999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

獼猴桃園綠肥品種篩選和生草管理對(duì)土壤養(yǎng)分的影響

2023-04-29 00:00:00王呂秦宇航吳玉紅淡亞彬郝興順肖飛陳浩
果樹(shù)學(xué)報(bào) 2023年9期

摘" " 要: 【目的】篩選適宜漢中地區(qū)獼猴桃園種植的豆科綠肥品種并研究生草管理模式對(duì)土壤養(yǎng)分的影響,以期為獼猴桃綠色生產(chǎn)提供理論依據(jù)。【方法】品種篩選試驗(yàn)設(shè)毛苕子(VR)、紫云英(AS)、箭筈豌豆(VS)、二月蘭(OV)和山黧豆(LC),共5個(gè)品種,研究綠肥盛花期鮮草產(chǎn)量和含水量變化特征。果園生草管理模式設(shè)全年清耕(對(duì)照)、自然生草(NG)、毛苕子+自然生草(VG),共3個(gè)處理。研究不同果園生草管理模式下土壤養(yǎng)分變化規(guī)律。【結(jié)果】(1)綠肥盛花期鮮草和干草產(chǎn)量均表現(xiàn)為山黧豆>毛苕子>箭筈豌豆>紫云英>二月蘭,山黧豆盛花期鮮草產(chǎn)量最高,為67 332 kg·hm-2,其次是毛苕子(65 499 kg·hm-2),二者差異不顯著,但顯著高于其他綠肥品種。(2)綠肥鮮草全氮含量表現(xiàn)為毛苕子>箭筈豌豆>山黧豆>二月蘭>紫云英。毛苕子N含量(w,后同)達(dá)39.04 g·kg-1,其次是箭筈豌豆36.07 g·kg-1,顯著高于山黧豆、二月蘭和紫云英;毛苕子N累積量最高(323.33 kg·hm-2),山黧豆為308.52 kg·hm-2,箭筈豌豆為268.31 kg·hm-2,增幅為87.9%~226.8%,顯著高于二月蘭和紫云英。綠肥鮮草全磷含量主要表現(xiàn)為毛苕子>紫云英>山黧豆>箭筈豌豆>二月蘭。毛苕子磷含量最高(9.05 g·kg-1),顯著高于山黧豆、箭筈豌豆和二月蘭,增幅為18.6%~48.8%。毛苕子磷累積量為75.08 kg·hm-2,山黧豆為72.94 kg·hm-2,顯著高于其他綠肥品種,增幅為33.4%~124.4%。綠肥鮮草全鉀含量主要表現(xiàn)為毛苕子>紫云英>箭筈豌豆>山黧豆>二月蘭,毛苕子全鉀含量最高(34.70 g·kg-1),顯著高于箭筈豌豆、山黧豆和二月蘭,增幅為9.4%~68.1%。毛苕子全鉀累積量最高,為288.04 kg·hm-2,顯著高于其他綠肥品種,增幅為26.3%~125.5%。(3)毛苕子+自然生草處理,與全年清耕處理相比,可以顯著提高土壤0~60 cm有機(jī)質(zhì)、堿解氮、速效磷和速效鉀含量,與自然生草相比,可以提高0~60 cm土壤堿解氮和有機(jī)質(zhì)含量、0~20 cm速效磷含量、0~40 cm速效鉀含量。【結(jié)論】毛苕子盛花期干草和植株氮磷鉀養(yǎng)分含量均最高,顯著高于其他豆科綠肥,干草產(chǎn)量8270 kg·hm-2,N、P2O5和K2O累積量分別為323.33、75.08和288.04 kg·hm-2,是適宜獼猴桃園種植的豆科綠肥,具有鮮草產(chǎn)量和氮磷鉀養(yǎng)分含量雙高的特點(diǎn),毛苕子覆蓋還田+自然生草,可以提高果園土壤養(yǎng)分含量,是適宜漢中地區(qū)的獼猴桃果園生草管理模式。

關(guān)鍵詞:獼猴桃果園;豆科綠肥;綠肥品種;鮮草產(chǎn)量;土壤養(yǎng)分含量

中圖分類(lèi)號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)09-1885-09

收稿日期:2023-02-23 接受日期:2023-05-15

基金項(xiàng)目:陜西省農(nóng)業(yè)協(xié)同創(chuàng)新與推廣聯(lián)盟(LM202201)

作者簡(jiǎn)介:王呂,女,碩士,從事植物營(yíng)養(yǎng)與調(diào)控研究。Tel:18791611320,E-mail:wanglv060693@163.com

*通信作者 Author for correspondence. Tel:15929593509,E-mail:382755569@qq.com

Selection of green manure varieties and effects of grass management modes on soil fertility in kiwifruit orchards

WANG Lü, QIN Yuhang, WU Yuhong*, DAN Yabin, HAO Xingshun, XIAO Fei, CHEN Hao

(Hanzhong Agricultural Technology Extension and Training Center, Hanzhong 723000, Shaanxi, China)

