999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

短枝富士蘋果不同負(fù)載和灌水量對(duì)新梢生長、產(chǎn)量和灌水利用效率的影響

2023-04-29 00:00:00趙先飛張馨予于國康梁潔趙紫嫣劉宇張林森
果樹學(xué)報(bào) 2023年9期

摘" " 要:【目的】探明黃土高原地區(qū)蘋果優(yōu)質(zhì)高效生產(chǎn)的負(fù)載量與灌溉量的關(guān)系。【方法】以9年生短枝富士蘋果樹為研究對(duì)象,試驗(yàn)設(shè)3種負(fù)載量:低負(fù)載T1(2果·cm-2主干橫截面積)、中負(fù)載T2(4果·cm-2主干橫截面積)和高負(fù)載T3(6果·cm-2主干橫截面積),及6個(gè)灌水梯度:W0(0)、W1(40% ETc)、W2(60% ETc)、W3(80% ETc)、W4(100% ETc)和W5(120% ETc)。研究負(fù)載量與灌水處理對(duì)蘋果生長、葉面積指數(shù)、光合特性、品質(zhì)、產(chǎn)量及灌水利用效率的影響。【結(jié)果】在相同負(fù)載量條件下,隨著灌水量的減少,新梢生長長度和葉面積指數(shù)LAI逐漸降低,光合速率Pn、蒸騰速率Tr和氣孔導(dǎo)度Gs的日均值均會(huì)隨灌水量的增加呈現(xiàn)先增加后減小的趨勢(shì)。在相同灌水量條件下,隨著負(fù)載量的增加,新梢生長長度顯著降低(p<0.05),其他無明顯變化。負(fù)載量和灌水量對(duì)蘋果產(chǎn)量和灌溉水利用效率(簡稱IWUE)有極顯著影響,各處理以T3W4產(chǎn)量最高,T1W1處理產(chǎn)量最低;T3W1處理的IWUE最大,T1W5處理最小。【結(jié)論】回歸分析表明,產(chǎn)量和IWUE同時(shí)獲得最優(yōu)解時(shí),灌水量和負(fù)載量組合最接近T2W4處理,因此T2W4可作為黃土高原地區(qū)蘋果節(jié)水增產(chǎn)推薦采用的方式。

關(guān)鍵詞:短枝富士蘋果;負(fù)載量;灌水量;新梢生長;葉面積指數(shù);光合特性;產(chǎn)量;水分利用效率

中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)09-1860-11

收稿日期:2023-02-23 接受日期:2023-04-22

基金項(xiàng)目:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-27);陜西省科技統(tǒng)籌創(chuàng)新工程項(xiàng)目(2015KJZDNY02-03-02)

作者簡介:趙先飛,男,在讀碩士研究生,研究方向?yàn)樘O果生理生態(tài)。Tel:13645647569,E-mail:zhaoxianfeii@163.com

*通信作者Author for correspondence. Tel:13087500773,E-mail:linsenzhang@163.com

Effect of different fruit loads and irrigation amounts on new shoot growth, yield and irrigation water use efficiency in spur-type Fuji apples

ZHAO Xianfei, ZHANG Xinyu, YU Guokang, LIANG Jie, ZHAO Ziyan, LIU Yu, ZHANG Linsen*

(College of Horticulture, Northwest A amp; F University, Yangling 712100, Shaanxi, China)

Abstract: 【Objective】 The Loess Plateau is located in a typical area of arid and semi-arid, seasonal drought, low rainfall and insufficient irrigation water. When the lack of water leads to low irrigation consumption, reasonable control of crop load is a better strategy for perennial fruit crops, which not only reduces the application of water but also stabilizes the yield, so it is of great significance to explore the irrigation amount and fruit load mode of high-quality and efficient apple production in the Loess Plateau. 【Methods】 In this study, 9-year-old spur-type Fuji apple trees were used as the research objects, and three fruit loading capacities were set up: low load T1 (2 fruits·cm-2 trunk cross-sectional area), medium load T2 (4 fruits·cm-2 trunk cross-sectional area) and high load T3 (6 fruits·cm-2 trunk cross-sectional area), and six irrigation gradients: W0 (0), W1 (40% ETc), W2 (60% ETc), W3 (80% ETc), W4 (100% ETc) and W5 (120% ETc). An orthogonal experimental design was used for a total of 18 treatments. In order to comprehensively improve the growth, photosynthesis, fruit quality, yield and irrigation water use efficiency (hereinafter referred to as IWUE) of apple trees, the response pattern of fruit load and irrigation water treatment to apple canopy, photosynthesis, appearance quality, yield and IWUE was studied. 【Results】 Different irrigation treatments had significant effects on the length of new shoots and leaf area index (LAI) in the experiment. The reduction of irrigation water significantly reduced the length of new shoots and LAI, and the highest treatment was W5 and the lowest treatment was the control W0. The effect of fruit load on leaf area index was small, and under the same irrigation water conditions, leaf area index did not change significantly with the increase of fruit load, but it had a significant relationship with the length of new shoots, which decreased significantly with the increase of fruit load. In the full treatment, the final maximum length of T1W5 shoots was 49.1 cm, and the final maximum length of T3W0 shoots was 25.2 cm. The largest exponential growth rate of leaf area was as high as 65.9% with T1W5 treatment, and the lowest was with T3W0 treatment, which decreased by 28.1% compared with T1W5. The irrigation amount had a significant effect on the daily mean values of net photosynthetic rate Pn, transpiration rate Tr, intercellular CO2 concentration Ci and stomatal conductance Gs in apple leaves. Under the same fruit load conditions, the daily average values of photosynthetic rate Pn, transpiration rate Tr and stomatal conductance Gs all increased first and then decreased with the increase of irrigation volume, reaching the maximum with W3 treatment, and the intercellular CO2 concentration was generally the smallest with W4 treatment. The highest treatment of Pn was T1W3, and the lowest treatment was T1W5 treatment, which significantly reduced by 46.1%; The highest treatment of Tr was T1W3, and the lowest treatment was T3W0 treatment, which significantly reduced by 33.1%; The highest treatment of Ci was T3W1, and the lowest treatment was T1W4 treatment, which significantly reduced by 11.8%; The highest treatment for Gs was T2W3 and the lowest treatment was T1W5 treatment, with a significant reduction of 46.6%. The fruit load and irrigation amount can adjust the fruit quality, and under the same load conditions, the single fruit weight and large fruit rate showed a trend of first increasing and then decreasing with the increase of irrigation volume, and reached the maximum with W3 and W4 treatments, respectively. The fruit hardness increased with the decrease in the amount of irrigation water. W4 treatment can increase the single fruit weight and large fruit rate, and the quality performance with W0 treatment being the worst, and the quality performance of T3 apples was the worst. Among them, the highest weight per fruit was T1W4, which was 281.06 g, which was 39.51% higher than the lowest T3W0 which was 201.46 g. The hardest T2W1 treatment was 7.73 kg·cm-2, which was 73.32% higher than the lowest T1W4 treatment of 4.46 kg·cm-2. The T1W4 treatment with the highest fruit rate was 83.93%, which was 54.45% higher than the lowest T3W0 treatment of 54.34%. Load and irrigation volume had a significant impact on apple yield and irrigation water use efficiency (IWUE). T3W4 had the highest yield of 87 379 kg·hm-2, and T1W1 was the lowest. Compared with T1W1 treatment, the yields of remaining treatments increased by 7.3%-178.5%, and the IWUE treated by T3W1 was the largest (31.11 kg·m-3), which was 6.7 times more than that of the smallest T1W5 treatment (4.63 kg·m-3). 【Conclusion】 Regression analysis showed that when yield and IWUE obtained the optimal solution at the same time, the combination of irrigation water and fruit load was closest to T2W4 treatment. Therefore, T2W4 can be used as a recommended method to save water and increase apple production in the Loess Plateau region.

