADEGE M,DUPUIS I,KUHLEMEIER C. Ethanolic fermentation:New functions for an old pathway[J]. Trends in Plant Science,1999,4(8):320-325.
[25] ZHANG J Y,HUANG S N,WANG G,XUAN J P,GUO Z R. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2016,106:244-252.
[26] MOYANO E,ENCINAS-VILLAREJO S,LóPEZ-RáEZ J A,REDONDO-NEVADO J,BLANCO-PORTALES R,BELLIDO M L,SANZ C,CABALLERO J L,MU?OZ-BLANCO J. Comparative study between two strawberry pyruvate decarboxylase genes along fruit development and ripening,post-harvest and stress conditions[J]. Plant Science,2004,166(4):835-845.
[27] WANG M M,ZHANG L,BOO K H,PARK E,DRAKAKAKI G,ZAKHAROV F. PDC1,a pyruvate/α-ketoacid decarboxylase,is involved in acetaldehyde,propanal and pentanal biosynthesis in melon (Cucumis melo L.) fruit[J]. The Plant Journal,2019,98(1):112-125.
[28] MANRíQUEZ D,EL-SHARKAWY I,FLORES F B,EL-YAHYAOUI F,REGAD F,BOUZAYEN M,LATCHé A,PECH J C. Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics[J]. Plant Molecular Biology,2006,61(4/5):675-685.
[29] 王如倩. PDC和ADH在采后柑橘果實乙醛乙醇積累中的作用[D]. 杭州:浙江大學,2019.
WANG Ruqian. Role of PDC and ADH in accumulation of aldehyde and ethanol in postharvest Citrus fruits[D].Hangzhou:Zhejiang University,2019.
[30] BOTONDI R,RUSSO V,MENCARELLI F. Anaerobic metabolism during short and long term storage of kiwifruit[J]. Postharvest Biology and Technology,2012,64(1):83-90.
[31] ZHANG C,DUAN W Y,CHEN K S,ZHANG B. Transcriptome and methylome analysis reveals effects of ripening on and off the vine on flavor quality of tomato fruit[J]. Postharvest Biology and Technology,2020,162:111096.
[32] MIN T,YIN X R,SHI Y N,LUO Z R,YAO Y C,GRIERSON D,FERGUSON I B,CHEN K S. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency[J]. Journal of Experimental Botany,2012,63(18):6393-6405.
[33] SHAN L L,LI X,WANG P,CAI C,ZHANG B,SUN C D,ZHANG W S,XU C J,FERGUSON I,CHEN K S. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation[J]. Planta,2008,227(6):1243-1254.
[34] TONG Z G,GAO Z H,WANG F,ZHOU J,ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J]. BMC Molecular Biology,2009,10:71.
[35] SINGH S P,PAL R K. Controlled atmosphere storage of guava (Psidium guajava L.) fruit[J]. Postharvest Biology and Technology,2008,47(3):296-306.
[36] SINGH S P,SINGH Z. Controlled and modified atmospheres influence chilling injury,fruit quality and antioxidative system of Japanese plums (Prunus salicina Lindell)[J]. International Journal of Food Science amp; Technology,2013,48(2):363-374.
[37] 王雷,田曉寧,田雪婷,吳晗笑,李瑞,劉佳,任小林. ‘富士’蘋果不同O2/CO2簡易氣調貯藏的生理特性[J]. 果樹學報,2020,37(6):909-919.
WANG Lei,TIAN Xiaoning,TIAN Xueting,WU Hanxiao,LI Rui,LIU Jia,REN Xiaolin. Effect of different O2/CO2 proportions on the physiological characteristics of ‘Fuji’apple fruit during modified atmosphere storage[J]. Journal of Fruit Science,2020,37(6):909-919.
[38] 李紅衛. 冬棗采后衰老調控與乙醇積累機理的研究[D]. 北京:中國農業大學,2003.
LI Hongwei. Studies on the senescence regulation and mechanism of ethanol accumulation of harvested ‘Brumal jujube’[D]. Beijing:China Agricultural University,2003.
[39] 關文強,劉興華,張華云,修德仁. 乙醇和乙醛含量與葡萄氣體傷害關系的研究[J]. 食品科學,2003,24(11):136-139.
GUAN Wenqiang,LIU Xinghua,ZHANG Huayun,XIU Deren. Study on effects of extreme gas concentration on the ethanoland acetaldehyde content in Meiguixiang grape[J]. Food Science,2003,24(11):136-139.
[40] 田龍. 黃金梨的氣調貯藏保鮮試驗[J]. 農業機械學報,2007,38(10):77-79.
TIAN Long. Study on control atmosphere storage of Whangkeumbae[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(10):77-79.