Abstract: 【Objective】 As a clean organic manure source, green manure can effectively improve the soil microbial environment, increase soil organic carbon, and enhance soil carbon sink function, which is of great significance to the sustainability of soil productivity and soil carbon cycle. Intercropping green manure in orchards has become an effective method for soil improvement and restoration, which is an important technical measure to protect the ecological environment of farmland, ensure the quality of agricultural products, reduce fertilizer application, and promote sustainable agricultural development. The effect of green manure on soil habitat was controlled by the types of green manure and orchard climate. In order to provide a theoretical basis for the green production of kiwifruit, the impact of grass management mode on soil nutrients was studied and the suitable leguminous green manure crops were screened for planting in kiwifruit orchards in Hanzhong area. 【Methods】 The variety selection experiment was conducted to study the characteristics of fresh grass yield and water content changes during the florescence period of green manure crops, including Vicia villosa (VR), Astragalus sinicus (AS), Vicia sativa (VS), Orychophragmus violaceus (OV) and Lathyrus cicera (LC). The orchard grass management modes were set as the following three treatments: annual clean tillage (CK); natural grass (NG) and Vicia villosa + natural grass (VG), and the changes in soil nutrients under different orchard grass management modes were studied. 【Results】 (1) During the florescence stage of green manure crops, the yield of fresh and dry grass showed as follows: LC>VR>VS>AS>OV. Among them, LC had the highest yield of fresh grass at 67 332 kg·hm-2, followed by VR at 65 499 kg·hm-2, and there was no significant difference, but they were higher than VS, AS and OV, with an increase of 21.0%-112.5%. LC had the highest hay yield of 11 618 kg·hm-2, significantly higher than other green manure varieties, with an increase of 40.5% and 58.4%, respectively, compared with VR and VS. The hay yields of VR and VS were 8270 and 7333 kg·hm-2, respectively, significantly higher than those of OV and AS. (2) The total nitrogen content of green manure and fresh grass was as follows: VR>VS>LC>OV>AS. Among them, the N content of VR reached 39.04 g·kg-1, followed by VS 36.07 g·kg-1, and they were significantly higher than that of LC, OV, and AS; The N accumulation of VR (323.33 kg·hm-2), LC (308.52 kg·hm-2), and VS (268.31 kg·hm-2) was 87.9%-226.8% significantly higher than that of OV and AS (p<0.05). The P2O5 content of green manure and fresh grass were mainly manifested as follows: VR>AS>LC>VS>OV. Among them, the P2O5 content in VR was 9.05 g·kg-1, which was 18.6%-48.8% higher than that in LC, VS, and OV (p<0.05). The P2O5 content of AS was 8.67 g·kg-1, which was 42.6% higher than that of OV (p<0.05). The accumulation of P2O5 in VR (75.08 kg·hm-2) and LC (72.94 kg·hm-2) was 33.4%-124.4% higher than that of other green manure varieties (p<0.05). The total potassium contents of green manure fresh grass were mainly manifested as follows: VR>AS>VS>LC>OV. The total potassium content of VR was the highest (34.70 g·kg-1), which was 9.4%-68.1% higher than that of VS, LC and OV. The total accumulation of K2O in VR (288.04 kg·hm-2) was 26.3%-125.5% higher than that of other green manure varieties. LC had the second highest total K2O accumulation (228.03 kg·hm-2), which was 33.0%, 56.9% and 99.8% higher than VS, AS and OV, respectively. (3) Compared with CK, VG significantly increased the content of soil organic matter, available nitrogen, available phosphorus, and available potassium in the 0-60 cm soil layer. Compared with NG, VG can increase the content of soil available nitrogen and organic matter in 0-60 cm soil layer, available phosphorus in 0-20 cm soil layer, and available potassium in 0-40 cm soil layer. Compared with CK, VG increased soil alkaline nitrogen by 144.5%, 145.4% and 453.8% in 0-20, 20-40 and 40-60 cm soil layer, soil available phosphorus by 51.7%, 129.7% and 69.3%, soil available potassium by 129.7%, 68.3% and 121.8%, and soil organic carbon by 108.4%, 95.1% and 122.5%, respectively. Compared with NG, VG increased soil alkaline nitrogen by 12.2%, 17.4% and 178.0%, soil available phosphorus by 21.8%, 21.2% and 20.4%, soil available potassium by 30.4% and 16.4%, and soil organic carbon by 23.1%, 36.3% and 48.9% at 0-20, 20-40 and 40-60 cm, respectively. The mode of VG had the best effect on soil improvement and fertilization in kiwifruit orchards. 【Conclusion】 During the florescence period, the content of N, P2O5, and K2O nutrients in the hay and plants of VS was the highest, significantly higher than other leguminous green manures. The hay yield was 8270 kg·hm-2, and the accumulated amounts of N, P2O5 and K2O were 323.33, 75.08 and 288.04 kg·hm-2, respectively. Due to the high biomass and N, P2O5 and K2O contents, VG can be used as a suitable grass management mode for kiwifruit orchards. Moreover, it had a good effect on improving soil nutrients in kiwifruit orchards, which was conducive to the sustainable development of kiwifruit production in Hanzhong area.

Key words: Kiwifruit orchard; Legume green manure; Variety of green manure; Fresh grass yield; Soil nutrient content

獼猴桃是我國(guó)重要的經(jīng)濟(jì)作物之一,也是世界消費(fèi)量最大的水果之一。我國(guó)獼猴桃種植面積和產(chǎn)量穩(wěn)居世界第一[1],據(jù)《中國(guó)獼猴桃產(chǎn)業(yè)發(fā)展報(bào)告(2020)》中的統(tǒng)計(jì)數(shù)據(jù)顯示,近10 a(年)來(lái),全球獼猴桃栽培面積和產(chǎn)量的增長(zhǎng)速率分別為71.25%和55.58%,獼猴桃已經(jīng)躋身于世界主流消費(fèi)水果之列。其中陜西省獼猴桃面積61 213.33 hm2,產(chǎn)量115.83萬(wàn)t,獼猴桃產(chǎn)業(yè)規(guī)模居全國(guó)第一[2]。我國(guó)獼猴桃園土壤管理大部分仍沿用清耕法,清耕制的果園面積達(dá)到果園總面積的80%[3]。長(zhǎng)期清耕導(dǎo)致土壤結(jié)構(gòu)被破壞,土壤有機(jī)質(zhì)及各種養(yǎng)分因加速消耗而逐年降低,果園土壤肥力退化[4]。獼猴桃施肥不增產(chǎn)的情況普遍存在,極大挫傷了果農(nóng)種植的積極性[5]。解決上述問(wèn)題,提高和改進(jìn)土壤管理模式是重要途徑之一。隨著國(guó)家推進(jìn)“質(zhì)量興農(nóng)、綠色興農(nóng)”戰(zhàn)略,果園種植綠肥成為一種現(xiàn)代化果園土壤管理的模式[6]。綠肥是我國(guó)果園的重要有機(jī)肥源[7],果園種植利用綠肥可替代化學(xué)肥料[8]、培肥地力[9]、提高土壤有機(jī)質(zhì)含量、減少水土流失、改善果園生態(tài)環(huán)境、降低病蟲(chóng)草害發(fā)生[10-14]、提升果品品質(zhì)和產(chǎn)量,是今后綠色生態(tài)果園建設(shè)和果園土壤管理的發(fā)展方向。