Key words: Spur-type Fuji apples; Load; Irrigation volume; New shoot growth; Leaf area index; Photosynthetic characteristics; Yield; Water use efficiency

黃土高原處于典型的干旱半干旱地區(qū),該區(qū)域季節(jié)性干旱、降雨量少,容易導(dǎo)致蘋果產(chǎn)量不穩(wěn)定[1]。土壤水分的虧缺會(huì)造成作物氣孔導(dǎo)度、蒸騰速率和光合速率的下降,并降低根系的吸收面積和吸收能力,從而影響作物對(duì)養(yǎng)分的吸收和運(yùn)輸;而果實(shí)負(fù)載量是影響果樹庫源關(guān)系中最重要的因素之一,疏果能夠調(diào)節(jié)“庫(果實(shí))-源(葉片)”之間的關(guān)系,改變光合產(chǎn)物的運(yùn)輸與分配,從而影響果實(shí)的產(chǎn)量和品質(zhì)[2-5],并對(duì)土壤水分虧缺具有一定調(diào)節(jié)作用。目前,關(guān)于蘋果樹生長、光合特性與產(chǎn)量品質(zhì)的研究主要集中在蘋果樹灌水量的多少,忽略了負(fù)載量和灌水量兩者對(duì)果樹生長、光合特性與產(chǎn)量品質(zhì)的互作效應(yīng),從而導(dǎo)致樹勢(shì)、產(chǎn)量無法得到有效提高。因此,在黃土高原地區(qū)探索蘋果合理負(fù)載量下灌溉量對(duì)保證樹體長勢(shì)和連年豐產(chǎn)、穩(wěn)產(chǎn)、優(yōu)質(zhì)具有重要意義。

已有研究表明蘋果樹可以適應(yīng)一定程度的缺水,適度的水分虧缺對(duì)果樹影響不顯著[6];隨著水分虧缺程度的加大,蘋果樹的光合作用效率會(huì)顯著降低,蘋果產(chǎn)量也會(huì)降低[7]。黃媛等[8]發(fā)現(xiàn)不同灌溉制度下土壤含水量發(fā)生變化會(huì)對(duì)番茄生理、產(chǎn)量及水分利用效率產(chǎn)生影響,其中以50%田間持水量為灌溉條件時(shí)可在設(shè)施番茄秋冬茬栽培中獲得較高的果實(shí)品質(zhì)和商品價(jià)值,有效實(shí)現(xiàn)節(jié)水增效目標(biāo)。黃土高原地區(qū)灌溉用水不足,當(dāng)缺水導(dǎo)致灌溉用量低時(shí),可能需要考慮進(jìn)一步的適應(yīng)策略。Francaviglia等[9]研究發(fā)現(xiàn),蘋果對(duì)灌水水平反應(yīng)較為敏感,不同響應(yīng)程度受作物負(fù)載量大小影響較大。土壤水分不足對(duì)植物水分狀況的負(fù)面影響可以通過減少作物負(fù)荷來抵消。在充分灌溉(100% ET替代)條件下,最佳作物負(fù)載為8個(gè)果·cm-2 TCSA(主干橫截面積)。研究表明調(diào)整果實(shí)負(fù)載量對(duì)于多年生水果作物來說是一個(gè)較好的策略,既可減少水的利用[10-12],又能保證適度的果實(shí)大小。它的成功使用主要是基于作物高負(fù)荷對(duì)碳分配和樹木水分關(guān)系的主要影響[13]。同時(shí)控制果實(shí)負(fù)載量可以有效調(diào)節(jié)植物體內(nèi)碳和氮的分配,提高氮的利用率和果實(shí)質(zhì)量[14]。

目前,關(guān)于黃土高原區(qū)負(fù)載量與灌水量對(duì)蘋果生長、產(chǎn)量及灌水利用的影響研究較少,且負(fù)載量與灌水量耦合的效益評(píng)價(jià)指標(biāo)比較單一,很難找出綜合效益最佳的負(fù)載量和灌水量組合。筆者在本研究中以綜合分析蘋果樹生長、光合特性、品質(zhì)、產(chǎn)量和灌溉水利用效率(irrigation water use efficiency,以下簡稱IWUE)為目的,研究負(fù)載量與灌水量處理對(duì)蘋果冠層、光合、外觀品質(zhì)、產(chǎn)量及IWUE的影響,并運(yùn)用回歸方程模擬尋求蘋果節(jié)水優(yōu)質(zhì)高產(chǎn)的負(fù)載量與灌水量的最優(yōu)解,為黃土高原區(qū)蘋果高產(chǎn)優(yōu)質(zhì)生產(chǎn)提供參考。

