999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

楊梅的營養(yǎng)功效及其應用研究進展

2023-04-29 00:00:00胡子聰雷琳周晨光蔣巧俊蘇鳳賢李彥坡胡超凡
果樹學報 2023年9期

摘" " 要:楊梅是中國南方傳統(tǒng)特產(chǎn)水果,具有色澤艷麗、酸甜可口、風味濃郁和營養(yǎng)豐富等特點。楊梅富含抗壞血酸、酚酸、花青素和黃酮醇等生物活性成分,具有抗氧化、抗炎癥、抗腫瘤、抗菌、降血糖、預防心血管疾病等多種健康功效,具有較高的食用價值、藥用價值和經(jīng)濟價值。隨著對楊梅研究的不斷深入及楊梅產(chǎn)業(yè)的快速發(fā)展,以楊梅鮮果為主要原料的加工制品越來越受到消費者青睞,以楊梅果汁、楊梅酒和楊梅果干等為代表的楊梅產(chǎn)品的市場規(guī)模也在逐步擴大。在系統(tǒng)梳理近年來國內(nèi)外有關楊梅研究成果的基礎之上,從楊梅的主要功能成分、生物活性及其開發(fā)應用等方面展開綜述,并對楊梅產(chǎn)業(yè)今后的發(fā)展方向進行展望,以期為推動楊梅資源的深入研究與高值化應用提供理論參考。

關鍵詞:楊梅;營養(yǎng)成分;健康功效;開發(fā)應用

中圖分類號:S667.6 文獻標志碼:A 文章編號:1009-9980(2023)09-1966-14

收稿日期:2023-03-06 接受日期:2023-06-21

基金項目:溫州科技特派員項目(X20210051);溫州市環(huán)大羅山省級現(xiàn)代農(nóng)業(yè)園區(qū)科技支撐項目(WZDLS2021-0X)

作者簡介:胡子聰,男,助教,碩士,主要從事亞熱帶果蔬貯藏加工研究。Tel:19823326782,E-mail:huzc1996@163.com

*通信作者Author for correspondence. Tel:13957788365,E-mail:jiangqiaojun7432@126.com

Research progress in nutritional benefit and application of Chinese bayberry fruit

HU Zicong1, 2, 3, LEI Lin2, ZHOU Chenguang4, JIANG Qiaojun1, 3*, SU Fengxian1, 3, LI Yanpo1, 3, HU Chaofan1, 3

(1Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Academy of Agricultural Science, Wenzhou 325006, Zhejiang, China; 2College of Food Science, Southwest University, Chongqing 400715, China; 3Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou 325006, Zhejiang, China; 4Institute of Modern Agricultural Planning and Design, Wenzhou Academy of Agricultural Science, Wenzhou 325006, Zhejiang, China)

Abstract: Chinese bayberry (Myrica rubra Sieb. et Zucc.) is an important subtropical evergreen fruit crop. It is cultivated mainly in southern China, widely distributed in East China and Hunan, Guangdong, Guangxi, Guizhou and other regions. Bayberry fruit is traditional to China, characterized by bright color, sweet and sour taste, rich flavor and high nutritional value. The size of bayberry fruit is similar to a litchi, with papillas on outside surface, while the diameter of fruit varies from 1 to 1.5 cm. It is usually eaten fresh and processed into dried fruit, wine, juice and powder. The medicinal value of bayberry fruit has received more attentions in recent years and have been confirmed to be healthy for human due to its abundant sugars, vitamins, anthocyanins, fibers and other nutrient substances. Bayberry fruit is a good raw material for food therapy, with the beneficial effects of generating fluid and quenching thirst, regulating intestinal tract, killing intestinal worms, hemostasis and stopping diarrhea. In addition, current studies have shown that bayberry fruit has antioxidant, anti-inflammatory, anti-tumor, antibacterial, antiviral and hypoglycemic efficacy, cardiovascular disease prevention and other functional effects. Bayberry fruit has a pleasant sweet and sour taste. The soluble solids content in bayberry fruit is between 8.4% to 15.0%, and the total sugar and total acid contents are 8.4% and 1.2%, respectively. Bayberry fruit is a good source of phenolic acids, and the total phenolic acid content is significantly higher than other berries (such as blueberry, mulberry and blackcurrant). Gallic acid is the main phenolic acid in all varieties of bayberry fruit. The pink, red and nearly black colors of bayberry fruit are mainly due to the presence of anthocyanins, especially cyanidin-3-O-glucoside, accounting for more than 95% of the total anthocyanin content of bayberry fruit. In most bayberry fruits, quercetin is the main flavonol, followed by myricetin and kaempferol. These nutrients in bayberry fruit have protective effects on liver, cardiovascular system and immune system, and can effectively prevent and treat chronic diseases. Bayberry fruit extract plays a beneficial role in the prevention or treatment of related metabolic diseases as a potential antioxidant by scavenging free radicals, and inhibiting lipid peroxidation and apoptosis. The components with anti-inflammatory properties in bayberry fruit, such as myricetin, proanthocyanidins, phenolic acids, quercetin, etc., can interact with many molecules involved in the inflammatory pathway and reduce the activity of cytokines, chemokines and inflammatory enzymes. Myricetin in the extract of bayberry fruit mainly inhibits tumor cell proliferation through the following five mechanisms: (1) Activating Hippo signaling pathway; (2) Inhibiting human hypoxanthine nucleotide dehydrogenase (hIMPDH) activities; (3) Regulating telomere G-quadruplex; (4) Regulating mitogen-activated protein kinase (MAPK) signaling pathway; (5) Activating glycogen synthase kinase-3β (GSK-3β) signaling pathway, and inhibiting β-catenin and Survivin/PCNA/cyclin D1 pathway. The extract of bayberry fruit can be used as a natural antibacterial agent to inhibit the proliferation of intestinal pathogens. It may have a significant effect on reducing blood glucose and preventing diabetes by inhibiting hepatic gluconeogenesis. And it can inhibit weight gain, improve glucose tolerance and insulin resistance, reduce serum and liver triglyceride content, and significantly improve liver macrovesicular steatosis. Bayberry fruit is not resistant to storage and transportation. It is vulnerable to collision or mechanical damage and loses water, which breeds microorganisms and causes corruption. In order to avoid the waste of resources caused by spoilage of fresh bayberry fruits, deep processing of freshly picked bayberry fruits is usually carried out to increase the economic added value of bayberry fruit and extend the shelf life and consumption cycle of bayberry products. In addition, with the deepening of research on bayberry fruit and the rapid development of bayberry industry, the processed products with fresh bayberry fruit as the main raw material are more and more favored by consumers. At present, the common processing products of bayberry fruit on the market mainly include bayberry wine, bayberry juice, dried bayberry, bayberry powder, etc. At present, the research on the functional effects of bayberry fruit and its related products is still in the initial and exploratory stage, and its potential molecular mechanism is not very clear. The types of bayberry processing product on the market are relatively few and the degree of industrialization is obviously insufficient. The focus of future research is on accelerating the process of deep processing and comprehensive utilization of by-products of bayberry fruit, continuously extending the industrial chain, and increasing added value. Based on the systematic review of recent domestic and foreign research achievements on bayberry, this paper summarizes the main nutrient compositions, biological activities and development and application of bayberry, and prospects the future development direction of bayberry industry. This article aims to provide theoretical reference for promoting in-depth research and high-value application of bayberry resources.