目前,關(guān)于果園綠肥的研究已有大量報(bào)道,主要集中在果園綠肥對(duì)土壤生境和果實(shí)品質(zhì)的研究方面。針對(duì)不同果園環(huán)境適宜性綠肥品種篩選,吳興洪等[15]通過(guò)研究8個(gè)綠肥品種在獼猴桃園的生長(zhǎng)表現(xiàn),發(fā)現(xiàn)毛苕子(Vicia villosa Roth.)、黑麥草(Lolium perenne L.)和箭筈豌豆(V. sativa L.)在植株養(yǎng)分、抑制雜草、地表覆蓋、田間長(zhǎng)勢(shì)等方面具有較強(qiáng)的優(yōu)勢(shì)。唐紅琴等[16]通過(guò)研究5種綠肥還田后對(duì)柑橘園土壤pH和養(yǎng)分的改善效果,發(fā)現(xiàn)光葉苕子(V. villosa Roth. var.)和紫云英(Astragalus sinicus L.)提升土壤養(yǎng)分含量的貢獻(xiàn)均較大。綠肥種類(lèi)不同,果園氣候不同,對(duì)土壤生境的影響也不同。漢中市緊抓陜西省獼猴桃“東擴(kuò)南移”戰(zhàn)略機(jī)遇,獼猴桃種植面積已經(jīng)達(dá)到666.7 hm2,獼猴桃產(chǎn)業(yè)的健康發(fā)展對(duì)推動(dòng)該地區(qū)鄉(xiāng)村振興具有重要意義。然而,漢中獼猴桃園立地條件差,土壤有機(jī)質(zhì)含量低、土壤黏重、土層板結(jié)、通透性差,果園生態(tài)環(huán)境脆弱,經(jīng)濟(jì)效益不高等問(wèn)題普遍存在。果園間作綠肥是解決獼猴桃產(chǎn)業(yè)快速發(fā)展和立地條件差等問(wèn)題的有效途徑,而針對(duì)漢中地區(qū)獼猴桃園間作綠肥品種適宜性篩選的研究還較少。因此,筆者在本研究中旨在通過(guò)引進(jìn)篩選植株養(yǎng)分、土壤改良、培肥地力效果好的獼猴桃果園間作綠肥品種,并系統(tǒng)研究綠肥高效種植技術(shù)和固氮增碳培肥效應(yīng),為獼猴桃產(chǎn)業(yè)提供固碳減排技術(shù)支撐,促進(jìn)獼猴桃產(chǎn)業(yè)綠色高質(zhì)量發(fā)展。

1 材料和方法

1.1 試驗(yàn)地概況

試驗(yàn)于2021—2022連續(xù)2 a在陜西省漢中市城固原公新天地獼猴桃示范基地(107°28′22″ E,33°22′54″ N)進(jìn)行,該地屬亞熱帶濕潤(rùn)季風(fēng)氣候,海拔2 602.2 m,年平均氣溫14.3 ℃,年降雨量843.9 mm。

1.2 試驗(yàn)材料

供試綠肥品種有紫云英(AS)、箭筈豌豆(VS)、山黧豆(Lathyrus cicera,LC)、毛苕子(VR)和二月蘭(Orychophragmus violaceus,OV),共5個(gè)豆科綠肥品種(山黧豆由四川南充市農(nóng)業(yè)科學(xué)院提供,其他綠肥材料購(gòu)于農(nóng)資店)。

1.3 試驗(yàn)設(shè)計(jì)

綠肥品種篩選試驗(yàn)于2020—2021年開(kāi)展,采用單因素試驗(yàn),種植5個(gè)品種綠肥,每個(gè)品種3次重復(fù),每個(gè)小區(qū)面積為20 m×2 m=40 m2。綠肥品種于2020年9月播種,綠肥播種量為2.5 kg·666.7 m-2。

獼猴桃園不同生草管理模式試驗(yàn)于2021—2022年開(kāi)展,設(shè)3種不同生草管理模式,(1)對(duì)照:全年清耕;(2)NG:自然生草;(3)VG:毛苕子+自然生草。隨機(jī)區(qū)組設(shè)計(jì),小區(qū)面積為50 m×2 m=100 m2,每個(gè)處理3次重復(fù),其中毛苕子于2021年10月10日播種,覆蓋還田。

1.4 測(cè)定項(xiàng)目與方法

綠肥鮮草產(chǎn)量測(cè)定。于綠肥盛花期(2021年6月13日)測(cè)產(chǎn)并翻壓還田,選取長(zhǎng)勢(shì)均勻的1 m×1 m樣方,3次重復(fù),稱(chēng)質(zhì)量即為鮮草產(chǎn)量。將盛花期割下的鮮草及時(shí)烘干測(cè)定水分量,根據(jù)含水量將鮮草產(chǎn)量換算成干草產(chǎn)量。

綠肥養(yǎng)分測(cè)定。植株樣品采用H2SO4-H2O2消煮[17],全氮含量利用連續(xù)流動(dòng)分析儀(AA3)測(cè)定,全磷含量采用釩鉬黃比色法測(cè)定,全鉀含量采用火焰光度法測(cè)定。

土壤養(yǎng)分含量測(cè)定。于綠肥盛花期采集0~20 cm、>20~40 cm和>40~60 cm土壤,土壤養(yǎng)分含量的測(cè)定參照《土壤農(nóng)化分析》[18]。

1.5 數(shù)據(jù)處理

數(shù)據(jù)應(yīng)用Excel 2010進(jìn)行數(shù)據(jù)整理,采用SAS 8.1進(jìn)行單因素方差分析和顯著性檢驗(yàn),采用Origin 2017繪圖。