1 材料和方法

1.1 試驗(yàn)材料

試驗(yàn)于2022年4—10月在陜西省寶雞市千陽縣西北農(nóng)林科技大學(xué)寶雞千陽蘋果試驗(yàn)示范站(107°59′48.5″ E,34°07′22.5″ N)進(jìn)行,海拔約861 m,屬暖溫帶半大陸性氣候,年均氣溫10.9 ℃,全年太陽總輻射472.16 J·cm-2,年日照總時(shí)數(shù)2 122.2 h。該地區(qū)土層深厚,晝夜溫差大,土壤容重為1.31 g·cm-3,田間持水量為20.5%。2022年4月選取9年生矮化中間砧短枝富士(中間砧M26,基砧新疆野蘋果),株行距1 m×3 m(3336株·hm-2)。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)設(shè)有6個(gè)灌溉水平,3個(gè)負(fù)載水平,共18個(gè)處理。以不同灌溉量和負(fù)載量為1個(gè)試驗(yàn)小區(qū),每個(gè)小區(qū)3次重復(fù),試驗(yàn)前每個(gè)小區(qū)在離樹干外緣挖1 m的深坑,用彩鋼板(0.3 mm厚、1.2 m寬)將各個(gè)小區(qū)的樹進(jìn)行隔離,然后再用打上螺絲進(jìn)行固定,用來防止水分遷移。為防止雨水影響需要搭建簡易避雨設(shè)施,將塑料薄膜置于樹冠之下,高度大約與樹干一致,上部用繩子系于樹體主枝或鐵絲上,下部用木棍支撐。試驗(yàn)采用完全隨機(jī)區(qū)組設(shè)計(jì)。每個(gè)處理均隨機(jī)選取長勢(shì)良好、大小均一的3株蘋果樹,各處理3次重復(fù)。6個(gè)灌溉量處理分別為:不灌溉(W0)、40% ETc(W1)、60% ETc(W2)、80% ETc(W3)、100% ETc(W4)、120% ETc(W5)。3個(gè)負(fù)載量處理分別為:低負(fù)載量(T1)主干橫截面積每平方厘米2個(gè)果、中負(fù)載量(T2)主干橫截面積每平方厘米4個(gè)果、高負(fù)載量(T3)主干橫截面積每平方厘米6個(gè)果。在套袋前完成疏果定果,從4月開始每隔兩周進(jìn)行1次灌溉一直到果實(shí)采收后結(jié)束(表1)。施肥水平與果園一致。

根據(jù)Penman-Monteith方程(ETc =KC×ET0)進(jìn)行灌溉,該方程由ET0(參考蒸散發(fā)量)乘以作物系數(shù)(KC)得到[15-17]。

1.3 試驗(yàn)方法

1.3.1" " 氣象資料" " "在果園中心位置建立小型氣象站用于溫度、濕度、風(fēng)速等的測(cè)量,根據(jù)彭斯曼方程計(jì)算ET0值。

1.3.2" " 枝條生長測(cè)量" " 根據(jù)試驗(yàn)?zāi)陮?shí)際生長情況,于2022年5—9月,在每棵試驗(yàn)果樹的上、中、下三個(gè)部位的東、南、西、北方向均選取長勢(shì)一致且有代表性的新梢,共36個(gè)新梢。并用掛牌標(biāo)記其末端,用卷尺每隔1月測(cè)定新梢長度,計(jì)算平均生長量和枝條生長速率。

1.3.3" " 果實(shí)品質(zhì)、產(chǎn)量和水分利用效率的測(cè)定" " 當(dāng)年收獲期每株樹隨機(jī)選擇12個(gè)果實(shí),用硬度計(jì)(EPT-1;Lake CityTechnical Products)測(cè)定硬度,用手持式酸度計(jì)(PAL-BXIACID5;Atago)測(cè)定酸度(TA),用糖度計(jì)(PAL-1;Atago)測(cè)定可溶性固形物(SSC)含量、用色度儀(LS173B;Atago)對(duì)果實(shí)的顏色(L*、a*、b*)進(jìn)行測(cè)定。用電子天秤測(cè)質(zhì)量,用游標(biāo)卡尺測(cè)量縱橫徑,計(jì)算果形指數(shù)。

10月中旬果實(shí)成熟采收后,每株單獨(dú)稱質(zhì)量,計(jì)算重復(fù)的平均值。根據(jù)株產(chǎn)計(jì)算出各處理產(chǎn)量,再計(jì)算出每公頃果園產(chǎn)量,并調(diào)查各級(jí)果實(shí)的百分?jǐn)?shù)。蘋果等級(jí)分為:三級(jí)果(直徑<60 mm),二級(jí)果(60 mm≤直徑<75 mm),一級(jí)果(75 mm≤直徑<90 mm)和特級(jí)果(直徑>90 mm),其為直徑≥75 mm為大果。大果率等于每株樹上大于75 mm的果實(shí)占比。

灌溉水利用效率(IWUE計(jì)算:IWUE=Y×S/(W×104)[18]。式中:IWUE為蘋果樹灌溉水利用效率(kg·m-3);Y為蘋果總產(chǎn)量(kg·hm-2);S為蘋果的種植面積(m2);W為累計(jì)灌水量(m3)。

1.3.4" " 光合參數(shù)的測(cè)量" " 在8月初,于灌溉后的第3天每株樹選取樹冠中部向陽面5根枝條,每根枝條選1片頂部成熟葉作為試材,將LI-6800光合儀的光照度設(shè)為1500 μmol·m-2·s-1,流速設(shè)為500 μmol·s-1,濕度設(shè)為50%,在晴朗的上午9∶00—11∶00開始測(cè)量,包括凈光合速率(Pn)、蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci)。

1.3.5" " 葉面積指數(shù)的測(cè)量" " 從4月初每隔30 d用冠層分析儀LAI-2000進(jìn)行測(cè)量一直到果實(shí)采完結(jié)束。LAI-2000 冠層分析儀每次觀測(cè)時(shí),先將探頭放置于冠層上方,保持探頭上水平泡水平,按下測(cè)定按鈕,聽到兩聲蜂鳴后將探頭放入群體內(nèi)地面上,仍需保持水平,按下測(cè)定按鈕,聽到兩聲蜂鳴聲后選擇冠層下地面樹干的東南西北不同位置測(cè)量,重復(fù)測(cè)量5次,然后儀器自動(dòng)測(cè)定出群體葉面積系數(shù)LAI。

1.4 數(shù)據(jù)處理與分析

用SPSS 23.0數(shù)據(jù)處理系統(tǒng)進(jìn)行蘋果樹生長、光合、外觀品質(zhì)與產(chǎn)量等指標(biāo)的方差分析,采用Duncan多重比較法進(jìn)行顯著性分析,用Matlab進(jìn)行回歸方程擬合,用Origin作圖軟件進(jìn)行折線圖制作。

2 結(jié)果與分析

2.1 灌溉量和負(fù)載量對(duì)蘋果樹新梢生長的影響

圖1為不同灌水量與負(fù)載量下蘋果樹新梢生長的變化曲線。可以看出蘋果樹新梢在5—6月生長速度最快。相同負(fù)載量水平下,隨著灌水量的增加蘋果樹新梢生長速率也逐漸升高。其中,在低負(fù)載量條件下高灌溉量(W5)對(duì)應(yīng)的新梢生長速率最大(152.8%),不灌溉(W0)最小(66.7%),較W5降低了86.1%;在中負(fù)載量條件下灌溉量(W5)對(duì)應(yīng)的新梢生長速率最大(110.8%),不灌溉(W0)最小(37.5%),較W5降低了73.3%;在高負(fù)載量條件下灌溉量(W5)對(duì)應(yīng)的新梢生長速率最大(77.8%),不灌溉(W0)最小(41.7%),較W5降低了36.1%。6—7月份開始新梢雖有增長,但增長速率無明顯變化,在7—9月蘋果樹的新梢基本停止生長,生長速率幾乎為0。