Key words: Bayberry fruit; Nutritional component; Health benefit; Development and application

楊梅(Myrica rubra Sieb. et Zucc.)是屬于楊梅科(Myricaceae)楊梅屬(Myrica)的常綠喬木,又稱圣生梅、樹梅、白蒂梅,是源于中國的特產(chǎn)水果,早在兩千年前就已有人工栽培楊梅的記載[1]。楊梅喜溫暖濕潤氣候,在中國亞熱帶地區(qū)廣泛種植,云南、廣西、貴州、浙江、福建等地均有分布,其中以浙江楊梅品質(zhì)為上乘。中國楊梅每年種植面積約33.4萬hm2,年產(chǎn)量達95萬t,占全球楊梅種植面積和產(chǎn)量的90%以上[2-4]。楊梅作為浙江最具特色和代表性的優(yōu)勢農(nóng)產(chǎn)品,種植歷史悠久,品種資源豐富,已成為浙江第二大水果產(chǎn)業(yè)[5]。據(jù)統(tǒng)計,浙江楊梅種植面積已超9.33萬hm2,2021年全省楊梅總產(chǎn)量為68.58萬t,占全國楊梅總產(chǎn)量的70%以上,總產(chǎn)值近50億元,位居全國第一[6-7]。

楊梅是中國原產(chǎn)的亞熱帶水果,古代醫(yī)學典籍中就已記載楊梅具有生津止渴、健脾開胃、解毒祛寒等功效[8]。現(xiàn)代研究表明,楊梅中含有豐富的糖類、抗壞血酸、酚酸、花青素和黃酮醇等營養(yǎng)成分,能夠發(fā)揮較強的抗氧化、抗炎癥、抗菌等生物活性,對于預防和緩解癌癥、心血管疾病和糖尿病等慢性疾病具有顯著的作用[9-11]。楊梅鮮果除了可以直接食用之外,還能進行深加工,開發(fā)出楊梅酒、楊梅粉、楊梅果汁和楊梅果干等系列產(chǎn)品,具有較高的經(jīng)濟附加值。因此筆者在本文中對楊梅的主要營養(yǎng)組成、健康功效及其開發(fā)利用情況進行全面綜述,為推動楊梅精深加工和產(chǎn)業(yè)高質(zhì)量發(fā)展提供理論參考。

1 楊梅的主要營養(yǎng)成分

1.1 糖類和有機酸

楊梅擁有令人愉悅的酸甜口味,而其中的糖類和有機酸含量是影響楊梅風味的重要因素。研究顯示楊梅中的可溶性固形物含量(w,后同)在8.4%~15.0%之間,總糖和總酸含量分別為8.4%和1.2%[12]。表1列出了常見的17個不同品種楊梅的有機酸和糖含量,蔗糖是楊梅中主要的可溶性糖類,約占總可溶性糖的60%以上[13],而大葉細蒂具有最高的蔗糖含量,為65.85 mg·g-1,東魁的蔗糖含量為65.44 mg·g-1,水晶種的蔗糖含量最低(40.41 mg·g-1)。在3種可溶性糖中,果糖甜度最高,其次是蔗糖,而東魁都具有較高的果糖含量,從糖含量角度來看它們是未來楊梅優(yōu)良風味遺傳育種的良好候選品種。楊梅從未熟到全熟的過程中,其中的可溶性糖總量也從0.31 g·100 g-1增加至12.27 g·100 g-1 [14],這些糖除了賦予成熟楊梅更顯著的甜味屬性,還與光、溫度和植物激素等環(huán)境和發(fā)育因素一起作為信號分子促進楊梅成熟過程中花青素的積累[15]。楊梅的可滴定酸含量在0.667%~1.586%之間,主要包括檸檬酸(7.84~22.06 g·kg-1)、蘋果酸(0.12~1.16 g·kg-1)、草酸(18.86~34.30 mg·kg-1)和抗壞血酸(13.66~81.55 g·100 g-1),整體上來看檸檬酸含量約占總酸含量的90%以上,使得楊梅被列為抗壞血酸優(yōu)勢型水果[16]。

1.2 酚酸

楊梅是酚酸的良好來源,總酚酸含量在7.41~10.29 g·kg-1之間[10],顯著高于其他漿果,如藍莓(3.96~4.19 g·kg-1)、桑椹(2.70~2.99 g·kg-1)、黑加侖(3.33~3.64 g·kg-1)、藍靛果(5.19~5.65 g·kg-1)和黑莓(3.10~3.42 g·kg-1)[17]。酚酸根據(jù)結(jié)構不同主要分為兩類,C6-C1酚酸(含有羥基苯甲酸骨架)和C6-C3酚酸(含有羥基肉桂酸骨架),前者包括沒食子酸、香草酸、對羥基苯甲酸、原兒茶酸等,后者包括對香豆酸、咖啡酸、阿魏酸等[18]。研究人員已在楊梅中初步鑒定出了7種酚酸,包括沒食子酸、原兒茶酸、對羥基苯甲酸、香草酸、咖啡酸、對香豆酸、阿魏酸,其結(jié)構式如圖1-a所示。表2列出了11個不同品種楊梅原汁中的酚酸組成及含量,在所有品種的楊梅中,以沒食子酸為主要酚酸,其含量范圍為6.69~23.90 mg·L-1,其他酚酸含量大小依次為原兒茶酸>對香豆酸>對羥基苯甲酸,而阿魏酸、咖啡酸和香草酸含量相對較低。其他研究也報道了C6-C1酚酸是楊梅中的主要酚酸,F(xiàn)ang等[19]僅從荸薺種中分離出沒食子酸和原兒茶酸;柳萌等[20]發(fā)現(xiàn)成熟東魁中咖啡酸、香豆酸幾乎檢測不到,而原兒茶酸和對羥基苯甲酸含量分別達到1.67 μg·g-1和3.89 μg·g-1。酚酸是楊梅中具有芳香性質(zhì)的次生代謝產(chǎn)物,品種、環(huán)境(如光照、土壤等)、成熟度等因素均會對楊梅中酚酸的積累及其組成產(chǎn)生影響。

1.3 花青素

楊梅中的花青素主要以糖苷形式存在,包括飛燕草色素-3-O-己糖苷、矢車菊素-3-O-半乳糖苷、矢車菊素-3-O-葡萄糖苷(centathrin-3-O-glucoside,C3G)、天竺葵色素-3-O-葡萄糖苷和芍藥色素-3-O-葡萄糖苷5種[13],它們的化學結(jié)構差異主要體現(xiàn)在A環(huán)和B環(huán)上連接的R1、R2和R3基團(如圖1-b所示)。楊梅的粉紅色、紅色和接近黑色的顏色主要是由于花青素的存在,尤其是C3G,占楊梅總花色素含量的95%以上[25]。Zhang等[13]對17個不同品種的楊梅中花青素組成和含量進行了測定,晚稻楊梅中C3G含量最高[(912.24±84.84) μg·g-1],其次是大葉細蒂[(901.43±20.97) μg·g-1]和荸薺種[(837.32±36.95) μg·g-1],而紅梅類早色、深紅種和粉紅種中C3G和其他花青素含量也相對較低,這可能與楊梅的成熟度有關,花青素含量與楊梅成熟度成正比,且以紫果期最高[26]。在水晶種等白梅類品種中均未檢測或檢測到極低含量的花青素[24],這是由于調(diào)控楊梅花青素合成的基因MrWD40-1在水晶種中表達量極低,而在荸薺種中具有較高的表達水平[27-28]。大量流行病學實驗表明,攝入富含花青素的膳食能夠預防多種自由基介導的慢性疾病或并發(fā)癥[29],因此楊梅中的花青素未來可以作為一種新型的保健食品或食品配料,具有廣闊的應用前景。

1.4 黃酮醇

不同品種楊梅中的黃酮醇含量存在差異,F(xiàn)ang等[24]研究發(fā)現(xiàn),荸薺種原汁中黃酮醇含量最高[(56.80±4.68) mg·L-1],其次是晚稻楊梅[(44.40±8.31) mg·L-1]、黑炭楊梅[(41.70±3.71) mg·L-1],白梅類水晶種黃酮醇含量最低,分別為(2.78±0.03) mg·L-1、(3.56±0.63) mg·L-1。黃酮醇結(jié)構中的兩個苯環(huán)(A環(huán)和C環(huán))通過中間的吡喃酮環(huán)(B環(huán))連接形成一個具有3個羥基的基本母核結(jié)構(C6-C3-C6),A環(huán)、C環(huán)中的取代基不同會產(chǎn)生不同的苷元(如圖1-c所示)[30]。有研究已初步鑒定出楊梅中黃酮醇的主要組成,分別以楊梅素、槲皮素和山奈酚的糖苷的形式存在,包括楊梅素-3-O-鼠李糖苷、楊梅素脫氧己糖苷沒食子酸酯、槲皮素-3-O-半乳糖苷、槲皮素-3-O-葡萄糖苷、槲皮素-3-O-鼠李糖苷、山柰酚-3-O-半乳糖苷、山柰酚-3-O-葡萄糖苷[13]。在大多數(shù)楊梅中,槲皮素是主要的黃酮醇,其次是楊梅素和山奈酚[24],如荸薺種中槲皮素-3-O-半乳糖苷含量最高達到(74.47±4.02) μg·g-1,楊梅素-3-O-鼠李糖苷含量為(50.33±2.88) μg·g-1,均遠高于楊梅素脫氧己糖苷沒食子酸酯[(1.87±0.18) μg·g-1]、山柰酚-3-O-半乳糖苷[(4.26±0.33) μg·g-1]、山柰酚-3-O-葡萄糖苷[(4.32±0.19) μg·g-1][13]。楊梅中的黃酮醇類化合物具有抑菌、抗炎和護肝等生理功效,能夠有效預防和治療心血管疾病、糖尿病等慢性疾病[11]。