2 結(jié)果與分析

2.1 獼猴桃園間作不同品種綠肥鮮草產(chǎn)量的變化

獼猴桃園間作綠肥,盛花期各品種鮮草產(chǎn)量表現(xiàn)為山黧豆>毛苕子>箭筈豌豆>紫云英>二月蘭(圖1-A)。其中山黧豆鮮草產(chǎn)量最高,為67 332 kg·hm-2,其次是毛苕子65 499 kg·hm-2,均顯著高于箭筈豌豆、紫云英和二月蘭,增幅為21.0%~112.5%。獼猴桃園間作紫云英水分含量最高(圖1-B),為89.0%,顯著高于除毛苕子外的其他綠肥品種,增幅為3.0%~3.9%,獼猴桃園間作毛苕子水分含量為87.4%,顯著高于山黧豆和二月蘭,增幅分別為2.8%和3.1%。山黧豆干草產(chǎn)量最高(圖1-B),為11 618 kg·hm-2,顯著高于其他綠肥品種,比毛苕子和箭筈豌豆分別增加40.5%和58.4%,其次是毛苕子和箭筈豌豆,干草產(chǎn)量分別為8270和7333 kg·hm-2,顯著高于二月蘭和紫云英。

2.2 獼猴桃園間作不同品種綠肥養(yǎng)分含量的變化

2.2.1" " 不同綠肥品種N含量和N累積量的變化" " 獼猴桃園間作不同綠肥品種,N含量主要表現(xiàn)為毛苕子>箭筈豌豆>山黧豆>二月蘭>紫云英(圖2-A)。其中毛苕子N含量(w,后同)最高,達(dá)39.04 g·kg-1,其次是箭筈豌豆36.07 g·kg-1,顯著高于山黧豆、二月蘭和紫云英,山黧豆N含量為30.50 g·kg-1,顯著高于二月蘭和紫云英,增幅分別為17.8%和41.3%。獼猴桃園間作毛苕子、山黧豆和箭筈豌豆N累積量顯著高于二月蘭和紫云英(圖2-B),其中毛苕子N累積量為323.33 kg·hm-2,山黧豆為308.52 kg·hm-2,箭筈豌豆為268.31 kg·hm-2,增幅為87.9%~226.8%。

2.2.2" " 不同綠肥品種P2O5含量和P2O5累積量的變化 獼猴桃園間作不同綠肥品種,P2O5含量主要表現(xiàn)為毛苕子>紫云英>山黧豆>箭筈豌豆>二月蘭(圖3-A)。其中毛苕子P2O5含量最高(9.05 g·kg-1),顯著高于山黧豆、箭筈豌豆和二月蘭,增幅為18.6%~48.8%。紫云英P2O5含量為8.67 g·kg-1,顯著高于二月蘭,增幅為42.6%。獼猴桃園間作毛苕子P2O5累積量為75.08 kg·hm-2,山黧豆為72.94 kg·hm-2,毛苕子和山黧豆P2O5累積量顯著高于其他綠肥品種(圖3-B),增幅為33.4%~124.4%。箭筈豌豆P2O5累積量為54.69 kg·hm-2,顯著高于二月蘭,增幅為64.1%。

2.2.3 不同綠肥品種K2O含量和K2O累積量的變化 獼猴桃園間作不同綠肥品種,K2O含量主要表現(xiàn)為毛苕子>紫云英>箭筈豌豆>山黧豆>二月蘭(圖4-A)。其中毛苕子全鉀含量最高(34.70 g·kg-1),顯著高于紫云英、箭筈豌豆、山黧豆和二月蘭,增幅為9.4%~68.1%。紫云英K2O含量31.72 g·kg-1,顯著高于其他綠肥品種,增幅為34.4%~53.7%。箭筈豌豆K2O含量23.60 g·kg-1,顯著高于二月蘭,增幅為14.3%。獼猴桃園間作不同綠肥品種,毛苕子K2O累積量最高,為288.04 kg·hm-2,顯著高于其他綠肥品種,增幅為26.3%~125.5%(圖4-B),山黧豆K2O累積量為228.03 kg·hm-2,顯著高于箭筈豌豆、紫云英和二月蘭,增幅分別為33.0%、56.9%和99.8%,箭筈豌豆K2O累積量為171.45 kg·hm-2,顯著高于二月蘭,增幅為50.2%。

2.3 不同果園生草管理模式對(duì)土壤養(yǎng)分含量的影響

果園間作毛苕子和自然生草,均可顯著提高0~20 cm、>20~40 cm和>40~60 cm深土層的土壤堿解氮含量(表1,p<0.05),果園間作毛苕子后,0~20 cm深土層的土壤堿解氮含量最高,為96.25 mg·kg-1,顯著高于自然生草和全年清耕處理,增幅分別為12.2%和144.5%。毛苕子和自然生草處理>20~40 cm土壤堿解氮含量顯著高于全年清耕處理,增幅分別為145.4%和109.1%。果園間作毛苕子>40~60 cm土壤堿解氮含量顯著高于自然生草和全年清耕處理,增幅分別為178.0%和453.8%。果園間作毛苕子后,0~20 cm土壤速效磷含量最高,為120.83 mg·kg-1,顯著高于自然生草和全年清耕處理,增幅分別為21.8%和51.7%,果園間作毛苕子和自然生草可以顯著提高>20~40 cm土壤速效磷含量,增幅分別為129.7%和89.5%,果園間作毛苕子>40~60 cm 土壤速效磷含量比全年清耕增加69.3%。果園間作毛苕子0~20 cm和>20~40 cm土壤速效鉀含量均顯著高于自然生草和全年清耕處理,與自然生草處理相比,增幅分別為30.4%和16.7%,與全年清耕相比,增幅分別為129.7%和68.3%。果園間作毛苕子和自然生草可顯著提高>40~60 cm土壤速效鉀含量,比全年清耕增加121.8%和129.8%。果園間作毛苕子0~20 cm土壤有機(jī)碳含量顯著高于自然生草和全年清耕,增幅分別為23.1%和108.4%,果園自然生草可以顯著提高>20~40 cm土壤有機(jī)碳含量,果園間作毛苕子可以顯著提高>20~40 cm和>40~60 cm土壤有機(jī)碳含量。