負(fù)載量和灌水量不同對(duì)蘋果樹最終新梢長度的影響由圖1可知,不同負(fù)載量下最終新梢長度均隨著灌水量的減少而降低,其中,在低負(fù)載量條件下高灌溉量(W5)對(duì)應(yīng)的新梢長度最大(49.1 cm),不灌溉(W0)最小(30.5 cm),較W5降低了37.9%;在中負(fù)載量條件下灌溉量(W5)對(duì)應(yīng)的新梢長度最大(44.5 cm),不灌溉(W0)最小(27.2 cm),較W5降低了38.9%;在高負(fù)載量條件下灌溉量(W5)對(duì)應(yīng)的新梢長度最大(40.6 cm),不灌溉(W0)最小(25.2 cm),較W5降低了37.9%;試驗(yàn)全處理中T1W5最終新梢長度最大(49.1 cm),T3W0最終新梢長度最小(25.2 cm)。

2.2 灌溉量和負(fù)載量對(duì)蘋果樹葉面積指數(shù)的影響

不同負(fù)載量和灌水量處理下蘋果葉面積指數(shù)隨時(shí)間變化曲線如圖2所示,蘋果樹葉面積變化趨勢(shì)基本相似,均隨生長時(shí)間的增加呈現(xiàn)先快速增大,后逐漸減小至穩(wěn)定的趨勢(shì)。在不同物候期階段內(nèi),各處理間均表現(xiàn)出較顯著的差異性(p<0.05),在開花坐果期內(nèi)試驗(yàn)區(qū)溫度較低,平均溫度<15 ℃,導(dǎo)致果樹葉面積指數(shù)增加緩慢,各處理葉面積指數(shù)差異不明顯;隨著蘋果樹進(jìn)入果實(shí)膨大期,試驗(yàn)區(qū)平均溫度>15 ℃,葉面積指數(shù)增長速率也發(fā)生明顯的變化。其中增長速率最大的是T1W5處理,高達(dá)65.9%,最低的是T3W0處理,較T1W5降低了28.1%。在低負(fù)載量條件下,W5處理的葉面積指數(shù)最快達(dá)到峰值,較最慢的W0處理高26.4%;在中負(fù)載量條件下,W5處理的葉面積指數(shù)最快達(dá)到峰值,較最慢的W0處理高13.1%;在高負(fù)載量條件下,W5處理的葉面積指數(shù)最快達(dá)到峰值,較最慢的W0處理高9.1%,可見負(fù)載量和灌溉處理對(duì)葉面積指數(shù)均有顯著的影響(p<0.05)。

2.3 灌溉量和負(fù)載量對(duì)蘋果樹光合特性的影響

由表2可以看出,灌溉量對(duì)蘋果樹葉片凈光合速率Pn、蒸騰速率Tr、胞間CO2濃度Ci和氣孔導(dǎo)度Gs的日均值均有極顯著影響(p<0.01)。負(fù)載量和兩者的互作均僅對(duì)Pn有極顯著影響(p<0.01),對(duì)其他指標(biāo)無顯著影響。Pn最高的處理是T1W3,最低的處理是T1W5,顯著降低了46.1%(p<0.05);Tr最高的處理是T1W3,最低的處理是T3W0,顯著降低了33.1%(p<0.05);Ci最高的處理是T3W1,最低的處理是T1W4,顯著降低了11.8%(p<0.05);Gs最高的處理是T2W3,最低的處理是T1W0,顯著降低了46.6%(p<0.05)。在低負(fù)載量條件下,與對(duì)照W0相比,其余各處理的Pn、Tr、Ci和Gs均有顯著差異(p<0.05),其中Pn、Tr最高的均是T1W3處理,均顯著高于最低處理T1W5和T3W0(46.1%和29.6%)(p<0.05),Ci最高的是T3W0處理,比最低處理T1W4顯著降低了9.8%(p<0.05)。Gs最高的是T1W3,比最低處理T1W0顯著降低了32.6%(p<0.05)。在中負(fù)載量條件下,與對(duì)照W0相比,除W5處理外其余各處理的Pn、Tr、Ci和Gs均有顯著差異(p<0.05),其中Pn最高的是T2W3處理,比最低處理T2W4顯著降低了30.9%。Tr、Gs最高的處理均是W3,比最低的處理W0和W5分別高16.8%和40%,Ci最大的處理是T2W1,比最低的處理T2W5顯著降低了8.2%(p<0.05);在高負(fù)載量條件下,與對(duì)照W0相比,其余各處理的Pn、Tr、Ci和Gs均有顯著差異(p<0.05),其中Pn和Gs最大的處理均是W3,最低處理也均是W0,分別相差22.4%和22.1%,Tr最大的處理是T3W3,比最低的處理W0顯著降低了30.6%,Ci最大的處理是T3W1,比最低的處理W5顯著降低了10.8%。

2.4 灌溉量和負(fù)載量對(duì)蘋果果實(shí)品質(zhì)的影響

不同處理對(duì)蘋果果實(shí)品質(zhì)的影響如表3所示。灌溉量和負(fù)載量對(duì)單果質(zhì)量和大果率均有顯著影響(p<0.05),其中單果質(zhì)量最高的是T1W4處理(281.06 g),比最低的T3W0處理(201.46 g)高39.51%。不同灌水量和兩者的互作均對(duì)果實(shí)硬度有顯著影響(p<0.05),其中硬度最大的T2W1處理為7.73 kg·cm-2,比最低的T1W4處理(4.46 kg·cm-2)高73.32%,負(fù)載量對(duì)果實(shí)硬度無顯著影響,灌水量對(duì)果實(shí)硬度有顯著影響(p<0.05),在相同負(fù)載量條件下,隨著灌水量的增加,其硬度呈現(xiàn)減小的趨勢(shì)。負(fù)載量、灌水量以及兩者互作均對(duì)蘋果果實(shí)的果形指數(shù)、酸度無顯著影響。對(duì)于色差來說,僅有灌水量對(duì)b*(黃色和藍(lán)色值)有顯著影響(p<0.05),負(fù)載量和兩者互作均對(duì)L*(亮度)、a*(紅色和綠色值)和b*無顯著影響。負(fù)載量對(duì)蘋果果實(shí)的可溶性固形物含量有顯著影響(p<0.05),其中最高的處理T3W1為11.23%,比最低的T3W5處理(9.23%)高2個(gè)百分點(diǎn)。在相同灌溉量條件下,可溶性固形物含量隨著負(fù)載量的增加顯著降低。負(fù)載量、灌水量以及兩者互作均對(duì)蘋果果實(shí)的大果率有極顯著影響(p<0.01),在同一負(fù)載量下,隨著灌溉量的增加,其大果率顯著升高,其中大果率最高的處理T1W4為83.93%,比最低的T3W0處理(54.34%)高29.59個(gè)百分點(diǎn)。

