






摘" " 要:【目的】通過比較砂糖橘和砂糖燈籠橘性狀差異及利用轉錄組測序數據,篩選砂糖橘和砂糖燈籠橘葉、果肉、橘絡、橘皮之間的差異基因,探究砂糖橘自然變異品種砂糖燈籠橘橘皮、葉中與蠟質生物合成相關的顯著差異基因。【方法】分別取同一生長時期的砂糖燈籠橘和砂糖橘進行觀察記錄,取葉、果肉、橘絡、橘皮4個組織樣本,液氮速凍,設立3個生物學重復進行轉錄組測序。分析2個物種間的轉錄組測序結果,尋找關鍵差異基因。【結果】通過砂糖燈籠橘與砂糖橘對比,砂糖燈籠橘葉較大、卷曲,邊緣性狀不規則;果實偏大,果皮表面布滿溝壑,存在較多點狀突起,同時葉和果皮部位存在蠟質缺失。砂糖燈籠橘葉存在差異基因數量最多,其次為果肉、皮、橘絡,差異基因主要參與的功能為蛋白結合、分子結合、ATP結合。砂糖燈籠橘葉、果皮分別存在12個、9個與蠟質生物合成相關的顯著差異基因,其中包含5個相同的下調基因,為CER1、CER3、HHT、P45086A8、P45086A22,這些基因極有可能是導致砂糖燈籠橘表面蠟質排布不均的關鍵基因。【結論】砂糖橘與砂糖燈籠橘性狀差異明顯,轉錄組數據顯示葉的差異基因數量最多,其中葉和果皮中存在5個表達趨勢一致的相同蠟質合成基因,可能是導致砂糖燈籠橘表面蠟質缺失的關鍵基因。
關鍵詞:砂糖燈籠橘;砂糖橘;性狀;轉錄組;蠟質
中圖分類號:S666.2 文獻標志碼:A 文章編號:1009-9980(2023)09-1811-12
收稿日期:2023-02-06 接受日期:2023-05-28
基金項目:廣西壯族自治區科技基地與人才專項(桂科AD20325012)
作者簡介:唐娟,女,助理研究員,研究方向為果樹種質資源收集及育種。Tel:0771-3246396,E-mail:240918087@qq.com
*通信作者 Author for correspondence. Tel:15977480220,E-mail:zhanglan2008@163.com
Transcriptome analysis based on the characteristic difference between Shatang tangerine and Shatang Lantern tangerine
TANG Juan, WANG Feiyong, ZHANG Lan*
(Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China)
Abstract: 【Objective】 In order to investigate the reason for characteristic differences between Shatang tangerine (Citrus reticulat) and Shatang Lantern tangerine, we compared the size of plants, waxy arrangement and transcriptome information. By using transcriptome sequencing data, we screened out the differential genes among the leaves, pulp, tangerine pith and peel of Shatang tangerine and Shatang Lantern tangerine, and explored the significant differential genes related to wax biosynthesis in the peel and leaves. 【Methods】 Four types of tissue samples including leaf, pulp, tangerine pith and peel were taken at the same growth period and frozen in liquid nitrogen immediately for transcriptome sequencing. Three biological replicates were set up for every experiment. Characteristic analysis and toluidine blue staining experiment were observed and recorded by naked eyes. The transcriptome sequencing results between the two samples were analyzed to find out the key differential genes. The change threshold set as the absolute value of log2FC (fold change) was greater than or equal to 1 (FC greater than or equal to 2) and q value was less than 0.05. Besides, we used https://www.omicstudio.cn/index as a tool to analyze difference genes, like GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. 【Results】 Compared with Shatang tangerine, the leaves of Shatang Lantern tangerine were larger and curly, and had irregular edge. The fruit was larger and had a coarse and roughly textured rind. The peel in Shatang Lantern tangerine showed obvious gully, and the surface of the peel was full of dots, like a “lantern”. After toluidine blue staining, the peel and leave of Shatang Lantern tangerine was covered with dye, indicating that the waxy composition in these parts was loosely distributed. After filtering raw sequencing data of transcriptome, the effective data size was 6.32-8.00 G, respectively. Besides, the effective data accounted for more than 96% of the original data, among which the bases with mass value ≥30 accounted for more than 97% (Q 30%), indicating that the quality of the measured transcriptomic data was good and the results were reliable. When compared with the reference genome of Citrus clementina, the matching rate was 93.32%-95.17%, which could meet the conditions of subsequent bioinformatics analysis. Through comparative analysis of transcriptome data, there were more differential genes in the leave of Shatang Lantern tangerine, followed by pulp, peel and tangerine pith. The main functions of differential genes were protein binding, molecular binding and ATP binding. The number of differential genes ranked in descending order was leaf, pulp, pericarp and tangerine pith, the number of up-regulated genes ranked in descending order was leaf, pulp, pericarp and tangerine pith, which was the same as the number of down-regulated genes. The number of differential genes in leaves were much higher than that of other tissue parts, and the number of down-regulated genes was the largest (3239), followed by the number of up-regulated genes (2443). Tangerine pith had the lowest number of differential genes. 【Conclusion】 These results indicated that the differences between Shatang tangerine and Shatang Lantern tangerine were mainly reflected in leaves, pulp and peel, which was consistent with the results observed by naked eyes. According to the differences in wax distribution of the two cultivars, the genes involved in the keratin, suberin and waxy biosynthesis pathway (map00073) were analyzed. There were 12 and 9 different genes related to wax biosynthesis in the leaf and peel of Shatang Lantern tangerine, respectively, including 5 identical down-regulated genes, named as CER1, CER3, HHT, cytochrome P45086A8 and cytochrome P45086A22. These genes were highly likely to be the key genes causing uneven waxy distribution on the surface of Shatang Lantern tangerine. Most of the differential genes were down-regulated except FACR2 in pericarp and cytochrome P45086B1 and cytochrome P45096A1 in leaf. Therefore, the characteristics of Shatang tangerine and Shatang Lantern tangerine were significantly different including morphology and waxy distribution. The transcriptome data showed that the number of differentially expressed genes was largest in the leaves, and there were five identical wax synthesis genes with the same expression trend in the middle leaves and the peel, which may be the key genes leading to the loss of wax on the surface of Shatang Lantern tangerine.