3 討 論

綠肥作為一種有機(jī)肥源,含有大量的氮、磷、鉀及中微量元素。本研究表明,盛花期山黧豆和毛苕子鮮草產(chǎn)量和干草產(chǎn)量均高于箭筈豌豆、紫云英和二月蘭,與二月蘭相比,山黧豆和毛苕子鮮草產(chǎn)量提高85.0%和80.0%,干草產(chǎn)量提高81.7%和48.5%;5種綠肥植株含水量在84.7%~89.0%之間波動(dòng),紫云英含水量最高,其次為毛苕子。毛苕子和山黧豆N、P2O5和K2O累積量高于箭筈豌豆、二月蘭和紫云英。綠肥在盛花期還田對(duì)土壤改良的效果最優(yōu)[19-20],曾妮等[21]對(duì)黑麥草等綠肥的研究結(jié)果表明,以68.00 t·hm-2的黑麥草還田,可提供的氮、磷養(yǎng)分含量分別為230.00和30.00 kg·hm-2。本研究中毛苕子盛花期還田可以提供N、P2O5和K2O含量分別為323.33、75.08和288.04 kg·hm-2。通過(guò)綠肥盛花期鮮草產(chǎn)量和植株養(yǎng)分含量篩選出毛苕子適合漢中地區(qū)獼猴桃果園種植。

獼猴桃園不同的土壤管理對(duì)土壤養(yǎng)分的影響也不相同。于淑慧等[22]發(fā)現(xiàn)應(yīng)用水肥一體化技術(shù),果園間作綠肥與自然生草相比可以顯著提高土壤有機(jī)質(zhì)、堿解氮和速效磷含量。郭曉睿等[23]發(fā)現(xiàn)果園生草與清耕法相比土壤堿解氮、速效磷和有機(jī)質(zhì)含量分別提高了4.7%、27.2%和18.3%。本研究表明,與清耕法相比,自然生草和間作毛苕子可以顯著提高土壤0~60 cm堿解氮、速效磷、速效鉀和有機(jī)質(zhì)含量;與自然生草相比,果園間作毛苕子可以提高0~60 cm土壤堿解氮和有機(jī)質(zhì)含量、0~20 cm速效磷含量、0~40 cm速效鉀含量。這與前人研究相一致,可能是因?yàn)槊孀訉俣箍凭G肥可以通過(guò)根瘤共生固氮,增加農(nóng)田氮素輸入[24],果園間作毛苕子增加了土壤有機(jī)碳輸入,為微生物的生長(zhǎng)和繁殖提供了適宜的環(huán)境,促進(jìn)了土壤微生物參與的養(yǎng)分循環(huán)、有機(jī)物分解和能量流動(dòng)等活動(dòng),有利于土壤有機(jī)質(zhì)積累和礦質(zhì)養(yǎng)分的有效性增強(qiáng)[25-26]。獼猴桃園種植毛苕子可以改善0~60 cm土壤養(yǎng)分狀況。

陜西省是我國(guó)獼猴桃主產(chǎn)區(qū),依托獼猴桃產(chǎn)業(yè)“東擴(kuò)南移”,陜南成為重點(diǎn)發(fā)展區(qū)域,漢中作為秦嶺南麓獼猴桃優(yōu)生區(qū),獼猴桃產(chǎn)業(yè)得到了較快發(fā)展。但漢中果園土壤多為黃褐土,土質(zhì)黏重、結(jié)構(gòu)性差;通透性差、養(yǎng)分釋放緩慢,對(duì)果樹(shù)生長(zhǎng)有一定的抑制作用[27]。獼猴桃是肉質(zhì)根系,喜水怕澇,根和葉呼吸能力強(qiáng),蒸騰作用大,要求土壤透氣性要好,土壤管理至關(guān)重要。但大部分果園土壤管理仍沿用清耕法,長(zhǎng)期清耕導(dǎo)致土壤結(jié)構(gòu)被破壞,土壤有機(jī)質(zhì)及各種養(yǎng)分加速消耗、逐年降低,果園土壤肥力退化[4],嚴(yán)重制約獼猴桃產(chǎn)業(yè)高質(zhì)量發(fā)展。

豆科綠肥具有生物固氮作用,果園種植豆科綠肥可以增加土壤氮素含量,培肥土壤,改善土壤結(jié)構(gòu)。張欽等[28]發(fā)現(xiàn)翻壓15 t·hm-2毛苕子配施55%復(fù)合肥比配施100%復(fù)合肥顯著提高獼猴桃產(chǎn)量7.48%。說(shuō)明獼猴桃種植翻壓綠肥可以替代化肥用量并保證果實(shí)產(chǎn)量。獼猴桃園種植綠肥后,降低土壤容重10.32%,增加土壤孔隙度14.10%;且與不種綠肥相比,種植毛苕子獼猴桃果實(shí)產(chǎn)量增加13.99%,山黧豆增加11.84%,箭筈豌豆增加18.40%[29]。果園種植綠肥后,相比清耕對(duì)雜草有很好的抑制效果。劉文婷[30]發(fā)現(xiàn)毛苕子對(duì)雜草有很強(qiáng)的抑制作用;紫云英長(zhǎng)勢(shì)一般且不能自然倒伏,對(duì)雜草的抑制作用稍弱;箭筈豌豆能自然倒伏,但長(zhǎng)勢(shì)一般,對(duì)雜草的抑制能力弱。果園種植綠肥可以替代部分化肥減少肥料施用量;可以減少人工除草頻次,降低人工成本;可以提高土壤肥力、改善土壤結(jié)構(gòu)、增加果實(shí)產(chǎn)量,因而對(duì)獼猴桃園經(jīng)濟(jì)效益的增加具有積極作用。我國(guó)各地區(qū)氣候差異較大、土壤條件不相同、綠肥資源豐富[31],因此選擇適宜漢中地區(qū)作物特性、種植條件的綠肥,并應(yīng)用到獼猴桃園,改變農(nóng)民全園清耕和單施化肥的實(shí)際生產(chǎn)習(xí)慣,對(duì)緩解資源緊張、降低生產(chǎn)成本、保護(hù)生態(tài)環(huán)境、培肥地力起到重要作用。本研究表明,毛苕子盛花期翻壓還田可以為獼猴桃園提供豐富的氮、磷、鉀養(yǎng)分,且對(duì)土壤養(yǎng)分也具有很好的提升效果,因此適宜在漢中地區(qū)獼猴桃園大面積推廣應(yīng)用。