2.5 灌溉量和負(fù)載量對(duì)蘋果產(chǎn)量和水分利用效率的影響

由表4可知,負(fù)載量和灌水量對(duì)蘋果產(chǎn)量和灌溉水利用效率(IWUE)有極顯著影響(p<0.01)。各處理以T3W4產(chǎn)量最高,為87 379 kg·hm-2,T1W1處理產(chǎn)量最低,與T1W1處理相比,其余處理產(chǎn)量增加7.3%~178.5%,表明適量增加灌水量和負(fù)載量有助于蘋果樹增產(chǎn)。T3W1處理的IWUE最大(31.11 kg·m-3),是最小的T1W5處理(4.63 kg·m-3)的6.7倍。在相同負(fù)載量條件下,IWUE隨灌水量增加而顯著降低;T1W1、T1W2、T1W3、T1W4和T1W5處理的IWUE最低,均低于31.11 kg·m-3;在相同灌水量下,蘋果不同負(fù)載量條件下IWUE隨著負(fù)載量的增加而顯著升高(p<0.05)。

2.6 不同負(fù)載量和灌水量下蘋果產(chǎn)量和水分利用效率的回歸分析

通過建立回歸模型(表5),發(fā)現(xiàn)當(dāng)蘋果產(chǎn)量和IWUE分別達(dá)到最大值時(shí),對(duì)應(yīng)不同的灌水和負(fù)載組合,無法同時(shí)滿足灌水量最少和負(fù)載量最多、產(chǎn)量最高的要求。在優(yōu)化管理制度時(shí),二者不能同時(shí)考慮。當(dāng)產(chǎn)量和IWUE獲得最優(yōu)解時(shí),灌水量分別為597.34和731.12 L,負(fù)載量分別為3.5和5.7個(gè)(每平方厘米主干橫截面積的果數(shù)),與T2W4組合最接近,表明中水中負(fù)載組合(T2W4)是最優(yōu)組合,在不影響產(chǎn)量的同時(shí),提高了水分利用效率。

3 討 論

水分對(duì)植物的影響主要表現(xiàn)在生長和生理兩個(gè)方面,在不同水分條件下,植物的產(chǎn)量、水分利用效率和品質(zhì)等指標(biāo)會(huì)受到不同的影響,同時(shí)對(duì)水分虧缺作出一定程度的響應(yīng)[19]。大量田間實(shí)際研究表明,作物能夠適應(yīng)一定程度的水分虧缺,且適宜的水分能使作物穩(wěn)產(chǎn)甚至增產(chǎn)[20]。果實(shí)負(fù)載量是影響果樹庫源關(guān)系中最重要的因素之一,疏果能夠調(diào)節(jié)“庫(果實(shí))-源(葉片)”之間的關(guān)系,改變光合產(chǎn)物的運(yùn)輸與分配,從而影響果實(shí)的產(chǎn)量和品質(zhì)[2-5],因此,合理的負(fù)載量和灌溉量可以協(xié)調(diào)作物營養(yǎng)物質(zhì)的分配,促進(jìn)光合產(chǎn)物的合成,提高作物產(chǎn)量和水分利用效率,改善果實(shí)品質(zhì)[21-23]。筆者在本研究中探討了黃土高原區(qū)蘋果冠層結(jié)構(gòu)、光合特性、外觀品質(zhì)、產(chǎn)量及IWUE對(duì)負(fù)載量與灌水量耦合的響應(yīng)規(guī)律。運(yùn)用回歸方程模擬分析得出了蘋果優(yōu)質(zhì)節(jié)水豐產(chǎn)的滴灌組合,為黃土高原區(qū)蘋果的滴灌應(yīng)用提供科學(xué)的理論基礎(chǔ)。

灌溉通過調(diào)節(jié)土壤水分含量來控制作物根系發(fā)育,進(jìn)一步控制作物地上部分的營養(yǎng)生長[24]。作物對(duì)水分需求的響應(yīng)因不同作物的生物學(xué)特性而不相同,新梢長度可以間接體現(xiàn)作物的生長狀況。本研究表明,蘋果樹新梢全物候期增長呈現(xiàn)先快后慢的趨勢(shì),在每次灌水后,新梢和果徑會(huì)出現(xiàn)迅速增長的現(xiàn)象,這與前人研究結(jié)果類似[25]。負(fù)載量和灌水量對(duì)蘋果樹新梢最終長度的影響達(dá)顯著水平,而兩者的交互作用對(duì)其影響不顯著。本研究表明,各負(fù)載量下蘋果樹新梢長度均在W0處理最小,這可能是因?yàn)樘O果樹受到嚴(yán)重的水分虧缺時(shí),其細(xì)胞體積被抑制而無法增大,而在對(duì)水分的響應(yīng)中細(xì)胞分裂明顯弱于細(xì)胞體積的增大,因此使得新梢生長受到明顯抑制;而在W4和W5處理下新梢長度達(dá)到最大,這可能是因?yàn)槠涔嗨绞礁m合蘋果樹的主要根系分布區(qū)[26],使得水分能最大程度地被果樹吸收利用。在相同灌水量條件下,新梢生長長度隨著負(fù)載量的增大而減小,這可能是因?yàn)樗喔鹊乃饕挥糜诠麑?shí)的生殖生長從而抑制了新梢的營養(yǎng)生長。

作物冠層結(jié)構(gòu)是光能接收與轉(zhuǎn)化的重要工具,適宜的冠層結(jié)構(gòu)能夠提高對(duì)光能的接收和轉(zhuǎn)化效率來增加光合物質(zhì)積累進(jìn)而增產(chǎn)[27]。而葉面積指數(shù)作為冠層的重要結(jié)構(gòu)構(gòu)建對(duì)冠層功能的發(fā)揮起到了關(guān)鍵作用。本研究表明葉面積指數(shù)隨著灌水量的增加而增加,均隨生長時(shí)間的增加呈現(xiàn)先快速增大,后逐漸減小至穩(wěn)定的趨勢(shì)。其中W5處理下峰值能夠達(dá)到最大,這說明葉面積指數(shù)的變化對(duì)水分含量較敏感,果樹過度缺水會(huì)嚴(yán)重影響光合作用和蒸騰作用,使得果樹生長代謝減緩,抑制了葉面積指數(shù)的增大[28]。同時(shí)也可以看出負(fù)載量對(duì)葉面積指數(shù)影響較大,在相同灌水量條件下,葉面積指數(shù)隨著負(fù)載量的增大而減小,與薛曉敏等[29]研究發(fā)現(xiàn)盛果期富士蘋果負(fù)載量的增加會(huì)降低葉面積系數(shù)的結(jié)論一致。