2 楊梅的健康功效

2.1 抗氧化作用

抗氧化活性是預防許多慢性疾病,如糖尿病、癌癥和心血管疾病等的關鍵機制,各種研究表明,楊梅是酚類化合物、類黃酮和五環(huán)三萜類化合物等天然抗氧化劑的良好來源[31]。一般采用1,1-二苯基-2-三硝基苯肼自由基(DPPH)、鐵離子還原/抗氧化能力(FRAP)和2,2’-聯(lián)氮雙(3-乙基苯并噻唑啉-6-磺酸)二銨鹽陽離子自由基(ABTS)評價楊梅體外抗氧化能力,表3列舉了18個品種楊梅的抗氧化能力,其中晚稻楊梅較其他楊梅品種具有最強的DPPH自由基和ABTS自由基清除活性[(3 355.46±158.57) TEAC·g-1、(4 526.92±223.96) TEAC·g-1],而荸薺種對FRAP的還原能力最高[(3 614.01±28.39) TEAC·g-1]。不同品種楊梅的抗氧化能力差異主要與其中的活性成分含量高低有關,相關性分析顯示總酚類物質(zhì)與楊梅抗氧化能力呈顯著正相關(相關系數(shù)r = 0.969)[13]。Chen等[32]在研究楊梅提取物對DNA氧化損傷和細胞毒性的保護作用時發(fā)現(xiàn),質(zhì)量濃度為25 mg·mL-1的楊梅水提物可以顯著抑制過氧亞硝酸鹽誘導的DNA損傷、細胞活性氧(ROS)增加、線粒體膜電位受破壞和大鼠原代星形膠質(zhì)細胞的細胞毒性。楊梅提取物同樣也能發(fā)揮體內(nèi)抗氧化活性,Liu等[33]評價了楊梅中黃酮提取物對慢性酒精誘導的小鼠肝臟氧化損傷的緩解作用,結(jié)果顯示按200 mg·kg-1劑量攝入楊梅中黃酮提取物4周使得小鼠血清中總膽固醇、三酰甘油、低密度脂蛋白膽固醇、細胞色素P4502E1(CYP2E1)活性、肝組織和線粒體中丙二醛(MDA)水平均顯著下降,相反血清中谷丙轉(zhuǎn)氨酶(ALT)、谷草轉(zhuǎn)氨酶(AST)、高密度脂蛋白膽固醇、肝組織和線粒體中酶促抗氧化劑谷胱甘肽過氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)、谷胱甘肽巰基轉(zhuǎn)移酶(GST)、微粒體中血紅素加氧酶(HO-1)活性顯著升高。因此楊梅提取物通過清除自由基、抑制脂質(zhì)過氧化和細胞凋亡等機制作為一種潛在的抗氧化劑在預防或治療相關代謝性疾病中發(fā)揮有益作用。

2.2 抗炎癥作用

楊梅中具有抗炎特性的成分,如楊梅素、原花青素、酚酸、槲皮素等可以與許多參與炎癥途徑的分子發(fā)生相互作用,降低細胞因子、趨化因子和炎癥酶的活性[34-35]。研究人員給予年齡18~25歲的參與者每天2次250 mL楊梅汁,持續(xù)4周,結(jié)果發(fā)現(xiàn)飲用楊梅汁可顯著降低血漿中蛋白質(zhì)羰基、腫瘤壞死因子-α(TNF-α)和白細胞介素-8(IL-8)的水平,通過改善血漿抗氧化狀態(tài)和抑制與非酒精性脂肪肝相關的炎癥和細胞凋亡反應來預防青年人患病[36]。Lin等[37]發(fā)現(xiàn)東魁提取物在0.25 mg·mL-1質(zhì)量濃度下能夠顯著緩解H2O2誘導的小鼠巨噬細胞損傷,抑制脂多糖(LPS)刺激巨噬細胞產(chǎn)生NO和TNF-α。而楊梅提取物的抗炎癥效果與其中所含的楊梅素密切相關,Chen等[38]研究了從楊梅中分離的楊梅素對痤瘡桿菌誘導的皮炎緩解效果,結(jié)果顯示楊梅素抑制趨化因子IL-8和IL-6的產(chǎn)生、Toll樣受體2(TLR2)基因表達和p70S6激酶蛋白磷酸化,調(diào)節(jié)人類皮脂細胞的炎癥信號。

2.3 抗腫瘤作用

楊梅中含有豐富的花青素、黃酮,通過清除自由基,抑制腫瘤細胞增殖,促進癌細胞凋亡來發(fā)揮抗腫瘤作用。Sun等[39]從楊梅中分離純化得到的C3G,經(jīng)C3G處理后胃癌細胞SGC7901、AGS和BGC823的黏附性減弱,細胞凋亡形態(tài)發(fā)生異常變化,增殖活性明顯受到抑制。隨著C3G處理濃度的增加導致胃癌細胞SGC7901中基質(zhì)金屬蛋白酶2(MMP-2)的活性增強,加速了對腫瘤細胞的破壞。食用富含多酚的果蔬已被證明對于預防癌癥的發(fā)生至關重要[40-41],Xia等[42]發(fā)現(xiàn)野生楊梅提取物能夠有效抑制人肝癌細胞HepG2的增殖,半最大效應質(zhì)量濃度(EC50)為(7.60±0.63) mg·mL-1,在體外消化過程中,結(jié)腸食糜的抗癌細胞增殖活性[EC50=(10.14±0.13) mg·mL-1]與提取物相當,而結(jié)腸階段的細胞對楊梅中多酚物質(zhì)的吸收率也達到最高(75.35%),這表明楊梅中的植物化學物在腸道和結(jié)腸步驟的末端消化后具有很強的抗癌細胞增殖活性,可以作為一種膳食補充劑添加至日常膳食中。Saini等[10]在楊梅丙酮提取物中檢測到高含量的沒食子酸(793.74 mg·100 g-1)、楊梅素(345.6 mg·100 g-1)、咖啡酸(246.6 mg·100 g-1)和兒茶素(190.181 mg·100 g-1),這些活性成分促進提取物顯示出較強的抗癌活性,使得人宮頸癌細胞C33A、SiHa和HeLa增殖活力降低70%~92%。

以往的研究揭示了楊梅提取物中的楊梅素主要通過以下5種機制抑制腫瘤細胞增殖(圖2)。(1)激活Hippo信號通路。通過下調(diào)YAP蛋白(YAP)表達抑制肝癌細胞增殖并誘導細胞凋亡,此外激活LATS1/2激酶,直接在絲氨酸殘基上磷酸化YAP蛋白,導致蛋白酶體的降解[43]。(2)抑制人次黃嘌呤核苷酸脫氫酶(hIMPDH)活性。hIMPDH作為嘌呤核苷酸生物合成途徑中的限速酶,在細胞增殖和分化中起關鍵作用,而楊梅提取物是hIMPDH抑制劑,與其結(jié)合來干擾嘌呤核苷酸的生物合成,從而抑制癌細胞增殖[44]。(3)調(diào)控端粒G-四鏈體。端粒存在于線性染色體的末端,包含TTAGGG重復序列,與雙鏈DNA的3’末端一段富G(鳥嘌呤)的單鏈組成G-四鏈體結(jié)構(G4)[45],楊梅提取物與G4以非共價相互結(jié)合發(fā)揮作用,通過占據(jù)端粒酶的結(jié)合位點或直接抑制其活性來阻斷癌細胞增殖[46]。(4)調(diào)控絲裂原活化蛋白激酶(MAPK)信號通路。楊梅提取物通過上調(diào)細胞外信號調(diào)節(jié)激酶(ERK)、Jun N-末端激酶(JNK)表達和絲裂原活化蛋白激酶p38的磷酸化,抑制蛋白激酶B(AKT)及其下游因子p70S6K和p90RSK的磷酸化,進而抑制腫瘤細胞增殖并減少其轉(zhuǎn)移擴散[47-48]。(5)激活糖原合成酶激酶-3β(GSK-3β)信號通路,抑制下游β-連環(huán)蛋白(β-catenin)和Survivin/PCNA/cyclin D1通路[49]。