Key words: Shatang Lantern tangerine; Shatang tangerine; Character; Transcriptome; Wax
砂糖燈籠橘(Shatang Lantern tangerine)為砂糖橘[1]的自然變異品種,其表皮布滿溝壑,酷似燈籠,故而得名。砂糖燈籠橘產地為廣西,形態獨特美觀,口感較砂糖橘好,糖度高,深受廣大消費群體歡迎。對該變異進行品質相關研究具有重要意義。
依靠目前RNA-Seq技術獲得的轉錄組數據在植物功能基因挖掘、植物性狀分析、輔助植物育種方面已獲得較多成果。如葛卉等[2]通過對金枝黃花柳親本及回交子代進行轉錄組測序,發現兩者葉綠素合成酶相關基因表達量出現差異,從而使代謝通路發生變化,進而導致枝條顏色存在明顯差異。蔡宇等[3]通過建立溝葉結縷草的Illumina高通量測序平臺,以野生型和多穗突變體為樣本進行轉錄組測序,挖掘與花序發育相關的重要基因,結合WGCNA分析認為EHD1、MADS14為影響花序發生的關鍵基因,為溝葉結縷草的植物育種提供了關鍵的技術支撐。轉錄組數據結合植物形狀分析往往能提供更多的參考證據,如鄭雪夢等[4]通過對京欣3號、甜王2種硬度不同的西瓜進行轉錄組數據測序,分析后發現硬度較大的甜王與碳水化合物代謝、脂質代謝途徑相關的基因與京欣3號具有顯著性差異,通過生物信息學分析為品種篩選提供了參考依據。通過對草莓白肉突變體小白及親本草莓紅顏的轉錄組測序,范小青等[5]發現小白草莓中存在參與苯丙素、類黃酮、黃酮、黃酮醇生物合成途徑的差異基因,這些基因與花青素代謝具有密切的關聯,該研究為草莓花色苷形成提供了理論依據,也為白草莓的育種提供了一定的支持。劉戀等[6]針對同一遺傳背景下的3個金柑品種的果皮性狀差異,選取了同一時期的滑皮金柑、融安金柑、脆蜜金柑的果皮進行轉錄組測序,發現融安金柑在苯丙烷生物合成途徑中的關鍵基因的表達與其他兩者存在明顯差異,并且木質素合成相關基因的表達量明顯降低,進而果皮表現出韌性差、易失水的特征。由此可見,通過轉錄組測序技術可以從分子水平上對植物性狀進行探究,可以挖掘重要的特征基因,有助于更好地利用基因工程技術實現品種的高產及優質生產,對植物育種的發展具有顯著意義。
柑橘類物種果實表面布滿蠟質,是植物抵御外界病蟲害的第一層保護屏障,同時有研究發現,蠟質對果實保水、延緩衰老及貯藏保鮮等具有重要作用[7],目前果實蠟質生物合成途徑已經基本被解析清楚,蠟質排布及蠟質含量對于植物的品質極其重要[8-9]。同時,干旱、鹽脅迫等環境對于植物表面蠟質生物合成也極其重要,呂慧等[10]通過測定不同土壤含水量、不同鈉鹽環境下生長的辣椒轉錄組數據,發現干旱、鹽脅迫主要影響苯丙烷的生物合成途徑,適度的脅迫會使辣椒素積累更多。Tanaka等[11]利用甲苯胺藍染液對擬南芥葉片進行染色,發現對于表面蠟質缺失或排列分布不均的擬南芥葉片,甲苯胺藍能夠快速將其染色,大大加快了蠟質分布的檢測速度,因此該方法廣泛應用于植物中。
目前砂糖燈籠橘相關的研究報道較少,筆者以同一產地、同一生長時期的砂糖橘、砂糖燈籠橘為研究材料,對其表型進行觀察對比,同時取葉、果實、橘絡、果肉4個組織部位分別進行轉錄組測序,進行對比分析,重點關注與蠟質生物合成相關的關鍵基因,研究結果可為探究砂糖燈籠橘表型特異性原因及蠟質生物合成的變化提供分子水平上的理論支持及參考。
1 材料和方法
1.1 試驗材料
砂糖燈籠橘及砂糖橘(Citrus reticulata ‘Shiyue Ju’)產地均為廣西,砂糖燈籠橘樣本為自然變異品種,均為3年生植株,采收于2021年10月下旬。選擇成熟程度相近、大小相仿的果實,按照果肉、橘絡、果皮、葉4個部位進行分離,果肉保留囊衣,果皮保留白皮層,分別取3株砂糖燈籠橘、砂糖橘植物,設立3個生物學重復,用錫箔紙包裹,依次編號,迅速放置于液氮速凍,將樣本送至杭州聯川生物技術股份有限公司進行轉錄組測序。對測序得到的原始數據進行質控、差異基因分析及篩選。
1.2 性狀分析
分別取相同生長發育時期的砂糖燈籠橘及砂糖橘果實、葉,對其表觀形態進行觀察記錄,比較性狀差異。
1.3 蠟質排布分析
分別取砂糖燈籠橘、砂糖橘的橘皮、葉,置于甲苯胺藍染色液(1%)中浸泡2~4 h,清水沖洗0.5 h,比較染色部位的差異。
1.4 轉錄組數據分析
委托聯川生物技術公司對樣品進行RNA提取及轉錄組測序。