4 結(jié) 論

(1)獼猴桃園間作毛苕子,盛花期鮮草產(chǎn)量達(dá)65 499 kg·hm-2,還田后可以提供N、P2O5和K2O分別為323.33、75.08和288.04 kg·hm-2。(2)果園間作毛苕子與清耕法相比,可以顯著提高土壤0~60 cm有機(jī)質(zhì)、堿解氮、速效磷和速效鉀含量,與自然生草相比可以提高0~60 cm土壤堿解氮和有機(jī)質(zhì)含量,0~20 cm速效磷含量、0~40 cm速效鉀含量。

綜上所述,獼猴桃園間作毛苕子,還田后提供的養(yǎng)分含量較高,可有效改善果園土壤養(yǎng)分狀況,是適宜漢中地區(qū)的果園土壤管理模式。

參考文獻(xiàn)References:

[1] 鐘彩虹,黃文俊,李大衛(wèi),張瓊,李黎. 世界獼猴桃產(chǎn)業(yè)發(fā)展及鮮果貿(mào)易動(dòng)態(tài)分析[J]. 中國(guó)果樹(shù),2021(7):101-108.

ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.

[2] 馬悅,劉恬. 陜西省獼猴桃產(chǎn)業(yè)競(jìng)爭(zhēng)力及發(fā)展路徑分析[J]. 山西農(nóng)經(jīng),2022(21):30-32.

MA Yue,LIU Tian. Analysis of kiwifriut industry competitiveness and development path in Shaanxi Province[J]. Shanxi Agricultural Economy,2022(21):30-32.

[3] 李曉陽(yáng),任麗華,計(jì)保全,馬曉彤. 生草覆蓋對(duì)山地果園土壤物理性狀的影響[J]. 水土保持應(yīng)用技術(shù),2019(4):7-9.

LI Xiaoyang,REN Lihua,JI Baoquan,MA Xiaotong. Effects of grass mulching on soil physical properties in mountain orchard[J]. Technology of Soil and Water Conservation,2019(4):7-9.

[4] 崔志強(qiáng). 綠肥-蘋(píng)果間作系統(tǒng)氮素的吸收、分配及綠肥的腐解規(guī)律研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2014.

CUI Zhiqiang. Studies on N absorption,allocation and green manures decomposition regularity in green manure-apple intercropping system[D]. Tai’an:Shandong Agricultural University,2014.

[5] 來(lái)源,同延安,陳黎嶺,高義民,楊江鋒. 施肥對(duì)獼猴桃產(chǎn)量和品質(zhì)的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(10):171-176.

LAI Yuan,TONG Yan’an,CHEN Liling,GAO Yimin,YANG Jiangfeng. Effect of fertilization on kiwifruit yield and quality[J]. Journal of Northwest A amp; F University (Natural Science Edition),2011,39(10):171-176.

[6] 楊旺,趙勁飛,劉新英,廖結(jié)安,席琳喬,王貞元,冶瑞,陳云生. 果園行間綠肥粉碎旋耕一體機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)機(jī)化研究,2023,45(9):46-53.

YANG Wang,ZHAO Jinfei,LIU Xinying,LIAO Jie’an,XI Linqiao,WANG Zhenyuan,YE Rui,CHEN Yunsheng. Design and experiment of an integrated machine for green manure crushing and rotary tillage in orchard row[J]. Journal of Agricultural Mechanization Research,2023,45(9):46-53.

[7] 陳秀德,吳明波,姚倫俊. 獼猴桃園綠肥還田對(duì)土壤肥力及獼猴桃產(chǎn)質(zhì)量的影響[J]. 貴州農(nóng)業(yè)科學(xué),2018,46(8):73-76.

CHEN Xiude,WU Mingbo,YAO Lunjun. Effects of returning green manure to the field on soil fertility and kiwifruit yield and quality[J]. Guizhou Agricultural Sciences,2018,46(8):73-76.

[8] 楊葉華,張松,王帥,劉正蘭,方林發(fā),張學(xué)良,劉瑞,張建偉,張宇亭,石孝均. 中國(guó)不同區(qū)域常見(jiàn)綠肥產(chǎn)量和養(yǎng)分含量特征及替代氮肥潛力評(píng)估[J]. 草業(yè)學(xué)報(bào),2020,29(6):39-55.

YANG Yehua,ZHANG Song,WANG Shuai,LIU Zhenglan,F(xiàn)ANG Linfa,ZHANG Xueliang,LIU Rui,ZHANG Jianwei,ZHANG Yuting,SHI Xiaojun. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China[J]. Acta Prataculturae Sinica,2020,29(6):39-55.

[9] 胡斌,張瀚曰,潘宏兵,包維楷. 間種綠肥及其還田對(duì)攀枝花地區(qū)芒果園土壤養(yǎng)分和芒果產(chǎn)量的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2021,27(2):251-260.

HU Bin,ZHANG Hanyue,PAN Hongbing,BAO Weikai. Effects of green manure planting and its return on soil nutrients and yield of mango orchards in Panzhihua,China[J]. Chinese Journal of Applied and Environmental Biology,2021,27(2):251-260.