2.4 抗菌作用

早在《本草綱目》中就記載了食用楊梅能夠有效治療腸道疾病如痢疾、霍亂等,現(xiàn)代研究顯示,楊梅提取物在低濃度下可以抑制霍亂弧菌毒力基因的表達,在高濃度下可以直接抑制霍亂弧菌的生長,在治療過程中保持正常的腸道菌群,沒有抑制或殺死其他非致病性細菌(如大腸桿菌和枯草芽孢桿菌等)[51]。Yao等[52]發(fā)現(xiàn),楊梅具有緩解腹瀉癥狀的效果與其抗菌活性有關,楊梅提取物對沙門氏菌、李斯特菌和志賀氏菌有顯著的抑菌活性,最低抑菌質(zhì)量濃度(MIC)在2.07~8.28 mg·mL-1之間,楊梅的主要活性成分,如黃酮類化合物與抗菌活性呈正相關(相關系數(shù)r=0.92)。Ju等[53]鑒定發(fā)現(xiàn)C3G是楊梅水提物中的主要活性成分,對食源性致病菌(副傷寒沙門氏菌、無毒李斯特菌和單核增生李斯特菌)最為敏感,MIC僅為2.07 mg·mL-1。研究表明楊梅提取物可通過顯著抑制IL-8、TNF-α等炎癥因子的表達,抑制NF-κB 信號通路,發(fā)揮抗炎作用,間接防治腹瀉[54]。楊梅的抗菌活性除了能夠治療腹瀉之外,還能抑制食品腐敗微生物增殖,延長食品貨架期。Li等[55]發(fā)現(xiàn)楊梅提取物對魚糜腐壞菌黏質(zhì)沙雷氏菌和銅綠假單胞菌的抑制作用最大,當提取物與茶多酚復合后,對異常漢遜酵母、藤黃微球菌、金黃色葡萄球菌、銅綠假單胞菌和大腸桿菌的生長具有協(xié)同抑制作用。因此楊梅提物作為天然抗菌劑,或許能夠取代抗生素或其他防腐劑在食品和醫(yī)藥領域發(fā)揮越來越重要的作用。

2.5 降血糖作用

大量研究證據(jù)顯示楊梅提取物可能對降血糖和預防糖尿病具有顯著效果,在口服糖耐量試驗中,富含C3G的楊梅提取物可顯著降低鏈脲佐菌素誘導的糖尿病小鼠的血糖水平,增加糖耐量[29,56]。而這種降糖作用可能部分是通過抑制肝臟糖異生作用介導的,其潛在機制與下調(diào)PPARγ輔激活因子1α(PGC-1α)、磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)的mRNA表達有關(圖3)[57]。Sun等[29]發(fā)現(xiàn)楊梅提取物中C3G上調(diào)胰島素轉(zhuǎn)錄因子PDX-1的表達,增加胰腺β細胞胰島素基因(Ins2)的表達和胰島素蛋白的表達,保持β細胞的胰島素分泌能力,從而預防胰島素分泌不足引起的鏈脲佐菌素誘導的糖尿病。此外攝入楊梅提取物中的花青素可通過上調(diào)ERK1/2和PI3K/Akt誘導轉(zhuǎn)錄因子Nrf2介導的血紅素氧合酶-1(HO-1),降低細胞ROS水平,改善體內(nèi)抗氧化狀態(tài),保護胰腺β細胞免受H2O2誘導的細胞壞死和凋亡的影響[58]。

2.6 預防心血管疾病

楊梅中豐富的黃酮、多糖和花色苷等多種生物活性成分是其具有降血脂、降血壓以及防治心血管疾病(cardiovascular disease,CVD)的物質(zhì)基礎。Yu等[59]在研究楊梅提取物對高脂飼料喂養(yǎng)的C57BL/6小鼠代謝紊亂的調(diào)節(jié)作用時發(fā)現(xiàn),楊梅提取物可以抑制小鼠體重的增加,改善糖耐量異常和胰島素抵抗,降低血清和肝臟三酰甘油(TG)含量,并顯著改善肝臟出現(xiàn)的大泡性脂肪變性情況。潛在機制如圖4所示,攝入楊梅提取物會抑制肝臟X受體α(LXRα)及其靶基因(SREBP-1、FAS、ABCG1和ApoE)的mRNA表達水平,降低高脂飲食小鼠血清TG水平,有效減輕小鼠肝脂肪變性程度[60];增加過氧化物酶體增殖物激活受體α(PPARα)及其靶基因(Cyp4a10、Cyp4a14和aP2)的mRNA表達水平,改善小鼠糖脂代謝[61]。此外楊梅提取物還能通過下調(diào)蘋果酶(ME)、磷脂酸磷酸水解酶(PAP)的mRNA表達水平降低血清TG和脂肪酸含量;顯著降低參與肝臟膽固醇調(diào)節(jié)的膽固醇酰基轉(zhuǎn)移酶(ACAT)以及參與脂肪生成的乙酰輔酶A羧化酶(ACC)、固醇調(diào)節(jié)元件結(jié)合蛋白2(SREBF2)mRNA表達水平,從而達到抑制肝臟脂肪生成、膽固醇合成和脂肪酸氧化的協(xié)同效果[56,62]。

3 楊梅的開發(fā)和應用

楊梅是一種極不耐儲存和運輸?shù)乃菀资艿脚鲎不驒C械損傷而流失水分,滋生微生物而發(fā)生腐敗。一般情況下可以在較低溫度下(<4 ℃)冷藏5 d左右,而在常溫下貨架期僅2 d[63],但楊梅中的活性成分含量也會逐漸降低[64]。隨著近年來楊梅產(chǎn)量的不斷增長,楊梅鮮果的滯銷現(xiàn)象頻繁上演,據(jù)統(tǒng)計每年楊梅鮮果損失率為40%~60%[65],為了避免楊梅鮮果因腐敗變質(zhì)而造成的資源浪費,通常會對新鮮采摘的楊梅進行深加工,以提高楊梅的經(jīng)濟附加值,延長楊梅產(chǎn)品的貨架期和消費周期[66]。目前市面上常見的楊梅加工產(chǎn)品主要有楊梅酒、楊梅汁飲料、楊梅干和楊梅粉等[67]。

3.1 楊梅酒

楊梅酒是以楊梅鮮果為原料,采用發(fā)酵法或浸泡法生產(chǎn)的具有極高營養(yǎng)價值和藥用價值的飲品。由于酒體色澤鮮紅、風味獨特,在中國南方深受消費者喜愛,有極大的市場潛力。研究發(fā)現(xiàn)發(fā)酵型楊梅酒和浸泡型楊梅酒都含有59種芳香性成分,前者醇類成分更豐富,而后者乙醇含量要高于前者,且酯類物質(zhì)的種類和含量要多于前者[67]。在楊梅酒加工過程中,楊梅品種、酵母、儲存時間和溫度等因素均會影響最終產(chǎn)品的色澤、香氣和營養(yǎng)成分含量。Cao等[68]對比了利用東魁、荸薺種、丁岙梅和晚稻楊梅4個不同品種楊梅釀造的發(fā)酵型楊梅酒的品質(zhì),結(jié)果顯示晚稻楊梅酒中花青素含量(ρ,后同)最高(116.6 mg·L-1),其次是荸薺種(88.5 mg·L-1)、丁岙梅(72.8 mg·L-1)、東魁(51.1 mg·L-1),而東魁楊梅酒因醋酸含量高,口感最酸。荸薺種楊梅酒除具備濃郁的酒香外,還表現(xiàn)出明顯的果香和花香,這與其酒體中含有較豐富的酯類和高級醇有關。酵母的選擇是發(fā)酵型楊梅酒生產(chǎn)中的關鍵環(huán)節(jié),直接影響楊梅酒的風味品質(zhì),張文文等[69]采用東方伊薩酵母(Issatchenkio orientalis)和釀酒酵母(Saccharomyces cerevisiae)按接種比例10∶1混菌發(fā)酵荸薺種楊梅酒,最終生產(chǎn)的楊梅酒比單菌發(fā)酵的楊梅酒中乙酯類和乙酸酯類芳香物質(zhì)含量分別提高18.52%和57.34%。此外楊梅酒在常溫下儲存約3個月就會出現(xiàn)色澤不穩(wěn)定的問題,其主要原因與楊梅中花色苷的降解有關,Zhang等[70]研究認為楊梅酒包裝時充入氮氣可顯著降低活性氧對花色苷降解和酒體顏色劣變造成的影響,其次在發(fā)酵前后添加沒食子酸、阿魏酸和單寧酸等輔色劑也能夠提升最終產(chǎn)品色感。