土壤水分的過度虧缺會(huì)造成作物氣孔導(dǎo)度、蒸騰速率和光合速率的下降,并降低根系的吸收面積和吸收能力,從而影響作物對(duì)養(yǎng)分的吸收和運(yùn)輸[30]。本研究表明,凈光合速率(Pn)、蒸騰速率(Tr)、胞間CO2濃度(Ci)和氣孔導(dǎo)度(Gs)均會(huì)隨著水分虧缺程度的增大而顯著下降。這可能是因?yàn)樘O果樹在水分虧缺后,會(huì)使得葉片葉綠體膨脹、排列紊亂、部分超微結(jié)構(gòu)受到損壞,而樹體為了保持水分,會(huì)相應(yīng)地調(diào)節(jié)氣孔閉合來防止體內(nèi)水分的損失和水勢(shì)的下降[31];有研究表明,當(dāng)土壤含水率降低時(shí),根系吸水速率降低,導(dǎo)致果樹體內(nèi)水分減少,葉片氣孔開度主動(dòng)減小以適應(yīng)周圍環(huán)境的變化,葉片水分利用效率由于蒸騰速率顯著降低而明顯提升[32],與本研究結(jié)果類似。另外,本研究還表明,3種負(fù)載量下中水處理均有較高的光合速率和蒸騰速率,這可能是因?yàn)橥寥浪衷跐M足作物需求下,環(huán)境濕度較大,增加了過多的無效蒸騰,進(jìn)而降低了水分利用效率。筆者在本研究中發(fā)現(xiàn)相同灌溉量條件下,負(fù)載量除了對(duì)光合速率有顯著影響外,對(duì)其他光合指標(biāo)無顯著影響。張秀美等[33]認(rèn)為負(fù)載量過高時(shí)葉綠素含量快速降低,葉片的脫落酸含量升高,從而加速葉片的衰老,進(jìn)而促使凈光合速率下降,葉片庫制造的養(yǎng)分不能充分地供應(yīng)果實(shí),也產(chǎn)生了凈光合速率下降的情況,這與本研究結(jié)果一致。而冉辛拓等[34]對(duì)喬化長富1號(hào)研究表明,隨著負(fù)載量增加,光合速率與留果量呈極顯著正相關(guān)。關(guān)于負(fù)載量與光合速率關(guān)系的分歧有待進(jìn)一步研究。

本研究表明,負(fù)載量和灌溉量對(duì)蘋果樹的產(chǎn)量均有極顯著影響,這與Naor等[12]研究的結(jié)果一致,都顯示出樹木水分狀況和作物負(fù)載之間的相互作用。水分對(duì)果實(shí)的品質(zhì)也有至關(guān)重要的作用,果實(shí)的各項(xiàng)品質(zhì)指標(biāo)對(duì)水分虧缺也會(huì)出現(xiàn)不同程度的響應(yīng)。灌溉量和負(fù)載量對(duì)單果質(zhì)量和大果率均有顯著影響。相比于低負(fù)載量和高負(fù)載量處理,中負(fù)載量處理能夠提高單果質(zhì)量與產(chǎn)量,提高IWUE。同時(shí)能夠提高果實(shí)硬度、果形指數(shù)和大果率,提高蘋果的商品價(jià)值。這可能是中負(fù)載量處理顯著提高了光合產(chǎn)物向產(chǎn)量品質(zhì)形成器官的分配比例,同時(shí)也提高了光合器官的光合生產(chǎn)能力和產(chǎn)量貢獻(xiàn)率,這與Neilsen等[35]的結(jié)果一致。

4 結(jié) 論

綜上所述,通過回歸分析,表明產(chǎn)量、品質(zhì)和IWUE同時(shí)獲得最優(yōu)解時(shí),灌水量和負(fù)載量組合最接近T2W4處理,因此,綜合考慮以蘋果增產(chǎn)和提高水分利用率為目的,建議灌水水平為100% ETc,負(fù)載量為主干橫截面積每平方厘米4個(gè)果實(shí)為黃土高原地區(qū)蘋果推薦的處理組合。

參考文獻(xiàn) References:

[1] 畢潤霞,楊洪強(qiáng),楊萍萍,范偉國,陳錦璞,樊樹雷,吳瑞剛. 地下穴灌對(duì)蘋果冠下土壤水分分布及葉片水分利用效率的影響[J]. 中國農(nóng)業(yè)科學(xué),2013,46(17):3651-3658.

BI Runxia,YANG Hongqiang,YANG Pingping,F(xiàn)AN Weiguo,CHEN Jinpu,F(xiàn)AN Shulei,WU Ruigang. Effect of cavity irrigation underground on the distribution of soil water under the canopy and leaf water use efficiency of apple[J]. Scientia Agricultura Sinica,2013,46(17):3651-3658.

[2] 劉悅萍,郭金麗,張玉蘭,張志友,張建寧. 負(fù)載量與金紅蘋果樹生長結(jié)果、葉片衰老的關(guān)系[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,24(1):39-45.

LIU Yueping,GUO Jinli,ZHANG Yulan,ZHANG Zhiyou,ZHANG Jianning. The relation between fruit load and growth and foliage senescence of Jinhong apple trees[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2003,24(1):39-45.

[3] 劉傳和,陳杰忠,劉運(yùn)春,李娟. 疏果對(duì)黃皮果實(shí)發(fā)育著色及樹體器官碳水化合物含量的影響[J]. 園藝學(xué)報(bào),2008,35(6):869-872.

LIU Chuanhe,CHEN Jiezhong,LIU Yunchun,LI Juan. Effects of fruit-thinning on fruits development,pigmentation and carbohydrate content in plant organs of wampee[J]. Acta Horticulturae Sinica,2008,35(6):869-872.

[4] NJOROGE S M C,REIGHARD G L. Thinning time during stage I and fruit spacing influences fruit size of ‘Contender’ peach[J]. Scientia Horticulturae,2008,115(4):352-359.

[5] MORANDI B,CORELLI GRAPPADELLI L. Source and sink limitations in vascular flows in peach fruit[J]. The Journal of Horticultural Science and Biotechnology,2009,84(6):150-156.

[6] 鐘韻,費(fèi)良軍,曾健,傅渝亮,代智光. 根域水分虧缺對(duì)涌泉灌蘋果幼樹產(chǎn)量品質(zhì)和節(jié)水的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(21):78-87.

ZHONG Yun,F(xiàn)EI Liangjun,ZENG Jian,F(xiàn)U Yuliang,DAI Zhiguang. Effects of root-zone water deficit on yield,quality and water use efficiency of young apple trees under surge-root irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(21):78-87.