[10] 秦景逸,張?jiān)疲跣忝罚焯鹛穑瑒⒖? 綠肥間作對(duì)果園產(chǎn)量及經(jīng)濟(jì)收益的影響[J]. 廣東農(nóng)業(yè)科學(xué),2017,44(1):43-48.

QIN Jingyi,ZHANG Yun,WANG Xiumei,ZHU Tiantian,LIU Kang. Effects of intercropping green manure on yeild and economic benefits of orchard[J]. Guangdong Agricultural Sciences,2017,44(1):43-48.

[11] 徐田偉,杜國(guó)棟,馬懷宇,呂德國(guó). 生草蘋(píng)果園土壤微生物及酶活性變化特征[J]. 北方園藝,2018(11):118-124.

XU Tianwei,DU Guodong,MA Huaiyu,Lü Deguo. Soil microbial and soil enzyme activity variation characteristics on sod-culture apple orchard[J]. Northern Horticulture,2018(11):118-124.

[12] 段衛(wèi)朋,楊偉明,毛雪,韓舜愈. 行內(nèi)生草和覆布對(duì)葡萄園微氣候及果實(shí)品質(zhì)的影響[J]. 中國(guó)果樹(shù),2018(4):9-14.

DUAN Weipeng,YANG Weiming,MAO Xue,HAN Shunyu. Effects of grass and film cover on microclimate and quality of grape in vineyard[J]. China Fruits,2018(4):9-14.

[13] SHARMA P,LAOR Y,RAVIV M,MEDINA S,SAADI I,KRASNOVSKY A,VAGER M,LEVY G J,BAR-TAL A,BORISOVER M. Green manure as part of organic management cycle:effects on changes in organic matter characteristics across the soil profile[J]. Geoderma,2017,305:197-207.

[14] ZHANG J,HU K L,LI K J,ZHENG C L,LI B G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model[J]. Soil and Tillage Research,2017,165:302-314.

[15] 吳興洪,冉斌,王文華,張愛(ài)華,朱青,張欽,姚單君. 貴州山區(qū)獼猴桃園適宜綠肥品種的篩選[J]. 種子,2019,38(12):132-137.

WU Xinghong,RAN Bin,WANG Wenhua,ZHANG Aihua,ZHU Qing,ZHANG Qin,YAO Danjun. Selection of green fertilizer-suitable varieties in kiwi fruit orchard in Guizhou mountainous area[J]. Seed,2019,38(12):132-137.

[16] 唐紅琴,李忠義,曾成城,董文斌,韋彩會(huì),蒙炎成,何鐵光. 不同綠肥種類(lèi)和還田量對(duì)柑橘園土壤養(yǎng)分的動(dòng)態(tài)影響[J]. 江蘇農(nóng)業(yè)科學(xué),2021,49(16):214-219.

TANG Hongqin,LI Zhongyi,ZENG Chengcheng,DONG Wenbin,WEI Caihui,MENG Yancheng,HE Tieguang. Dynamic impact of different green manure types and returning amounts on soil nutrients in citrus orchard[J]. Jiangsu Agricultural Sciences,2021,49(16):214-219.

[17] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社,2000.

LU Rukun. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Press,2000.

[18] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國(guó)農(nóng)業(yè)出版社,2000.

BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.

[19] 朱小梅,王甫同,邢錦城,王建紅,劉沖,趙寶泉,溫祝桂,董靜,賀亭亭,洪立洲. 田菁翻壓還田對(duì)灘涂土壤碳氮及微生物生物量的影響[J]. 土壤,2021,53(3):529-536.

ZHU Xiaomei,WANG Futong,XING Jincheng,WANG Jianhong,LIU Chong,ZHAO Baoquan,WEN Zhugui,DONG Jing,HE Tingting,HONG Lizhou. Effects of overturning Sesbania cannabina on soil carbon,nitrogen and microbiological biomass in coastal area[J]. Soils,2021,53(3):529-536.

[20] 曹衛(wèi)東,包興國(guó),徐昌旭,聶軍,高亞軍,耿明建. 中國(guó)綠肥科研60年回顧與未來(lái)展望[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2017,23(6):1450-1461.

CAO Weidong,BAO Xingguo,XU Changxu,NIE Jun,GAO Yajun,GENG Mingjian. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer,2017,23(6):1450-1461.

[21] 曾妮,蔡艷,李寒松,李冰,李珺昭,伍偉,張洪滔,何川,李鐘,鄭祖平. 氮肥減施下翻壓冬季綠肥對(duì)川東玉米地土壤養(yǎng)分的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,39(6):799-806.

ZENG Ni,CAI Yan,LI Hansong,LI Bing,LI Junzhao,WU Wei,ZHANG Hongtao,HE Chuan,LI Zhong,ZHENG Zuping. Effect of winter green manure on soil nutrients of maize field in eastern Sichuan under reduced nitrogen fertilizer application[J]. Journal of Sichuan Agricultural University,2021,39(6):799-806.

[22] 于淑慧,朱國(guó)梁,董浩,牟小翎,史桂芳,鄭錚,任寒. 綠肥間作和滴灌對(duì)蘋(píng)果園土壤肥力和果實(shí)品質(zhì)的影響[J]. 土壤通報(bào),2022,53(3):640-647.

YU Shuhui,ZHU Guoliang,DONG Hao,MU Xiaoling,SHI Guifang,ZHENG Zheng,REN Han. Effects of intercropping green manure and drip irrigation on soil fertility and apple fruit quality in apple orchards[J]. Chinese Journal of Soil Science,2022,53(3):640-647.

[23] 郭曉睿,宋濤,鄧麗娟,張衛(wèi)峰,焦小強(qiáng). 果園生草對(duì)中國(guó)果園土壤肥力和生產(chǎn)力影響的整合分析[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(11):4021-4028.

GUO Xiaorui,SONG Tao,DENG Lijuan,ZHANG Weifeng,JIAO Xiaoqiang. Effects of grass growing on soil fertility and productivity of orchards in China:a meta-analysis[J]. Chinese Journal of Applied Ecology,2021,32(11):4021-4028.