通過Cutadapt等[12]將含接頭、polyA、polyG的reads、N>5%的reads、低質量reads等去除,獲得有效數據。以柑橘屬克里曼丁橘(Citrus ‘Clementina’)參考基因組數據為參照,使用HISAT2(https://ccb.jhu.edu/software/hisat2)[13-15]進行比對,使用StringTie軟件(https://ccb.jhu.edu/software/hisat2)[14,16-17] 對轉錄本進行組裝并用FPKM[15,18]定量。分別對砂糖燈籠橘、砂糖橘4個組織部位的轉錄組數據進行比較分析。針對物種間性狀差異,篩選可能引起表型差異的關鍵基因。使用R包edgeR(https://bioconductor.org/packages/release/bioc/html/edgeR.html)對樣本之間的差異基因進行分析,設定變化閾值為log2FC(fold change)絕對值≥1(差異倍數FC≥2),同時q值<0.05作為篩選兩者差異基因的標準。對篩選得到的差異基因進行統計分析,利用聯川生物云平臺(https://www.omicstudio.cn/index)的在線繪圖工具繪制GO富集分析[19-20]、KEGG通路富集分析[21]圖。
2 結果與分析
2.1 砂糖燈籠橘、砂糖橘的性狀特征
對同一時期的砂糖燈籠橘、砂糖橘葉及成熟果實外觀形態進行觀察比對(圖1),發現砂糖燈籠橘葉卷曲程度比砂糖橘明顯,砂糖燈籠橘葉偏大,且葉邊緣呈現不規則形態,而砂糖橘邊緣較平滑;砂糖燈籠橘果實較砂糖橘偏大,且果皮呈現明顯的溝壑,果皮表面布滿點狀突起,形似“燈籠”。
2.2 砂糖燈籠橘、砂糖橘蠟質分布
如圖2所示,甲苯胺藍染料能對植物表面蠟質排布不均勻的地方進行染色,通過對砂糖燈籠橘、砂糖橘果皮及葉的染色實驗,發現蠟質分布不均勻且主要存在于果臍附近,砂糖橘整個外果皮能被均勻染色,而砂糖燈籠橘僅果實表面突起的位置極易被染色,這部分蠟質缺失現象較明顯,說明在自然變異過程中,砂糖燈籠橘中存在的某些與蠟質生物合成相關基因在轉錄水平表達量發生變化,進而導致這種現象發生。
2.3 砂糖燈籠橘、砂糖橘轉錄組測序質量評估
將高通量測序后的原始數據去除接頭、未識別數據等獲得有效數據。通過基因組比對,對各基因的表達量進行分析。
經過過濾后有效數據大小為6.32~8.00 G,從表1中可以看出,有效數據占原始數據的比例均為96%以上,而其中質量值≥30的堿基所占的比例(Q 30%)皆大于97%,說明測得的轉錄組數據質量較好、結果真實可信。與克里曼丁橘參考基因組進行比對,其匹配率為93.32%~95.17%,能夠滿足后續生物信息學分析的條件。
2.4 砂糖燈籠橘、砂糖橘差異表達基因分析
分別對砂糖燈籠橘、砂糖橘中提取得到的有效基因進行統計分析,對葉、果肉、橘絡、果皮4個組織部位的差異基因進行比較(圖3)。發現差異基因數量總數排列為葉>果肉>果皮>橘絡,上調基因數量排列為葉>果肉>果皮>橘絡,下調基因數量排列為葉>果肉>果皮>橘絡;砂糖燈籠橘葉的上、下調差異基因數量遠高于其他組織部位,下調基因的數量最多,為3239個,其次是上調基因的數量,為2443個;橘絡的差異基因數量最少。這些結果說明砂糖燈籠橘、砂糖橘的差異主要體現在葉、果肉、果皮這3個部位,這與肉眼觀察到的結果一致。
同時,對不同組織的差異基因分別進行GO、KEGG分析。結果發現,葉內顯著差異基因主要參與的KEGG通路包括植物-病原互作、核糖體、ABC轉運蛋白、半乳糖代謝、磷酸肌醇代謝。GO分析顯示,差異基因主要參與的生物學過程為抗逆、生物反應、DNA復制的轉錄調控;差異基因主要位于細胞核、質膜、膜整體組件;參與的分子功能為蛋白結合、分子結合、ATP結合。果肉顯著差異基因參與的KEGG通路主要為植物激素信號傳導、類苯基丙烷生物合成、淀粉和蔗糖代謝、黃酮類生物合成、半乳糖代謝。GO分析顯示其參與的生物學過程包括DNA復制的轉錄調控、DNA復制的轉錄、生物反應;這些基因的分子功能為蛋白結合、分子結合、ATP結合;與葉子GO分析結果相同的是,果肉的差異基因同樣位于細胞核、質膜、膜整體組件。對果皮的顯著差異基因進行KEGG分析后,發現其參與的通路主要為類苯基丙烷生物合成、光合作用、黃酮類生物合成、芪類、雙苯庚烷及姜辣素生物合成、光合生物體的固碳作用。GO分析結果顯示,果皮差異基因參與的生物學過程、基因定位及分子功能與果肉完全一致,但從具體的基因功能來看,果肉組織的差異基因主要在細胞壁、胞外區、質膜部位參與作用,其主要功能為DNA結合轉錄因子活性;而果皮的差異基因主要位于細胞膜、葉綠體類囊體及膜,其功能主要為氧化還原酶活性、參與次生代謝生物合成過程。對橘絡的顯著差異基因進行KEGG分析后發現,其主要參與類苯基丙烷的生物合成、黃酮類生物合成、過氧物酶體、芪類、雙苯庚烷、姜辣素的生物合成,氨基糖、核苷酸糖的代謝。GO分析顯示橘絡中的大部分差異基因功能為黃酮類生物合成、黃酮類糖脂化、木質素生物合成、氧化還原酶、植物型次生細胞壁生物合成等。橘絡差異基因的生物學過程包括DNA復制的轉錄調控、生物反應、氧化還原過程;這些基因主要位于細胞核、質膜、膜整體組件;其分子功能為蛋白結合、DNA結合轉錄因子活性、分子結合。