3.2 楊梅汁

楊梅汁是由新鮮楊梅果實經(jīng)過壓榨、過濾、調(diào)配、殺菌等工藝制作的楊梅飲品,因其色澤誘人、風味濃郁、酸甜可口,保留了楊梅果實的花青素、酚酸等眾多營養(yǎng)成分,兼具較高的保健功效,深受消費者喜愛。Tian等[71]研究14個楊梅品種的果汁加工特性,結(jié)果發(fā)現(xiàn)白梅類(水晶種)加工的果汁中花青素、總酚含量遠低于紅梅類(東魁)和烏梅類(荸薺種、晚稻楊梅等),從感官品質(zhì)和健康益處的角度來看,晚稻楊梅加工果汁的效果最好,荸薺種次之。然而目前楊梅汁加工仍存在一些有待解決的技術難題,經(jīng)過壓榨加工的楊梅汁中仍含有大量不溶性膳食纖維、可溶性果膠、蛋白質(zhì)等,易導致楊梅汁渾濁或產(chǎn)生沉淀,直接影響楊梅汁感官品質(zhì),甚至不利于其中營養(yǎng)成分的吸收與利用[72];楊梅汁加工過程中的各個單元操作均會造成其中的芳香成分逸散或某些熱敏性芳香物質(zhì)的分解劣變,因此開發(fā)新型澄清劑或選擇合適的澄清處理方法,最大限度保持楊梅汁感官品質(zhì)和營養(yǎng)價值,提高楊梅汁質(zhì)量和產(chǎn)品附加值對于楊梅汁加工至關重要。陳虹吉等[72]對比了不同材質(zhì)微濾膜對楊梅汁理化品質(zhì)的影響,結(jié)果發(fā)現(xiàn)聚丙烯微濾膜具有最高的滲透通量,在提高楊梅汁透光率、降低楊梅汁中殘留蛋白質(zhì)含量方面具有更好的效果。Wu等[73]設計了一種殼聚糖-海藻酸鈉復合澄清劑,使得澄清后的楊梅汁透光率由0.08%提高到91.2%,果汁沉降時間比處理前縮短約60%,果汁中的芳香成分β-大馬酮和二氫-5-戊基-2(3H)-呋喃酮含量增加,提高了楊梅汁的澄清效果和感官品質(zhì)。

3.3 楊梅蜜餞

楊梅蜜餞是一種以楊梅鮮果為主要原料,添加(或不添加)食品添加劑和其他輔料,經(jīng)糖或食鹽腌制等工藝制成的產(chǎn)品,是傳統(tǒng)的楊梅加工制品。楊梅干的原始加工工藝為:楊梅鮮果→漂洗→瀝干→鹽漬→制胚→脫鹽→常溫糖漬→風干→加輔料→檢驗→成品[74]。隨著休閑零食行業(yè)的異軍突起,以楊梅為主要原料的蜜餞類產(chǎn)品種類也在逐漸增多,按照加工工藝的不同,目前楊梅蜜餞產(chǎn)品主要分為7種,分別是初制楊梅干、話化楊梅干、糖漬楊梅脯、鹽漬楊梅脯、楊梅涼果、無糖楊梅蜜餞和原味楊梅干[75]。然而絕大多數(shù)楊梅蜜餞都很難突破營養(yǎng)成分損失、含糖量過高、品質(zhì)難以保證等眾多發(fā)展壁壘[76],如何研發(fā)新工藝、新設備保存楊梅蜜餞中的營養(yǎng)成分,維持楊梅的保健功效是目前生產(chǎn)上亟待解決的核心問題。

3.4 楊梅粉

楊梅粉是將楊梅鮮果通過擠壓、過濾等加工工藝得到汁水后,經(jīng)過干燥工藝制成的可沖調(diào)性固體飲料,具有保存容易、沖飲便捷等優(yōu)點,越來越受到消費者青睞。Cheng等[25]分別利用冷凍干燥法和噴霧干燥法制備楊梅粉,結(jié)果發(fā)現(xiàn)凍干楊梅粉中的總酚、沒食子酸、原兒茶酸、C3G和總花青素均顯著高于噴霧干燥楊梅粉,說明采用冷凍干燥法制備楊梅粉是保持楊梅中活性多酚較好的方法。然而在冷凍干燥的第二階段(解析干燥階段),為了去除物料中的部分結(jié)合水,物料的溫度會被加熱至允許的最高溫度之下(60~80 ℃),使楊梅果實中一些熱敏性活性成分受到影響[77]。翁喬丹等[78]為了最大限度保留凍干楊梅粉的營養(yǎng)和感官品質(zhì),優(yōu)化改進了凍干楊梅粉的制備方法,首先采用真空干燥法去除楊梅汁中的大部分水,使楊梅粉含水量為28%~32%,再利用干燥劑(硅膠)在70 Pa的真空度下吸附其中的水分,最終得到的楊梅粉中酚類物質(zhì)含量與楊梅原汁沒有顯著差異。

4 總結(jié)與展望

楊梅富含酚酸、花青素和黃酮醇類等營養(yǎng)成分,具有顯著的抗氧化、抗炎癥、抗腫瘤、抗菌、降血糖、預防心血管疾病等多種健康功效。隨著楊梅營養(yǎng)品質(zhì)研究的不斷深入和精深加工業(yè)的迅速發(fā)展,在追求營養(yǎng)健康的當下,楊梅及其產(chǎn)品具有廣闊的市場前景。然而,目前對楊梅及其相關產(chǎn)品的營養(yǎng)特性研究還處于探索階段,其潛在分子機制尚未十分明確,市面上關于楊梅的產(chǎn)品種類相對單一且工業(yè)化程度明顯不足。為了加快楊梅精深加工及綜合利用進程,促進楊梅產(chǎn)業(yè)高質(zhì)量發(fā)展,未來的重點工作和發(fā)展方向應集中在以下3個方面:(1)構建快速高效的營養(yǎng)成分分離和鑒定體系,如利用高速逆流色譜法、柱層析法、制備型高效液相色譜法等聯(lián)用技術分離純化楊梅中高純度黃酮單體,可為楊梅中黃酮醇活性研究奠定基礎[79]。(2)大力發(fā)展楊梅精深加工,目前楊梅加工業(yè)主要圍繞果汁、含醇飲料、果干等產(chǎn)品,楊梅系列產(chǎn)品品種不全,增效提升空間較大。如利用楊梅中豐富的單寧、色素、楊梅素等開發(fā)重金屬離子吸附劑、食用色素、新型包裝材料等[80]。(3)深化楊梅營養(yǎng)特性研究,大多通過體外實驗對楊梅所發(fā)揮的功能特性進行初探,動物實驗或大規(guī)模人群干預實驗數(shù)據(jù)嚴重不足,導致活性機制闡述不明確。未來可緊緊圍繞楊梅提取物治療糖尿病、抑制消化道腫瘤、預防抗生素相關性腹瀉等功效,進一步挖掘楊梅在預防疾病或輔助醫(yī)療領域的發(fā)展?jié)摿81]。

參考文獻References:

[1] JIANG Q J,JIN W W,ZHANG W Y,ZHANG Z C,YOU L F,BI Y Q,YUAN L M. Analysis of vibration acceleration levels and quality deterioration of Chinese bayberry fruit in semi-vacuum package by express delivery[J]. Journal of Food Process Engineering,2021,44(12):e13899.

[2] REN H Y,WANG H Y,YU Z P,ZHANG S W,QI X J,SUN L,WANG Z S,ZHANG M C,AHMED T,LI B. Effect of two kinds of fertilizers on growth and rhizosphere soil properties of bayberry with decline disease[J]. Plants,2021,10(11):2386.

[3] LI J K,CHEN J,LIU L X,CHEN N,LI X,CAMERON K M,F(xiàn)U C X,LI P. Domestication history reveals multiple genetic improvements of Chinese bayberry cultivars[J]. Horticulture Research,2022,9:uhac126.

[4] 周超超,陳竹韻,汪國云,朱奕凡,巨鵬舉,趙嵐,陳金輝,焦云,高中山. 余姚楊梅種質(zhì)資源研究和開發(fā)利用[J]. 果樹資源學報,2022,3(4):1-6.

ZHOU Chaochao,CHEN Zhuyun,WANG Guoyun,ZHU Yifan,JU Pengju,ZHAO Lan,CHEN Jinhui,JIAO Yun,GAO Zhongshan. Research and utilization of the red bayberry germplasm resources in Yuyao city[J]. Journal of Fruit Resources,2022,3(4):1-6.

[5] 陳方永. 我國楊梅研究現(xiàn)狀與發(fā)展趨勢[J]. 中國南方果樹,2012,41(5):31-36.

CHEN Fangyong. Research status and development trend of Chinese bayberry[J]. South China Fruits,2012,41(5):31-36.

[6] 江云珠,姚佳蓉,姜遙,李真,朱作藝,戴芬. 浙江省楊梅設施栽培主要模式及效益分析[J]. 農(nóng)產(chǎn)品質(zhì)量與安全,2022(4):69-73.