[7] 李中杰,費(fèi)良軍,郝琨,劉騰,張全菊,陳南束,劉利華,鐘韻. 涌泉根灌下水氮耦合對(duì)陜北山地蘋果光合特性、產(chǎn)量和水氮利用的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(3):967-975.

LI Zhongjie,F(xiàn)EI Liangjun,HAO Kun,LIU Teng,ZHANG Quanju,CHEN Nanshu,LIU Lihua,ZHONG Yun. Effects of water-nitrogen coupling on photosynthetic characteristics,yield,water and nitrogen use efficiency for mountain apple trees under surge-root irrigation in Northern Shaanxi area of China[J]. Chinese Journal of Applied Ecology,2021,32(3):967-975.

[8] 黃媛,于景鑫,杜亞茹,康藝凡,杜鵬飛,田國英. 基于土壤含水量的灌溉制度對(duì)番茄生理、產(chǎn)量及水分利用效率的影響[J]. 中國瓜菜,2023,36(3):64-68.

HUANG Yuan,YU Jingxin,DU Yaru,KANG Yifan,DU Pengfei,TIAN Guoying. Effects of irrigation system based on soil water content on tomato physiology,yield and water use efficiency[J]. China Cucurbits and Vegetables,2023,36(3):64-68.

[9] FRANCAVIGLIA D,F(xiàn)ARINA V,AVELLONE G,LO BIANCO R. Fruit yield and quality responses of apple cvars Gala and Fuji to partial rootzone drying under Mediterranean conditions[J]. The Journal of Agricultural Science,2013,151(4):556-569.

[10] GIRONA J,MARSAL J,ARBONES A,DEJONG T M. A comparison of the combined effect of water stress and crop load on fruit growth during different phenological stages in young peach trees[J]. The Journal of Horticultural Science and Biotechnology,2004,79(2):308-315.

[11] MARSAL J,MATA M,ARBONES A,DEL CAMPO J,GIRONA J,LOPEZ G. Factors involved in alleviating water stress by partial crop removal in pear trees[J]. Tree Physiology,2008,28(9):1375-1382.

[12] NAOR A,NASCHITZ S,PERES M,GAL Y. Responses of apple fruit size to tree water status and crop load[J]. Tree Physiology,2008,28(8):1255-1261.

[13] PALMER J W,GIULIANI R,ADAMS H M. Effect of crop load on fruiting and leaf photosynthesis of ‘Braeburn’/M. 26 apple trees[J]. Tree Physiology,1997,17(11):741-746.

[14] 馮煥德,李丙智,張林森,金會(huì)翠,李煥波,韓明玉. 不同施氮量對(duì)紅富士蘋果品質(zhì)、光合作用和葉片元素含量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2008,17(1):229-232.

FENG Huande,LI Bingzhi,ZHANG Linsen,JIN Huicui,LI Huanbo,HAN Mingyu. Influences of different rates of nitrogen on fruit quality,photosynthesis and element contents in leaves of Red Fuji apples[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2008,17(1):229-232.

[15] DING N,CHEN Q A,ZHU Z L,PENG L,GE S F,JIANG Y M. Effects of crop load on distribution and utilization of 13C and 15N and fruit quality for dwarf apple trees[J]. Scientific Reports,2017,7:14172.

[16] WüNSCHE J N,PALMER J W,GREER D H. Effects of crop load on fruiting and gas-exchange characteristics of ‘Braeburn’/M. 26 apple trees at full canopy[J]. Journal of the American Society for Horticultural Science,2000,125(1):93-99.

[17] UCAR Y,KADAYIFCI A,ASKIN M A,KANKAYA A,SENYI?IT U,YILDIRIM F. Yield and quality response of young ‘Gala,Galaxy’ trees under different irrigation regimes[J]. Erwerbs-Obstbau,2016,58(3):159-167.

[18] ZHOU Y P,LI Y K,LIU X J,WANG K Y,MUHAMMAD T. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation[J]. Scientific Reports,2019,9:5226.

[19] 李萌. 南疆膜下滴灌棉花灌溉和施肥調(diào)控效應(yīng)及生長模擬研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2020.

LI Meng. Study on effect of irrigation and fertilization regulation and simulation of cotton growth under film-mulched drip irrigation in southern Xinjiang[D]. Yangling:Northwest A amp; F University,2020.

[20] 寇丹,蘇德榮,吳迪,李巖. 地下調(diào)虧滴灌對(duì)紫花苜蓿耗水、產(chǎn)量和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):116-123.

KOU Dan,SU Derong,WU Di,LI Yan. Effects of regulated deficit irrigation on water consumption,hay yield and quality of alfalfa under subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(2):116-123.

[21] 彭福田,姜遠(yuǎn)茂,顧曼如,束懷瑞. 氮素對(duì)蘋果果實(shí)內(nèi)源激素變化動(dòng)態(tài)與發(fā)育進(jìn)程的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2003,9(2):208-213.

PENG Futian,JIANG Yuanmao,GU Manru,SHU Huairui. Effect of nitrogen on apple fruit hormone changing trends and development[J]. Plant Nutrition and Fertilizing Science,2003,9(2):208-213.

[22] RAESE J T,DRAKE S R,CURRY E A. Nitrogen fertilizer influences fruit quality,soil nutrients and cover crops,leaf color and nitrogen content,biennial bearing and cold hardiness of ‘Golden Delicious’[J]. Journal of Plant Nutrition,2007,30(10):1585-1604.

[23] 趙林,姜遠(yuǎn)茂,彭福田,李盼盼,王磊,李洪波. 嘎拉蘋果對(duì)春施15N-尿素的吸收、利用與分配特性[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2009,15(6):1439-1443.

ZHAO Lin,JIANG Yuanmao,PENG Futian,LI Panpan,WANG Lei,LI Hongbo. Characteristics of absorption,utilization and distribution of spring soil 15N-urea application for Gala/Malus hupehensis[J]. Plant Nutrition and Fertilizer Science,2009,15(6):1439-1443.

[24] 強(qiáng)敏敏,費(fèi)良軍,劉揚(yáng). 調(diào)虧灌溉促進(jìn)涌泉根灌棗樹生長提高產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):91-96.

QIANG Minmin,F(xiàn)EI Liangjun,LIU Yang. Regulated deficit irrigation promoting growth and increasing fruit yield of jujube trees[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(19):91-96.

[25] 邢英英,張富倉,張燕,李靜,強(qiáng)生才,李志軍,高明霞. 膜下滴灌水肥耦合促進(jìn)番茄養(yǎng)分吸收及生長[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):70-80.

XING Yingying,ZHANG Fucang,ZHANG Yan,LI Jing,QIANG Shengcai,LI Zhijun,GAO Mingxia. Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato’s nutrient uptake and growth[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(21):70-80.

[26] 宋小林,吳普特,趙西寧,高曉東. 黃土高原肥水坑施技術(shù)下蘋果樹根系及土壤水分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(7):121-128.