砂糖燈籠橘果皮在外觀形態上與砂糖橘明顯不同,為了對其差異性狀進行更深入的解析,篩選果皮內p<0.01的顯著差異基因,進行富集分析。
砂糖燈籠橘果皮上調基因共669個,從GO富集結果(圖4)可以看出,大部分差異基因為生物反應類,其次是分子功能,差異數量最多的基因其功能為氧化還原作用、次生代謝產物合成及DNA復制。從通路富集結果可以看出,差異數量最多的基因與苯丙素生物合成相關,其次是黃酮類生物合成、芥子油苷生物合成。
砂糖燈籠橘果皮下調基因共775個,超過一半的差異基因為細胞組分1類,主要與細胞膜、細胞器膜有關。在生物反應1類中,差異基因主要參與了氧化還原反應、水楊酸響應及DNA復制。從KEGG通路分析可知,差異基因參與了光反應、苯丙素的生物合成、半乳糖代謝等過程(圖5)。值得注意的是,砂糖燈籠橘中與角質層、蠟質合成相關基因的表達量呈現明顯變化,這可能是砂糖燈籠橘呈現出表型差異的重要原因。
2.5 砂糖燈籠橘、砂糖橘調控蠟質生物合成相關基因篩選
根據前期的甲苯胺藍染色實驗結果,初步推測砂糖燈籠橘、砂糖橘在蠟質生物合成基因表達上存在著明顯的差異,因此重點對果皮和葉的蠟質生物合成相關基因進行統計分析。初步篩選砂糖橘、砂糖燈籠橘果皮差異基因中參與到角質、軟木脂、蠟質生物合成途徑(map00073)的基因,共得到40個基因。以log2FC的絕對值≥1且q值<0.05作為標準篩選具有顯著性差異的基因,得到了9個基因,分別為LOC18055362 (CER3 isoform X1)、LOC18038381(FACR2)、LOC18048646(cytochrome P45086A22)、LOC18035687(HHT)、LOC18049733(CER1 isoform"X2)、LOC18046005(cytochrome P45086A8)、LOC-18039129(CER1)、LOC18039665(hypothetical protein CICLE_v10013412mg)、LOC18044180(TAT),除FACR2基因上調外,其余基因表達量均降低。
對葉片參與蠟質生物合成途徑的差異基因進行篩選,獲得了40個差異基因,以log2FC的絕對值≥1且q值<0.05為原則篩選其中的顯著差異基因,共獲得12個基因,分別為LOC18055362 (CER3 isoform X1)、LOC18049733(CER1 isoform X2)、LOC18037666(alkane hydroxylase MAH1-like)、LOC18037897(cyto-
chrome P45096A1)、LOC18049734(CER1)、LOC180-35687(HHT)、LOC18052048(omega-hydroxypalmitate O-feruloyl transferase)、LOC18034580(hypothetical protein CUMW_152270)、LOC18046005(cytochrome P45086A8)、LOC18048646(cytochrome P45086A22)、LOC18044337(cytochrome P45086B1)和LOC18036471(ERF011)。砂糖燈籠橘葉的上調基因為LOC18037897、LOC18044337,其余基因皆下調。
對葉片、果皮篩選與蠟質合成相關的顯著差異基因繪制韋恩圖(圖6),其中2個組織部位存在5個相同的基因,分別為LOC18055362、LOC18048646、LOC18035687、LOC18049733、LOC18046005,與砂糖橘相比,這些基因呈現明顯的下調,提示這些基因可能與砂糖燈籠橘蠟質的生物合成密切相關;同時,葉中獨立存在7個與蠟質合成相關的顯著差異基因,果皮中存在4個與蠟質合成相關的顯著差異基因,說明不同組織部位與蠟質生物合成相關基因的表達存在獨特性。
3 討 論
植物自然突變體[22]是植物在生長發育過程中,其基因組內某些基因突變,從而導致其出現性狀或代謝物成分變化從而形成的新的個體。對于突變體的研究通常是從植物的表型、遺傳物質角度出發,與野生型植株進行性狀及轉錄組數據的比較分析,找到突變的分子機制。