JIANG Yunzhu,YAO Jiarong,JIANG Yao,LI Zhen,ZHU Zuoyi,DAI Fen. Main modes and benefit analysis of bayberry facility cultivation in Zhejiang Province[J]. Quality and Safety of Agro-Products,2022(4):69-73.

[7] 浙江省統(tǒng)計局. 浙江省分地區(qū)主要農(nóng)產(chǎn)品產(chǎn)量[EB/OL]. [2023-02-23]. http://data.tjj.zj.gov.cn/page/zbcx/zbDetail.jsp?taskId=9f11ed3356024df699d09b85c3b7babfamp;orgCode=33.

Zhejiang provincial Bureau of Statistics. Production of main agricultural products by region in Zhejiang Province[EB/OL]. [2023-02-23]. http://data.tjj.zj.gov.cn/page/zbcx/zbDetail.jsp?taskId=9f11ed3356024df699d09b85c3b7babfamp;orgCode=33.

[8] 戚行江. 楊梅病蟲害及安全生產(chǎn)技術[M]. 北京:中國農(nóng)業(yè)科學技術出版社,2014:1-133.

QI Xingjiang. Disease and pest control and safe production technology of red bayberry[M]. Beijing:China Agriculture Science and Technology Press,2014:1-133.

[9] HE K,LI X G,XIAO Y B,YONG Y,ZHANG Z Q,LI S P,ZHOU T M,YANG D Q,GAO P C,XIN X L. Hypolipidemic effects of Myrica rubra extracts and main compounds in C57BL/6j mice[J]. Food amp; Function,2016,7(8):3505-3515.

[10] SAINI R T,GARG V,DANGWAL K. Effect of extraction solvents on polyphenolic composition and antioxidant,antiproliferative activities of Himalyan bayberry (Myrica esculenta)[J]. Food Science and Biotechnology,2013,22(4):887-894.

[11] SUN C D,HUANG H Z,XU C J,LI X,CHEN K S. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.):A review[J]. Plant Foods for Human Nutrition,2013,68(2):97-106.

[12] ZHANG S W,YU Z P,SUN L,REN H Y,ZHENG X L,LIANG S M,QI X J. An overview of the nutritional value,health properties,and future challenges of Chinese bayberry[J]. PeerJ,2022,10:e13070.

[13] ZHANG X N,HUANG H Z,ZHANG Q L,F(xiàn)AN F J,XU C J,SUN C D,LI X A,CHEN K S. Phytochemical characterization of Chinese bayberry (Myrica rubra Sieb. et Zucc.) of 17 cultivars and their antioxidant properties[J]. International Journal of Molecular Sciences,2015,16(12):12467-12481.

[14] WU D,CHENG H,CHEN J L,YE X Q,LIU Y. Characteristics changes of Chinese bayberry (Myrica rubra) during different growth stages[J]. Journal of Food Science and Technology,2019,56(2):654-662.

[15] DAS P K,SHIN D H,CHOI S B,PARK Y I. Sugar-hormone cross-talk in anthocyanin biosynthesis[J]. Molecules and Cells,2012,34(6):501-507.

[16] 張淑文,梁森苗,鄭錫良,任海英,朱婷婷,戚行江. 楊梅優(yōu)株果實品質(zhì)的主成分分析及綜合評價[J]. 果樹學報,2018,35(8):977-986.

ZHANG Shuwen,LIANG Senmiao,ZHENG Xiliang,REN Haiying,ZHU Tingting,QI Xingjiang. Principal component analysis and comprehensive evaluation of fruit quality in some advanced selections of Chinese bayberry[J]. Journal of Fruit Science,2018,35(8):977-986.

[17] ZADERNOWSKI R,NACZK M,NESTEROWICZ J. Phenolic acid profiles in some small berries[J]. Journal of Agricultural and Food Chemistry,2005,53(6):2118-2124.

[18] SINOSAKI N,TONIN A,RIBEIRO M,POLISELI C,ROBERTO S,DA SILVEIRA R,VISENTAINER J,SANTOS O,MEURER E. Structural study of phenolic acids by triple quadrupole mass spectrometry with electrospray ionization in negative mode and H/D isotopic exchange[J]. Journal of the Brazilian Chemical Society,2020,31(2):402-408.

[19] FANG Z X,ZHANG M,WANG L X. HPLC-DAD-ESIMS analysis of phenolic compounds in bayberries (Myrica rubra Sieb. et Zucc.)[J]. Food Chemistry,2007,100(2):845-852.

[20] 柳萌,郜海燕,房祥軍,吳偉杰,陳杭君,劉瑞玲. 不同成熟度楊梅酚酸的超聲-微波協(xié)同優(yōu)化提取及其抗氧化性對比[J]. 食品科學,2021,42(3):112-120.

LIU Meng,GAO Haiyan,F(xiàn)ANG Xiangjun,WU Weijie,CHEN Hangjun,LIU Ruiling. Optimization of ultrasonic-microwave assisted extraction of phenolic acids from Chinese bayberries (Morella rubra Sieb. et Zucc.) of different maturities and a comparative study of their antioxidant activities[J]. Food Science,2021,42(3):112-120.

[21] HAMINIUK C W I,MACIEL G M,PLATA-OVIEDO M S V,PERALTA R M. Phenolic compounds in fruits - an overview[J]. International Journal of Food Science amp; Technology,2012,47(10):2023-2044.

[22] CASTA?EDA-OVANDO A,DE LOURDES PACHECO-HERNáNDEZ M,PáEZ-HERNáNDEZ M E,RODRíGUEZ J A,GALáN-VIDAL C A. Chemical studies of anthocyanins:A review[J]. Food Chemistry,2009,113(4):859-871.

[23] BARRECA D,TROMBETTA D,SMERIGLIO A,MANDALARI G,ROMEO O,F(xiàn)ELICE M R,GATTUSO G,NABAVI S M. Food flavonols:Nutraceuticals with complex health benefits and functionalities[J]. Trends in Food Science amp; Technology,2021,117:194-204.

[24] FANG Z X,ZHANG Y H,Lü Y,MA G P,CHEN J C,LIU D H,YE X Q. Phenolic compounds and antioxidant capacities of bayberry juices[J]. Food Chemistry,2009,113(4):884-888.

[25] CHENG A W,XIE H X,QI Y,LIU C,GUO X,SUN J Y,LIU L N. Effects of storage time and temperature on polyphenolic content and qualitative characteristics of freeze-dried and spray-dried bayberry powder[J]. LWT-Food Science and Technology,2017,78:235-240.

[26] 張叢,李文,李成悅,陳麗芳,邱棟梁. 不同成熟度楊梅果實的品質(zhì)及花青素組分比較[J]. 亞熱帶農(nóng)業(yè)研究,2022,18(1):41-45.

ZHANG Cong,LI Wen,LI Chengyue,CHEN Lifang,QIU Dongliang. Comparison of fruit quality and anthocyanin composition of Myrica rubra with different maturity levels[J]. Subtropical Agriculture Research,2022,18(1):41-45.

[27] LIU X F,F(xiàn)ENG C,ZHANG M M,YIN X R,XU C J,CHEN K S. The MrWD40-1 gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation[J]. Plant Molecular Biology Reporter,2013,31(6):1474-1484.

[28] NIU S S,XU C J,ZHANG W S,ZHANG B,LI X,WANG K L,F(xiàn)ERGUSON I B,ALLAN A C,CHEN K S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor[J]. Planta,2010,231(4):887-899.

[29] SUN C D,ZHANG B,ZHANG J K,XU C J,WU Y L,LI X,CHEN K S. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice[J]. Journal of Medicinal Food,2012,15(3):288-298.

[30] 邢夢云. 楊梅FLSs和F3’5’H調(diào)控楊梅素生物合成的機制研究[D]. 杭州:浙江大學,2021.

XING Mengyun. Regulation of myricetin biosynthesis by FLSs and F3’5’H in Morella rubra[D]. Hangzhou:Zhejiang University,2021.

[31] SILVA B J C,SECA A M L,BARRETO M D C,PINTO D C G A. Recent breakthroughs in the antioxidant and anti-inflammatory effects of Morella and Myrica species[J]. International Journal of Molecular Sciences,2015,16(8):17160-17180.

[32] CHEN W,ZHOU S M,ZHENG X D. A new function of Chinese bayberry extract:protection against oxidative DNA damage[J]. LWT - Food Science and Technology,2015,60(2):1200-1205.