[24] WALLEY F L,CLAYTON G W,MILLER P R,CARR P M,LAFOND G P. Nitrogen economy of pulse crop production in the northern great Plains[J]. Agronomy Journal,2007,99(6):1710-1718.

[25] 勞秀榮,孫偉紅,王真,郝艷如,張昌愛(ài). 秸稈還田與化肥配合施用對(duì)土壤肥力的影響[J]. 土壤學(xué)報(bào),2003,40(4):618-623.

LAO Xiurong,SUN Weihong,WANG Zhen,HAO Yanru,ZHANG Chang’ai. Effect of matching use of straw and chemical fertilizer on soil fertility[J]. Acta Pedologica Sinica,2003,40(4):618-623.

[26] 章家恩,劉文高,胡剛. 不同土地利用方式下土壤微生物數(shù)量與土壤肥力的關(guān)系[J]. 土壤與環(huán)境,2002,11(2):140-143.

ZHANG Jia’en,LIU Wengao,HU Gang. The relationship between quantity index of soil microorganisms and soil fertility of different land use systems[J]. Soil and Environmental Sciences,2002,11(2):140-143.

[27] 馬一寧. 獼猴桃高溫?zé)岷Υ嗳跣跃C合評(píng)價(jià)研究:以陜西省為研究區(qū)[D]. 長(zhǎng)春:東北師范大學(xué),2022.

MA Yining. Vulnerability assessment of high temperature disaster in kiwifruit:A case study in Shaanxi province,China[D]. Changchun:Northeast Normal University,2022.

[28] 張欽,吳興洪,姚單君,張愛(ài)華,況勝劍,朱青. 翻壓毛葉苕子減施化肥對(duì)獼猴桃葉片及果實(shí)的影響[J]. 北方園藝,2022(8):25-31.

ZHANG Qin,WU Xinghong,YAO Danjun,ZHANG Aihua,KUANG Shengjian,ZHU Qing. Effects of Vicia villosa Roth turnover with fertilizer reduction on leaf and fruit of kiwifruit[J]. Northern Horticulture,2022(8):25-31.

[29] 張愛(ài)華,姚單君,張宇亭,況勝劍,朱青,張欽. 獼猴桃園綠肥對(duì)土壤物理性質(zhì)、獼猴桃產(chǎn)量的影響[J]. 北方園藝,2022(1):86-93.

ZHANG Aihua,YAO Danjun,ZHANG Yuting,KUANG Shengjian,ZHU Qing,ZHANG Qin. Effects of green manure on soil physical properties,yield of kiwifruit in orchard[J]. Northern Horticulture,2022(1):86-93.

[30] 劉文婷. 不同綠肥養(yǎng)分特性及其對(duì)葡萄園土壤養(yǎng)分的影響[J]. 湖北農(nóng)業(yè)科學(xué),2022,61(23):49-53.

LIU Wenting. Nutrient characteristics of the different green manure varieties and their effects on vineyard soil nutrients[J]. Hubei Agricultural Sciences,2022,61(23):49-53.

[31] 韓上. 湖北省秭歸地區(qū)橘園綠肥適宜品種篩選及其種植利用關(guān)鍵技術(shù)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.

HAN Shang. Study on screening of green manure crops for Citrus orchard in Zigui,Hubei province and their key technique of production and utilization[D]. Wuhan:Huazhong Agricultural University,2013.

主站蜘蛛池模板: 一区二区三区在线不卡免费| 亚洲高清资源| 日韩无码白| 少妇极品熟妇人妻专区视频| 国产日韩欧美在线播放| 成年午夜精品久久精品| 久久亚洲综合伊人| 伊人国产无码高清视频| 99在线视频免费| 亚洲天堂网站在线| 影音先锋亚洲无码| 久久精品中文字幕少妇| 一级毛片在线播放免费观看| 亚洲国产精品不卡在线| 精品福利国产| 日韩精品一区二区三区中文无码| 亚洲精品视频免费看| 日韩精品一区二区三区免费在线观看| 91网址在线播放| 久久午夜夜伦鲁鲁片不卡| 亚洲精品麻豆| 亚洲男人在线| 国产美女一级毛片| 在线观看精品国产入口| 国产又爽又黄无遮挡免费观看| 色AV色 综合网站| 国产黑丝一区| 四虎在线观看视频高清无码 | 日本成人在线不卡视频| 亚洲成人免费在线| 亚洲伊人久久精品影院| 亚洲男人的天堂久久香蕉| a毛片免费看| 国产丝袜91| 亚洲系列无码专区偷窥无码| 青青久久91| 在线观看无码av五月花| 国产玖玖视频| 亚洲综合香蕉| 欧美性久久久久| 免费无遮挡AV| 91无码人妻精品一区二区蜜桃| 亚洲欧美日韩天堂| 亚洲成年人网| 九九精品在线观看| 2022国产91精品久久久久久| 19国产精品麻豆免费观看| 中文字幕日韩丝袜一区| 午夜啪啪福利| 成人亚洲国产| 国产黄色免费看| 国产偷国产偷在线高清| 国产69囗曝护士吞精在线视频| 亚洲视频影院| 国产成人久久综合一区| 欧美亚洲国产视频| 77777亚洲午夜久久多人| 中文字幕久久精品波多野结| 婷婷六月色| 伊人婷婷色香五月综合缴缴情| 青青草原偷拍视频| 亚洲av成人无码网站在线观看| 国产免费久久精品44| 亚洲欧美一级一级a| 亚洲香蕉在线| 久久久久夜色精品波多野结衣| 99精品在线视频观看| 日韩av在线直播| 露脸一二三区国语对白| 婷五月综合| 日韩精品无码不卡无码| 欧美午夜在线播放| 国产精品久久久久久久久久98| 欧美成人一级| 婷婷午夜影院| 在线视频亚洲色图| 久久久久无码精品国产免费| 嫩草在线视频| 福利小视频在线播放| 成人国产精品网站在线看| 四虎亚洲精品| 免费 国产 无码久久久|