基于的Illumina的測序技術[23-24]已被證明轉錄組學適用于植物基因注釋、基因表達分析以及通路研究。本研究中,以自然突變的砂糖燈籠橘、其同源砂糖橘為樣本進行二代轉錄組測序,篩選后發現不同組織部位差異基因數量各不相同,趨勢為葉>果肉>果皮>橘絡。經過GO分析后發現,葉、果皮、橘絡的差異基因主要位于細胞核、質膜、膜整體組件,果肉組織中的差異基因主要分布于細胞壁、胞外區、質膜部位。注意到果肉中顯著差異基因參與的KEGG通路主要為植物激素信號傳導、類苯基丙烷類生物合成、黃酮類生物合成等。根據文獻報道,柑橘果肉中的乙烯、赤霉素、脫落酸、吲哚乙酸、玉米素等內源性激素[25]對于果實的甜度、成熟落果[26]、色澤[27]等特征至關重要。而苯丙烷類及黃酮類生物合成基因主要參與到植物的生長發育及抗逆等生物功能,許多MYB類轉錄因子可以調控苯丙烷類[28]、黃酮類化合物生物[29-30]合成中相關基因的表達,進而增強植物的抗逆性。因此果肉中篩選得到的差異基因極有可能對砂糖燈籠橘的果實甜度及生長發育至關重要。在對差異基因數量最多的葉子轉錄組數據分析后發現,其差異基因主要參與到植物-病原互作、半乳糖代謝、轉運蛋白運輸等過程。柑橘類果皮富含多種化學成分[31-32],在食品、醫藥方面具有巨大的應用潛力,同時,果皮作為柑橘抵抗自然環境、病蟲害的第一道防線[33],其組成結構極其重要,轉錄組數據顯示,果皮中的差異基因主要參與到抗逆、轉錄調控、生物反應等過程。柑橘橘絡中富含多種類黃酮類化合物,如橙皮苷、槲皮素[34],GO分析顯示,砂糖燈籠橘橘絡差異基因主要參與到黃酮類化合物的生物合成及糖脂化作用,對抵抗外界惡劣環境、生長發育具有重要意義。
通過甲苯胺藍染液染色實驗,發現砂糖燈籠橘葉片、果皮表面存在蠟質缺失的現象。植物表面的蠟質是由脂肪酸及其衍生物混合構成的一道屏障[35],主要用于抵抗外界輻射、抵抗氣溫脅迫、防止病蟲害危害及水分散失[36-37]。根據轉錄組差異基因篩選的數據,砂糖燈籠橘果皮中存在9個與蠟質生物合成相關的差異基因,葉片中存在12個差異基因,果皮中只有FACR2為上調基因,其余基因表達量皆下調。FACR2為柑橘的脂肪酰輔酶A還原酶2異構體X2,參與到蠟質生物合成的第一步,即還原酶蛋白編碼。目前對于該基因的具體功能未見報道,但對小麥中超長鏈脂肪酰輔酶A還原酶TaFAR的研究[38]表明,FAR能夠促進葉片表皮蠟質晶體的合成,存在正向調控的作用。因此可以推測柑橘中的FACR2基因極有可能正向調節蠟質晶體的合成,但由于砂糖燈籠橘體內飽和脂肪酸底物不足,即使其表達量高,也很難轉化為脂肪醇。葉片中存在2個與蠟質合成相關的上調基因,皆為細胞色素P450酶。CYP450為單加氧酶,廣泛參與植物中多種次生代謝產物的生物合成[39-40],其可能參與到砂糖燈籠橘蠟質合成相關化合物的代謝通路中。葉片、果皮與蠟質生物合成相關的差異基因韋恩圖顯示2個組織樣本中存在5個共同基因,分別為CER1、CER3、HHT、細胞色素P45086A8、細胞色素P45086A22,表達量皆顯著下調。CER1、CER3為擬南芥烷烴合成酶同源基因[41-42]。擬南芥中CER3等基因[43]可以參與到花粉內油脂類化合物合成與轉運;小麥中的CER1[42]能夠調控其表面蠟質合成,正向調控韌皮部防衛反應及應對麥長管蚜的抗性。因此CER系列基因對于調控砂糖燈籠橘表面果皮、葉片蠟質成分的合成和積累起著至關重要的作用,其下調可能會直接導致砂糖燈籠橘蠟質缺失。HHT編碼阿魏酸輔酶A轉移酶,從而參與木脂素生物合成。基于花花柴高溫環境下的表達譜篩選到與蠟質合成相關基因KcHHT,能夠明顯提升花花柴蠟質合成,進而增強其抗逆作用[44],因此可以推測出篩選到的砂糖燈籠橘中HHT基因也能夠直接參與到蠟質生物合成,其表達量降低也會導致砂糖燈籠橘表面蠟質缺失。目前砂糖燈籠橘中篩選的蠟質合成相關基因的功能研究尚未見報道,后續對這些基因進行具體深入的研究有助于砂糖燈籠橘的定向優質育種。
4 結 論
砂糖燈籠橘為砂糖橘自然變異品種,其葉大且葉片邊緣不規則;果實較砂糖橘大,果皮有明顯溝壑,表面布滿點狀突起,形似“燈籠”。甲苯胺藍染色說明葉片、果實表面蠟質排布不均。轉錄組測序發現葉片差異基因數量最多,其次為果肉、果皮、橘絡。篩選葉片、果皮中與蠟質生物合成相關的顯著差異基因,發現葉片中存在12個,果皮中存在9個,且有5個共同的顯著下調基因,分別為CER1、CER3、HHT、細胞色素P45086A8、細胞色素P45086A22,這些基因可能是砂糖燈籠橘表面蠟質生物合成的關鍵基因。進一步對這些基因的功能進行深入挖掘,可以為定向培育優質的砂糖燈籠橘種質資源提供理論依據。
參考文獻References:
[1] 韋有明. 砂糖橘高產優質栽培技術[J]. 鄉村科技,2021,12(13):53-54.
WEI Youming. High yield and high quality cultivation technology of Granulated Orange[J]. Rural Science and Technology,2021,12(13):53-54.
[2] 葛卉,宋文龍,劉興菊,梁海永. 金枝黃花柳回交子代枝條顏色與轉錄組研究[J]. 林業與生態科學,2022,37(4):370-377.