[33] LIU H S,QI X Y,CAO S Q,LI P P. Protective effect of flavonoid extract from Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit on alcoholic liver oxidative injury in mice[J]. Journal of Natural Medicines,2014,68(3):521-529.

[34] LEYVA-LóPEZ N,GUTIERREZ-GRIJALVA E P,AMBRIZ-PEREZ D L,HEREDIA J B. Flavonoids as cytokine modulators:a possible therapy for inflammation-related diseases[J]. International Journal of Molecular Sciences,2016,17(6):921.

[35] CHOY K W,MURUGAN D,LEONG X F,ABAS R,ALIAS A,MUSTAFA M R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases:a mini review[J]. Frontiers in Pharmacology,2019,10:1295.

[36] GUO H H,ZHONG R M,LIU Y J,JIANG X W,TANG X L,LI Z,XIA M,LING W H. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease[J]. Nutrition,2014,30(2):198-203.

[37] LIN K H,LU C P,CHAO J W,YU Y P. Antioxidant properties and anti-inflammatory effects of the hydroethanolic extracts of two varieties of bayberry fruit (Myrica rubra Sieb. et Zucc.) prepared by stirring and ultrasonic methods[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2019,47(3):634-642.

[38] CHEN K C,YANG C H,LI T T,ZOUBOULIS C C,HUANG Y C. Suppression of Propionibacterium acnes-stimulated proinflammatory cytokines by Chinese bayberry extracts and its active constituent myricetin in human sebocytes in vitro[J]. Phytotherapy Research,2019,33(4):1104-1113.

[39] SUN C D,ZHENG Y X,CHEN Q J,TANG X L,JIANG M,ZHANG J K,LI X,CHEN K S. Purification and anti-tumour activity of cyanidin-3-O-glucoside from Chinese bayberry fruit[J]. Food Chemistry,2012,131(4):1287-1294.

[40] LIU R H. Health-promoting components of fruits and vegetables in the diet[J]. Advances in Nutrition,2013,4(3):384S-392S.

[41] GUAN R R,VAN LE Q,YANG H,ZHANG D Q,GU H P,YANG Y F,SONNE C,LAM S S,ZHONG J T,ZHU J G,LIU R Q,PENG W X. A review of dietary phytochemicals and their relation to oxidative stress and human diseases[J]. Chemosphere,2021,271:129499.

[42] XIA W,LIN Y Y,GONG E S,LI T,LIAN F L,ZHENG B S,LIU R H. Wild pink bayberry fruit:the effect of in vitro gastrointestinal digestion on phytochemical profiles,and antioxidant and antiproliferative activities[J]. Food amp; Function,2021,12(5):2126-2136.

[43] LI M J,CHEN J L,YU X F,XU S,LI D F,ZHENG Q S,YIN Y C. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP[J]. Cells,2019,8(4):358.

[44] PAN H L,HU Q,WANG J Y,LIU Z H,WU D,LU W Q,HUANG J. Myricetin is a novel inhibitor of human inosine 5’-monophosphate dehydrogenase with anti-leukemia activity[J]. Biochemical and Biophysical Research Communications,2016,477(4):915-922.

[45] SHAY J W. Role of telomeres and telomerase in aging and cancer[J]. Cancer Discovery,2016,6(6):584-593.

[46] MONDAL S,JANA J,SENGUPTA P,JANA S,CHATTERJEE S. Myricetin arrests human telomeric G-quadruplex structure:A new mechanistic approach as an anticancer agent[J]. Molecular BioSystems,2016,12(8):2506-2518.

[47] YANG C,LIM W,BAZER F W,SONG G. Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress[J]. Cancer Letters,2017,399:10-19.

[48] PARK H,PARK S,BAZER F W,LIM W,SONG G. Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation,disrupting redox homeostasis,and mediating loss of mitochondrial membrane potential[J]. Journal of Cellular Physiology,2018,233(9):7457-7466.

[49] LI Y,CUI S X,SUN S Y,SHI W N,SONG Z Y,WANG S Q,YU X F,GAO Z H,QU X J. Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice[J]. Oncotarget,2016,7(37):60446-60460.

[50] SONG X,TAN L,WANG M,REN C X,GUO C J,YANG B,REN Y L,CAO Z X,LI Y Z,PEI J. Myricetin:A review of the most recent research[J]. Biomedicine amp; Pharmacotherapy,2021,134:111017.

[51] ZHONG Z T,YU X Z,ZHU J. Red bayberry extract inhibits growth and virulence gene expression of the human pathogen Vibrio cholerae[J]. Journal of Antimicrobial Chemotherapy,2008,61(3):753-754.

[52] YAO W R,WANG H Y,WANG S T,SUN S L,ZHOU J,LUAN Y Y. Assessment of the antibacterial activity and the antidiarrheal function of flavonoids from bayberry fruit[J]. Journal of Agricultural and Food Chemistry,2011,59(10):5312-5317.

[53] JU J,YAO W R,SUN S L,GUO Y H,CHENG Y L,QIAN H,XIE Y F. Assessment of the antibacterial activity and the main bacteriostatic components from bayberry fruit extract[J]. International Journal of Food Properties,2018,21(1):1043-1051.

[54] 戴凱群,齊莉莉,王進波,宋玉勝. 楊梅酒對小鼠腹瀉的防治作用及其作用機理[J]. 核農(nóng)學報,2019,33(5):911-916.

DAI Kaiqun,QI Lili,WANG Jinbo,SONG Yusheng. The anti-diarrheal effect and mechanism of Chinese bayberry wine on diarrhea of mice[J]. Journal of Nuclear Agricultural Sciences,2019,33(5):911-916.

[55] LI J R,HAN Q,CHEN W,YE L B. Antimicrobial activity of Chinese bayberry extract for the preservation of surimi[J]. Journal of the Science of Food and Agriculture,2012,92(11):2358-2365.

[56] ZHANG X N,LV Q A,JIA S,CHEN Y H,SUN C D,LI X A,CHEN K S. Effects of flavonoid-rich Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit extract on regulating glucose and lipid metabolism in diabetic KK-Ay mice[J]. Food amp; Function,2016,7(7):3130-3140.

[57] SUN C D,LIU Y L,ZHAN L H,RAYAT G R,XIAO J B,JIANG H M,LI X,CHEN K S. Anti-diabetic effects of natural antioxidants from fruits[J]. Trends in Food Science amp; Technology,2021,117:3-14.

[58] ZHANG B,KANG M X,XIE Q P,XU B,SUN C D,CHEN K S,WU Y L. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation[J]. Journal of Agricultural and Food Chemistry,2011,59(2):537-545.

[59] YU L J,CAI W J,ZHANG Y,F(xiàn)ENG L,HUANG C. Red bayberry extract prevents high-fat diet-induced metabolic disorders in C57BL/6 mice[J]. Journal of Functional Foods,2015,14:278-288.

[60] HUANG C. Natural modulators of liver X receptors[J]. Journal of Integrative Medicine,2014,12(2):76-85.

[61] DING X B,GUO L,ZHANG Y,F(xiàn)AN S J,GU M,LU Y,JIANG D,LI Y M,HUANG C,ZHOU Z Q. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through activating the PPARα and GLUT4 pathway[J]. PLoS One,2013,8(10):e77915.

[62] BAGHERNIYA M,NOBILI V,BLESSO C N,SAHEBKAR A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease:A clinical review[J]. Pharmacological Research,2018,130:213-240.

[63] 蔣巧俊,徐靜,蔣先福. 基于自發(fā)氣調(diào)技術的東魁楊梅保鮮貯運冷鏈體系的構建[J]. 保鮮與加工,2013,13(4):19-23.

JIANG Qiaojun,XU Jing,JIANG Xianfu. Construction of storage and transport cold chain system of Myrica rubra cv. Dongkui based on modified atmosphere storage technology[J]. Storage amp; Process,2013,13(4):19-23.

[64] 林雨晴,楊穎,陸勝民. 楊梅的功能特性及其綜合利用[J]. 食品科技,2020,45(7):108-111.

LIN Yuqing,YANG Ying,LU Shengmin. The functional characteristics of bayberry and its comprehensive utilization[J]. Food Science and Technology,2020,45(7):108-111.

[65] 李潔瑩,杜晶,韓飛,余培斌,丁紹東,范柳萍. 無醇楊梅果酒發(fā)酵工藝優(yōu)化及其品質(zhì)分析[J]. 食品與發(fā)酵工業(yè),2016,42(12):76-82.

LI Jieying,DU Jing,HAN Fei,YU Peibin,DING Shaodong,F(xiàn)AN Liuping. Optimization of fermentation processing of non-alcohol Chinese bayberry wine and its quality analysis[J]. Food and Fermentation Industries,2016,42(12):76-82.