SONG Xiaolin,WU Pute,ZHAO Xining,GAO Xiaodong. Distribution characteristic of soil moisture and roots in rain-fed old apple orchards with water-fertilizer pit on the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(7):121-128.

[27] 郝琨,劉小剛,韓志慧,余寧,程金煥,劉闖,李義林,楊啟良. 不同蔭蔽栽培下虧缺灌溉對(duì)干熱區(qū)小粒咖啡水光利用和產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(11):3550-3558.

HAO Kun,LIU Xiaogang,HAN Zhihui,YU Ning,CHENG Jinhuan,LIU Chuang,LI Yilin,YANG Qiliang. Effects of deficit irrigation on water-radiation use and yield of Coffea arabica under different shade cultivation modes in dry-hot region[J]. Chinese Journal of Applied Ecology,2018,29(11):3550-3558.

[28] LI Y L,LIU X G,HAO K,YANG Q L,YANG X Q,ZHANG W H,CONG Y. Light-response curve of photosynthesis and model fitting in leaves of Mangifera indica under different soil water conditions[J]. Photosynthetica,2019,57(3):796-803.

[29] 薛曉敏,陳鴻飛,王金政,李治梅,路超,聶佩顯. 盛果期紅富士蘋果適宜負(fù)載量的研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),2012,24(9):31-34.

XUE Xiaomin,CHEN Hongfei,WANG Jinzheng,LI Zhimei,LU Chao,NIE Peixian. Research on suitable fruit load of red fuji apple in full fruit period[J]. Acta Agriculturae Jiangxi,2012,24(9):31-34.

[30] 孫光照,劉小剛,余小弟,彭有亮,冷險(xiǎn)險(xiǎn),黃一峰,楊啟良. 微潤管布設(shè)方式和施肥水平對(duì)藍(lán)莓生長及光合特性的影響[J]. 生態(tài)學(xué)雜志,2019,38(2):604-611.

SUN Guangzhao,LIU Xiaogang,YU Xiaodi,PENG Youliang,LENG Xianxian,HUANG Yifeng,YANG Qiliang. Effects of moistube patterns and fertilization levels on growth and physiological characteristics of blueberry[J]. Chinese Journal of Ecology,2019,38(2):604-611.

[31] 張效星,樊毅,賈悅,崔寧博,趙璐,胡笑濤,龔道枝. 水分虧缺對(duì)滴灌柑橘光合和產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):143-150.

ZHANG Xiaoxing,F(xiàn)AN Yi,JIA Yue,CUI Ningbo,ZHAO Lu,HU Xiaotao,GONG Daozhi. Effect of water deficit on photosynthetic characteristics,yield and water use efficiency in Shiranui citrus under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(3):143-150.

[32] XIA J B,ZHANG S Y,GUO J,RONG Q Q,ZHANG G C. Critical effects of gas exchange parameters in Tamarix chinensis Lour. on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta[J]. Ecological Engineering,2015,76:36-46.

[33] 張秀美,王宏,劉志,于年文,李宏建,里程輝. 岳陽紅蘋果矮化栽培與負(fù)載量關(guān)系研究[J]. 果樹學(xué)報(bào),2021,38(7):1077-1083.

ZHANG Xiumei,WANG Hong,LIU Zhi,YU Nianwen,LI Hongjian,LI Chenghui. A study on the relationship between dwarfing cultivation and load of Yueyanghong apple[J]. Journal of Fruit Science,2021,38(7):1077-1083.

[34] 冉辛拓,張新生. 不同負(fù)載量對(duì)蘋果光合速率及干物質(zhì)生產(chǎn)的影響[J]. 華北農(nóng)學(xué)報(bào),2003,18(S1):131-132.

RAN Xintuo,ZHANG Xinsheng. Effect of crop load on photosynthetic rate and dry matter production of apple[J]. Acta Agriculturae Boreali-Sinica,2003,18(S1):131-132.

[35] NEILSEN D,NEILSEN G,GUAK S,F(xiàn)ORGE T. Consequences of deficit irrigation and crop load reduction on plant water relations,yield,and quality of ‘Ambrosia’ apple[J]. HortScience,2016,51(1):98-106.

主站蜘蛛池模板: 国产污视频在线观看| 亚洲国产成人久久精品软件| 99成人在线观看| 日韩欧美中文亚洲高清在线| 国产屁屁影院| 一本大道视频精品人妻 | 99视频全部免费| 国产日韩久久久久无码精品| 久草视频福利在线观看| 孕妇高潮太爽了在线观看免费| 一级香蕉视频在线观看| 亚洲日韩AV无码精品| 无码精油按摩潮喷在线播放| a亚洲视频| 日韩在线视频网| 波多野衣结在线精品二区| 美女被狂躁www在线观看| 四虎成人免费毛片| 国禁国产you女视频网站| 精品国产网站| 免费国产一级 片内射老| 国产一区二区人大臿蕉香蕉| 亚洲第一成人在线| 亚洲性影院| 国产精品久久精品| 精品99在线观看| 久久精品人妻中文视频| 日韩欧美在线观看| 欧美亚洲另类在线观看| 国产精品偷伦视频免费观看国产| 在线观看91精品国产剧情免费| 色欲综合久久中文字幕网| 911亚洲精品| 国产91全国探花系列在线播放| 99伊人精品| 欧美精品导航| 亚洲精品国产自在现线最新| 亚洲国产成人超福利久久精品| 国产高清不卡视频| 亚洲二三区| 亚洲国内精品自在自线官| 婷婷激情亚洲| 91精品人妻互换| 99精品国产自在现线观看| 色妺妺在线视频喷水| 九九热在线视频| 欧美成一级| 一级毛片高清| 国产浮力第一页永久地址| 亚洲天堂2014| 国产精品欧美激情| 99re热精品视频中文字幕不卡| 国产乱子伦手机在线| 一级毛片不卡片免费观看| 无码专区在线观看| 欧美天堂在线| 国产在线精品人成导航| 在线人成精品免费视频| 亚洲av无码久久无遮挡| 成人免费午夜视频| 福利在线不卡一区| 91久久偷偷做嫩草影院电| 黄色在线网| 免费一级无码在线网站| 国产在线八区| 亚洲成a人片在线观看88| 日韩精品一区二区三区中文无码| 国产人在线成免费视频| 嫩草国产在线| 成人午夜视频免费看欧美| 国产成人亚洲毛片| 久久一本精品久久久ー99| 国内精品小视频福利网址| 国产高清不卡| 色天天综合| 久久亚洲美女精品国产精品| 四虎国产永久在线观看| 午夜少妇精品视频小电影| 欧美综合在线观看| 男女性午夜福利网站| 亚洲人成色在线观看| 欧美伦理一区|