GE Hui,SONG Wenlong,LIU Xingju,LIANG Haiyong. Study on branch color and transcriptome of Salix caprea var. aurea[J]. Forestry and Ecological Sciences,2022,37(4):370-377.
[3] 蔡宇,周認,柴明良. 基于轉錄組測序的溝葉結縷草花序發育相關基因篩選及分析[J]. 分子植物育種,2022,20(24):8005-8016.
CAI Yu,ZHOU Ren,CHAI Mingliang. Screening and analysis of genes related to inflorescence development of Zoysia matrella based on RNA-seq[J]. Molecular Plant Breeding,2022,20(24):8005-8016.
[4] 鄭雪夢,時月,王雪敏,馬越,趙曉燕,張超. 基于轉錄組測序的西瓜果肉硬度相關基因表達分析[J]. 中國瓜菜,2020,33(10):15-22.
ZHENG Xuemeng,SHI Yue,WANG Xuemin,MA Yue,ZHAO Xiaoyan,ZHANG Chao. Expression of genes related to firmness of watermelon (Citrullus lanatus) based on transcriptome sequencing[J]. China Cucurbits and Vegetables,2020,33(10):15-22.
[5] 范小青,蔡雯婷,呂曉娜,董清華. 基于轉錄組測序的‘紅顏’草莓及果肉突變體著色差異基因分析[J/OL]. 分子植物育種,2022:1-16. (2022-06-23). https//kns.cnki.net/kcms/detail/46.1068.S.20220622.1617.006.html.
FAN Xiaoqing, CAI Wenting, Lü Xiaona, DONG Qinghua. Differential gene analysis of pigmentation in ‘Benihoppe’ strawberry and flesh mutants based on transcriptome sequencing[J/OL]. Molecular Plant Breeding, 2022:1-16. (2022-06-23). https//kns.cnki.net/kcms/detail/46.1068.S.20220622.1617.006.html.
[6] 劉戀,唐志鵬,李菲菲,熊江,呂壁紋,馬小川,唐超蘭,李澤航,周鐵,盛玲,盧曉鵬. 融安金柑、滑皮金柑及脆蜜金柑貯藏期品質、貯藏特性及果皮轉錄組分析[J]. 中國農業科學,2021,54(20):4421-4433.
LIU Lian,TANG Zhipeng,LI Feifei,XIONG Jiang,Lü Biwen,MA Xiaochuan,TANG Chaolan,LI Zehang,ZHOU Tie,SHENG Ling,LU Xiaopeng. Fruit quality in storage,storability and peel transcriptome analysis of Rong’an kumquat,Huapi kumquat and Cuimi kumquat[J]. Scientia Agricultura Sinica,2021,54(20):4421-4433.
[7] 李靈之,馬杰,向建華,陳信波. 植物角質層內外蠟質的差異及其與抗逆性的關系[J]. 植物生理學報,2011,47(7):680-684.
LI Lingzhi,MA Jie,XIANG Jianhua,CHEN Xinbo. Composition differences of epicuticular and intracuticular wax layers and the relationship between cuticle and plant stress tolerance[J]. Plant Physiology Journal,2011,47(7):680-684.
[8] 司雅靜,劉嬌嬌,王愛德,袁暉. 果實蠟質的研究進展[J]. 遼寧農業科學,2021(6):53-57.
SI Yajing,LIU Jiaojiao,WANG Aide,YUAN Hui. Research progress of fruit wax[J]. Liaoning Agricultural Sciences,2021(6):53-57.
[9] 李丹,關軍鋒,韓亞楠. 果實表面蠟質合成及乙烯和APETALA2/乙烯響應因子調控作用的研究進展[J]. 食品科學,2022,43(23):377-385.
LI Dan,GUAN Junfeng,HAN Yanan. Research progress on fruit surface wax synthesis and its regulation by APETALA2/ethylene-responsive factors[J]. Food Science,2022,43(23):377-385.
[10] 呂慧,吉雪花,張中榮,朱冉冉,王世寧,謝雪果,袁雷. 制干辣椒果實辣椒素對干旱、鹽及其雙重脅迫的響應[J]. 中國瓜菜,2022,35(2):78-84.
Lü Hui,JI Xuehua,ZHANG Zhongrong,ZHU Ranran,WANG Shining,XIE Xueguo,YUAN Lei. Capsaicin of dry pepper fruit grown under drought,salt and combined stress condition[J]. China Cucurbits and Vegetables,2022,35(2):78-84.
[11] TANAKA T,TANAKA H,MACHIDA C,WATANABE M,MACHIDA Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis[J]. The Plant Journal,2004,37(1):139-146.
[12] KECHIN A,BOYARSKIKH U,KEL A,FILIPENKO M. cutPrimers:A new tool for accurate cutting of primers from reads of targeted next generation sequencing[J]. Journal of Computational Biology,2017,24(11):1138-1143.
[13] KIM D,PAGGI J M,PARK C,BENNETT C,SALZBERG S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology,2019,37(8):907-915.
[14] PERTEA M,KIM D,PERTEA G M,LEEK J T,SALZBERG S L. Transcript-level expression analysis of RNA-seq experiments with HISAT,StringTie and Ballgown[J]. Nature Protocols,2016,11(9):1650-1667.
[15] KIM D,LANGMEAD B,SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[16] KOVAKA S,ZIMIN A V,PERTEA G M,RAZAGHI R,SALZBERG S L,PERTEA M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2[J]. Genome Biology,2019,20(1):278.
[17] PERTEA M,PERTEA G M,ANTONESCU C M,CHANG T C,MENDELL J T,SALZBERG S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology,2015,33(3):290-295.