[66] CAO X M,CAI C F,WANG Y L,ZHENG X J. Effects of ultrasound processing on physicochemical parameters,antioxidants,and color quality of bayberry juice[J]. Journal of Food Quality,2019,2019:7917419.

[67] 魯金花,謝定,鮮靈芝. 發(fā)酵型與浸泡型楊梅酒的揮發(fā)性成分分析[J]. 食品與機械,2022,38(6):34-39.

LU Jinhua,XIE Ding,XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food amp; Machinery,2022,38(6):34-39.

[68] CAO Y X,WU Z F,WENG P F. Comparison of bayberry fermented wine aroma from different cultivars by GC-MS combined with electronic nose analysis[J]. Food Science amp; Nutrition,2020,8(2):830-840.

[69] 張文文,翁佩芳,吳祖芳. 東方伊薩酵母和釀酒酵母混合發(fā)酵楊梅酒的發(fā)酵效率及風味特征分析[J]. 食品科學,2019,40(18):144-151.

ZHANG Wenwen,WENG Peifang,WU Zufang. Fermentation efficiency and flavor characteristics of bayberry wine with mixed starter culture of issatchenkio orientalis and Saccharomyces cerevisiae[J]. Food Science,2019,40(18):144-151.

[70] ZHANG Z W,LI J Y,F(xiàn)AN L P. Evaluation of the composition of Chinese bayberry wine and its effects on the color changes during storage[J]. Food Chemistry,2019,276:451-457.

[71] TIAN J H,CAO Y P,CHEN S G,F(xiàn)ANG Z X,CHEN J C,LIU D H,YE X Q. Juices processing characteristics of Chinese bayberry from different cultivars[J]. Food Science amp; Nutrition,2019,7(2):404-411.

[72] 陳虹吉,陳亦欣,葉興乾,劉東紅,陳健初. 微濾膜材質(zhì)對楊梅汁理化品質(zhì)及抗氧化活性的影響[J]. 中國食品學報,2021,21(2):152-160.

CHEN Hongji,CHEN Yixin,YE Xingqian,LIU Donghong,CHEN Jianchu. Effects of various micro-filtration membranes on physicochemical properties and antioxidant activity of bayberry juice[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(2):152-160.

[73] WU A D,LV J M,JU C X,WANG Y W,ZHU Y Y,CHEN J C. Optimized clarification technology of bayberry juice by chitosan/sodium alginate and changes in quality characteristics during clarification[J]. Foods,2022,11(5):671.

[74] 葉雙全,秦國正,游旋. 楊梅果干加工工藝[J]. 農(nóng)村新技術,2020(4):58.

YE Shuangquan,QIN Guozheng,YOU Xuan. Processing technology of dried bayberry fruit[J]. Rural New Technology,2020(4):58.

[75] 史婷婷,郎婭,季露,田雪冰,陳惠云,孫志棟. 楊梅蜜餞制作工藝研究[J]. 黑龍江農(nóng)業(yè)科學,2015(12):120-123.

SHI Tingting,LANG Ya,JI Lu,TIAN Xuebing,CHEN Huiyun,SUN Zhidong. Research progress on processing and manufacturing technique in preserved fruit of Myrica rubra[J]. Heilongjiang Agricultural Sciences,2015(12):120-123.

[76] 方修貴,戚行江,曹雪丹,鄭錫良,趙凱,求盈盈. 輕度調(diào)味型楊梅果干的加工工藝及質(zhì)量標準[J]. 浙江柑橘,2010,27(3):37-39.

FANG Xiugui,QI Xingjiang,CAO Xuedan,ZHENG Xiliang,ZHAO Kai,QIU Yingying. Processing technology and quality standard of slightly seasoned dried bayberry fruit[J]. Zhejiang Ganju,2010,27(3):37-39.

[77] CALíN-SáNCHEZ á,LIPAN L,CANO-LAMADRID M,KHARAGHANI A,MASZTALERZ K,CARBONELL-BARRACHINA á A,F(xiàn)IGIEL A. Comparison of traditional and novel drying techniques and its effect on quality of fruits,vegetables and aromatic herbs[J]. Foods,2020,9(9):1261.

[78] 翁喬丹,桑磊,方婷,陳錦權,吳瑞碧. 改進凍干技術制取楊梅粉及其神經(jīng)保護研究(一)[J]. 中國食品學報,2013,13(8):27-34.

WENG Qiaodan,SANG Lei,F(xiàn)ANG Ting,CHEN Jinquan,WU Ruibi. Study on modified freeze drying technology of Myrica rubra powder and its neuroprotective effect (Ⅰ)[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(8):27-34.

[79] 劉意隆. 楊梅黃酮醇鑒定、純化及其抑制α-葡萄糖苷酶的構效機制研究[D]. 杭州:浙江大學,2020.

LIU Yilong. Characterization and purification of flavonols from Morella rubra Sieb. et Zucc. and the structure-activity mechanism of flavonols for inhibition on α-glucosidase[D]. Hangzhou:Zhejiang University,2020.

[80] 林雨晴,胡洋健,李宗軍,秦丹,侯愛香. 楊梅的功能特性及其應用研究進展[J]. 農(nóng)產(chǎn)品加工,2019(14):90-93.

LIN Yuqing,HU Yangjian,LI Zongjun,QIN Dan,HOU Aixiang. Functional characteristics and application prospects of waxberry[J]. Farm Products Processing,2019(14):90-93.

[81] WANG Y S,CHEN J B,WANG Y E,ZHENG F H,QU M Y,HUANG Z W,YAN J L,BAO F P,LI X A,SUN C D,ZHENG Y X. Cyanidin-3-O-glucoside extracted from the Chinese bayberry (Myrica rubra Sieb. et Zucc.) alleviates antibiotic-associated diarrhea by regulating gut microbiota and down-regulating inflammatory factors in NF-κB pathway[J]. Frontiers in Nutrition,2022,9:970530.

主站蜘蛛池模板: 国产青青草视频| 2022国产无码在线| 久久中文字幕不卡一二区| 久久久久青草线综合超碰| 久久久久夜色精品波多野结衣| 98精品全国免费观看视频| 91国内在线观看| 国产在线精品美女观看| 国产真实自在自线免费精品| 99热这里只有精品国产99| 亚州AV秘 一区二区三区| 六月婷婷激情综合| 国产农村1级毛片| 国产免费羞羞视频| 亚洲v日韩v欧美在线观看| 久久永久视频| 欧美性色综合网| 欧美激情视频在线观看一区| 妇女自拍偷自拍亚洲精品| 国产亚洲精品97在线观看| 成人午夜精品一级毛片| 色综合久久无码网| a毛片在线播放| 国产亚洲欧美在线中文bt天堂 | 欧美另类精品一区二区三区| 亚洲AⅤ综合在线欧美一区| 欧美中文一区| 爽爽影院十八禁在线观看| 女人18一级毛片免费观看| 国产日韩精品欧美一区灰| 日韩毛片免费| 国产亚洲精品va在线| 国产精品xxx| 精品色综合| 一级毛片高清| 一区二区影院| 日韩高清无码免费| 好久久免费视频高清| 一区二区日韩国产精久久| 亚洲天堂啪啪| 国产18在线播放| 日韩免费中文字幕| 国产91透明丝袜美腿在线| 欧美在线天堂| 亚洲h视频在线| 9久久伊人精品综合| 免费人成网站在线观看欧美| 欧美亚洲国产精品第一页| 四虎影视国产精品| 欧美日韩国产成人高清视频| 亚洲精品在线91| 国产精品夜夜嗨视频免费视频| 国产综合精品一区二区| 亚洲人成影视在线观看| 中文无码影院| 伊人久久大香线蕉成人综合网| 99久久精品免费看国产免费软件 | 韩国福利一区| 国产日韩欧美成人| 五月六月伊人狠狠丁香网| 欧美亚洲国产精品久久蜜芽| 国产精品v欧美| 中文字幕av一区二区三区欲色| 中文字幕在线观看日本| 国产地址二永久伊甸园| 久久永久精品免费视频| 午夜影院a级片| 午夜天堂视频| 亚洲—日韩aV在线| 国产91透明丝袜美腿在线| 久久综合一个色综合网| 成人福利在线观看| 国产成人精品高清不卡在线| 99这里只有精品在线| 中国国产高清免费AV片| 国产在线专区| 亚洲中文字幕在线观看| 国产激情在线视频| 欧美天堂在线| 成AV人片一区二区三区久久| 无码人中文字幕| 中文字幕色站|