[18] WANG Z Y,LEUSHKIN E,LIECHTI A,OVCHINNIKOVA S,M??INGER K,BRüNING T,RUMMEL C,GRüTZNER F,CARDOSO-MOREIRA M,JANICH P,GATFIELD D,DIAGOURAGA B,DE MASSY B,GILL M E,PETERS A H F M,ANDERS S,KAESSMANN H. Transcriptome and translatome co-evolution in mammals[J]. Nature,2020,588(7839):642-647.
[19] ASHBURNER M,BALL C A,BLAKE J A,BOTSTEIN D,BUTLER H,CHERRY J M,DAVIS A P,DOLINSKI K,DWIGHT S S,EPPIG J T,HARRIS M A,HILL D P,ISSEL-TARVER L,KASARSKIS A,LEWIS S,MATESE J C,RICHARDSON J E,RINGWALD M,RUBIN G M,SHERLOCK G. Gene Ontology:tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29.
[20] CONSORTIUM G O. The gene ontology resource:enriching a GOld mine[J]. Nucleic Acids Research,2021,49(D1):325-334.
[21] KANEHISA M,FURUMICHI M,SATO Y,ISHIGURO-WATANABE M,TANABE M. KEGG:integrating viruses and cellular organisms[J]. Nucleic Acids Research,2021,49(D1):545-551.
[22] JIANG S Y,RAMACHANDRAN S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding[J]. International Journal of Biological Sciences,2010,6(3):228-251.
[23] 張曉青,蔡偉飛,郭鈴,肖建中,徐飛. 基于Illumina高通量測序技術的條葉榕基因組分析[J/OL]. 分子植物育種,2022:1-10. (2022-04-21). https://kns.cnki.net/kcms/detail/46.1068.S.20220421.1137.006.html.
ZHANG Xiaoqing,CAI Weifei,GUO Ling,XIAO Jianzhong,XU Fei. Genome survey study of Ficus pandurata hance var. angustifolia cheng based on illumina high throughput sequencing[J/OL]. Molecular Plant Breeding,2022:1-10. (2022-04-21). https://kns.cnki.net/kcms/detail/46.1068.S.20220421.1137.006.html.
[24] 杜文麗,陳中釤,許端祥,高山,溫慶放. 基于Illumina HiSeq 2500測序技術對高溫脅迫下苦瓜葉片轉錄組特性分析[J]. 分子植物育種,2019,17(2):377-387.
DU Wenli,CHEN Zhongshan,XU Duanxiang,GAO Shan,WEN Qingfang. Transcriptome characterization analysis of Momordica charantia L. leaf under high temperature stress based on illumina HiSeq 2500 sequencing technology[J]. Molecular Plant Breeding,2019,17(2):377-387.
[25] 蔣艷芳,黃島平,陳秋紅,黃艷. 超高效液相色譜法測定柑橘果肉中四種植物性內源激素的含量[J]. 湖北農業科學,2012,51(1):165-169.
JIANG Yanfang,HUANG Daoping,CHEN Qiuhong,HUANG Yan. Determination of four endogenous hormones in orange pulp by UPLC[J]. Hubei Agricultural Sciences,2012,51(1):165-169.
[26] 董倩倩. 柑橘生理落果與果實各部位4種內源激素含量關系分析[D]. 重慶:西南大學,2019.
DONG Qianqian. Analysis on the relationship between physiological fruit drop and content of four endogenous hormones in different parts of fruit in Citrus[D]. Chongqing:Southwest University,2019.
[27] 湯雨晴. 柑橘果肉色澤的遺傳研究及類胡蘿卜素含量的QTL定位[D]. 武漢:華中農業大學,2018.
TANG Yuqing. The genetic studies of pulp color and mapping of QTL for carotenoids content in Citrus[D]. Wuhan:Huazhong Agricultural University,2018.
[28] 王玉,楊雪,楊蕊菁,王玉霞,楊飛霞,夏鵬飛,趙磊. 調控苯丙烷類生物合成的MYB類轉錄因子研究進展[J]. 安徽農業大學學報,2019,46(5):859-864.
WANG Yu,YANG Xue,YANG Ruijing,WANG Yuxia,YANG Feixia,XIA Pengfei,ZHAO Lei. Advances in research of MYB transcription factors in regulating phenylpropane biosynthesis[J]. Journal of Anhui Agricultural University,2019,46(5):859-864.
[29] 葉子茂,申晚霞,劉夢雨,王彤,張曉楠,余歆,劉小豐,趙曉春. R2R3-MYB轉錄因子CitMYB21對柑橘類黃酮生物合成的影響[J]. 園藝學報,2023,50(2):250-264.
YE Zimao,SHEN Wanxia,LIU Mengyu,WANG Tong,ZHANG Xiaonan,YU Xin,LIU Xiaofeng,ZHAO Xiaochun. Effect of R2R3-MYB transcription factor CitMYB21 on flavonoids biosynthesis in citrus[J]. Acta Horticulturae Sinica,2023,50(2):250-264.
[30] LIU W X,FENG Y,YU S H,FAN Z Q,LI X L,LI J Y,YIN H F. The flavonoid biosynthesis network in plants[J]. International Journal of Molecular Sciences,2021,22(23):12824.
[31] 劉雪峰,楊梅,向蘋葦,馬曉麗,胡德玉,楊茂盛,袁項成. 柑橘果皮重要成分及其應用研究進展[J/OL]. 食品與發酵工業,[2022-11-30],2022. https://doi.org/10.13995/j.cnki.11-1802/ts.033939.
LIU Xuefeng,YANG Mei,XIANG Pingwei,MA Xiaoli,HU Deyu,YANG Maosheng,YUAN Xiangcheng. Research progress on important components of citrus peel and their application[J/OL]. Food and Fermentation Industry,[2022-11-30],2022. https://doi.org/10.13995/j.cnki.11-1802/ts.033939.
[32] FAN R Y,ZHU C Y,QIU D Y,MAO G L,MUELLER-ROEBER B,ZENG J W. Integrated transcriptomic and metabolomic analyses reveal key genes controlling flavonoid biosynthesis in Citrus grandis ‘Tomentosa’ fruits[J]. Plant Physiology and Biochemistry,2023,196:210-221.
[33] 徐淑婷,陳燁芝,吳玨,曹錦萍,孫崇德. 溫州蜜柑采后熱激處理對果皮蠟質和氣孔的影響[C]//鄭州:中國園藝學會2019年學術年會暨成立90周年紀念大會論文摘要集,2019:82.
XU Shuting,CHEN Yezhi,WU Jue,CAO Jinping,SUN Chongde. Effects of heat shock treatment on peel wax and stomata of Wenzhou Tangerine[C]//Zhengzhou:Chinese Horticultural Society 2019 Annual Conference and 90th Anniversary of its Foundation Abstract Collection,2019:82.
[34] 于藝婧,蒲玲玲,高蔚娜,麻玉瑩,姚站馨,王新興,郭長江. 柑橘橘絡提取物類黃酮成分分析及其抗低氧作用研究[J]. 軍事醫學,2021,45(3):214-217.
YU Yijing,PU Lingling,GAO Weina,MA Yuying,YAO Zhanxin,WANG Xinxing,GUO Changjiang. Analysis of flavonoids in citrus tangerine pith extract and their anti-hypoxia effect[J]. Military Medical Sciences,2021,45(3):214-217.
[35] 黃世安,董曉慶,朱守亮. 園藝植物表皮蠟質研究進展[J]. 安徽農業科學,2021,49(1):6-10.
HUANG Shian,DONG Xiaoqing,ZHU Shouliang. Research progress on epidermal wax of horticultural plant[J]. Journal of Anhui Agricultural Sciences,2021,49(1):6-10.
[36] FARAH S,ANDERSON D G,LANGER R. Physical and mechanical properties of PLA,and their functions in widespread applications:A comprehensive review[J]. Advanced Drug Delivery Reviews,2016,107:367-392.
[37] BAALES J,ZEISLER-DIEHL V V,MALKOWSKY Y,SCHREIBER L. Interaction of surfactants with barley leaf surfaces:Time-dependent recovery of contact angles is due to foliar uptake of surfactants[J]. Planta,2021,255(1):1.
[38] 柴乖強. 小麥超長鏈脂肪酰輔酶A還原酶基因TaFAR的同源克隆與功能分析[D]. 楊凌:西北農林科技大學,2018.
CHAI Guaiqiang. Homology cloning and functional analysis of very-long fatty acyl CoA reductase in wheat[D]. Yangling:Northwest A amp; F University,2018.
[39] 李永康,馬雪祺,馮婧嫻,陳萬生,孫連娜,肖瑩. 細胞色素P450酶在植物次生代謝產物生物合成中的研究進展[J/OL]. 分子植物育種,2021,1-8.,[2021-07-08] https://kns.cnki.net/kcms/detail/46.1068.S.20210707.1636.022.html.
LI Yongkang,MA Xueqi,FENG Jingxian,CHEN Wansheng,SUN Lianna,XIAO Ying. Advances of Cytochrome P450s in the biosynthesis of plant secondary metabolites[J/OL]. Molecular plant breeding,2021,1-8,[2021-07-08]. https://kns.cnki.net/kcms/detail/46.1068.S.20210707.1636.022.html.
[40] 李翔宇,王助乾,孫春玉,張美萍,王義. 植物細胞色素P450s及其在植物新陳代謝中的作用[J]. 安徽農業科學,2016,44(13):129-134.
LI Xiangyu,WANG Zhuqian,SUN Chunyu, ZHANG Meiping,WANG Yi. Cytochrome P450s and their function in plant metabolism[J]. Journal of Anhui Agricultural Sciences,2016,44(13):129-134.
[41] 吳洪啟. 二穗短柄草葉片表皮蠟質分析及烷烴合成酶基因CER1和CER3的克隆[D]. 楊凌:西北農林科技大學,2017.
WU Hongqi. Cuticular wax analysis of leaf and cloning of alkane biosynthesis enzyme genes CER1 and CER3 in Brachypodium distachyum[D]. Yangling:Northwest A amp; F University,2017.
[42] 盧一萱. 小麥MYB28激活蠟質基因CER1調控韌皮部防衛反應與對麥長管蚜的抗性[D]. 南京:南京農業大學,2020.
LU Yixuan. Wheat MYB28 activates the wax-biosynthesis-critical gene CER1 to confer the phloem-based defense against English grain aphid in wheat[D]. Nanjing:Nanjing Agricultural University,2020.
[43] 謝慧慧. CER3等基因在擬南芥花粉水合及莖表蠟質合成中的作用[D]. 上海:上海師范大學,2018.
XIE Huihui. Effects of CER3 and other genes on pollen hydration and stem surface wax synthesis in Arabidopsis thaliana[D]. Shanghai:Shanghai Normal University,2018.
[44] 曲航飛. 花花柴蠟質合成相關基因KcFAD2、KcHHT的功能驗證[D]. 阿拉爾:塔里木大學,2022.
QU Hangfei. Functional verification of Karelinia caspia wax synthesis related genes KcFAD2 and KcHHT[D]. Alar:Tarim University,2022.