999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

11個(gè)鮮食葡萄品種幼苗抗旱性研究及抗旱指標(biāo)篩選

2023-04-29 00:00:00刁珊NAMIKana紀(jì)薇楊明霞
果樹學(xué)報(bào) 2023年9期

摘" " 要:【目的】缺水是影響干旱區(qū)葡萄種植的主要因素之一,因此有必要篩選抗旱鮮食葡萄品種和葡萄抗旱的相關(guān)指標(biāo)。【方法】以麗紅寶、晶紅寶、無核翠寶等11個(gè)鮮食葡萄品種幼苗為材料,進(jìn)行自然干旱處理,測(cè)定其電導(dǎo)率、葉綠素含量和葉綠素?zé)晒鈪?shù),利用相關(guān)性分析、主成分分析、聚類分析和灰色關(guān)聯(lián)度分析相結(jié)合的方法,綜合評(píng)價(jià)幼苗抗旱性差異并篩選相關(guān)指標(biāo)。【結(jié)果】干旱脅迫對(duì)植株相對(duì)電導(dǎo)率、葉綠素含量和葉綠素?zé)晒鈪?shù)均有顯著影響。相關(guān)性分析表明,Rfd與NPQ,F(xiàn)m與Fp、Fv、Fv/Fm,F(xiàn)p與Fv、Fv/Fm,F(xiàn)v與Fv/Fm,葉綠素a含量與總?cè)~綠素含量呈極顯著正相關(guān)(p<0.001)。主成分分析表明,11個(gè)葡萄品種抗旱性排序?yàn)椋蝴惣t寶>秋紅寶>茉莉香>巨茉莉>無核白>晶紅寶>火焰無核>晚黑寶>無核翠寶>克瑞森無核>早霞玫瑰。聚類分析將11個(gè)葡萄品種分為3個(gè)抗旱級(jí)別,第1類是高抗旱品種(秋紅寶和麗紅寶);第2類是中抗旱品種(晶紅寶、無核白、巨茉莉和茉莉香);第3類是低抗旱品種(克瑞森無核、晚黑寶、早霞玫瑰、無核翠寶和火焰無核)。灰色關(guān)聯(lián)度分析顯示葉綠素a含量、葉綠素b含量、類胡蘿卜素含量、總光合色素含量、根系相對(duì)電導(dǎo)率和NPQ 6個(gè)指標(biāo)與葡萄幼苗抗旱性密切相關(guān)。【結(jié)論】秋紅寶和麗紅寶抗旱性較強(qiáng),適合在干旱及半干旱地區(qū)推廣種植。葉片的光合色素含量、根系相對(duì)電導(dǎo)率和NPQ可作為評(píng)價(jià)葡萄抗旱性的可靠指標(biāo)。

關(guān)鍵詞:鮮食葡萄;幼苗;抗旱性差異;指標(biāo)篩選;綜合評(píng)價(jià)

中圖分類號(hào):S663.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)09-1871-14

收稿日期:2023-03-02 接受日期:2023-05-20

基金項(xiàng)目:中央引導(dǎo)地方科技發(fā)展資金項(xiàng)目(YDZJSX20231A036);山西省科技成果轉(zhuǎn)化引導(dǎo)專項(xiàng)項(xiàng)目(202204021301028);山西省科技重大專項(xiàng)計(jì)劃(202201140601027-3)

作者簡(jiǎn)介:刁珊,女,在讀碩士研究生,研究方向?yàn)閳@藝植物栽培生理和品質(zhì)調(diào)控。E-mail:ds11212008@163.com

*通信作者 Author for correspondence. E-mail:jiweiputao@163.com;E-mail:ymx20051@163.com

Evaluation of drought resistance in seedlings of 11 table grape varieties and screening of drought resistance indicators

DIAO Shan1, NAMI Kana2, JI Wei1, 2, 3*, YANG Mingxia4*

(1College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2Yamagata University, Yamagata-ken 990-8560, Japan; 3Yuncheng Agriculture and Rural Bureau, Yuncheng 044000, Shanxi, China; 4Pomology Institute, Shanxi Agricultural University, Taigu 030815, Shanxi, China)

Abstract: 【Objective】 Grapes are an important cash crop in the arid areas. Drought seriously affects the growth and yield of grapes and limits the development of the grape industry. Selecting table grape varieties with high drought resistance is the most effective way to cope with drought. This experiment aimed to select table grape varieties with high drought resistance suitable for cultivation in the arid areas as well as drought resistance indicators with high correlation. This study provides a reference for planting grapes in the arid areas. 【Methods】 The experiment was conducted in a greenhouse at the Horticulture Station of Shanxi Agricultural University. Eleven table grape varieties tested included five Shanxi varieties (Lihongbao, Jinghongbao, Qiuhongbao, Wanheibao and Wuhecuibao), three Liaoning varieties (Zaoxiameigui, Jumoli and Molixiang), two Xinjiang varieties (Thompson Seedless and Flame Seedless) and one California variety (Crimson Seedless). 1-year-old cuttings of each variety were collected in November 2021 and buried with earth. The sand-harvested cuttings were transplanted in April 2022, and the experiment was conducted after the seedlings were established in August, 2022. The average air temperature during the experiment was 29.3 ℃ and the average humidity was 51.9%. Water withholding treatment was used to simulate natural drought, and 20 seedlings of each variety were selected. On the 0, 3, 6, 9 and 12 days after drought stress treatment, biological responses were recorded and chlorophyll fluorescence parameters (maximum fluorescence value (Fm), maximum photochemical efficiency (Fv/Fm), effective quantum yield of PSⅡ (Qy), non-photochemical burst coefficient (NPQ), photochemical burst coefficient (qP) and fluorescence decline rate (Rfd) were measured with a Fluor Pen FP110. The samples were taken back to the laboratory for determination of membrane leakage of the leaves and roots and photosynthetic pigment contents (chlorophyll a, chlorophyll b, carotenoids and total chlorophylls). Significance of differences between varieties at different times of drought were analyzed with the new multiple range method. Correlations between the indicators were tested by correlation analysis. Principal component analysis was used to evaluate the drought resistance of the 11 table varieties, which were classified using cluster analysis based on the principal component scores. The parameters with high correlation with drought resistance were selected using gray correlation analysis. 【Results】 Drought stress had significant effects on the phenotype, membrane leakage in the leaf and root, chlorophyll content, and chlorophyll fluorescence parameters. Drought caused loss of greenness and wrinkling and wilting of grape seedlings. Membrane leakage in the leaves and roots increased significantly under drought. Chlorophyll a content and total chlorophyll content decreased significantly. Fm, Fv/Fm, effective quantum yield, non-photochemical burst coefficient, photochemical burst coefficient and fluorescence decline rate of PSⅡ all decreased. Correlation analysis of various indexes showed that Rfd and NPQ, Fm and Fp, Fv and Fv/Fm, Fp and Fv and Fv/Fm, Fv and Fv/Fm, and chlorophyll a content and total chlorophyll content were highly significantly positively correlated (p<0.001). NPQ and Qy, chlorophyll b content and total chlorophyll content, and chlorophyll a content and carotenoid content were significantly positively correlated (p<0.05). However, root membrane leakage and Rfd, Fm and Fp were significantly negatively correlated (p<0.05). The order of the drought-resistance according to the principal component analysis was in a descending order of Lihongbao>Qiuhongbao>Molixiang>Jumoli>Thompson Seedless>Jinghongbao>Flame Seedless>W(wǎng)anheibao>W(wǎng)uhecuibao>Crimson Seedless>Zaoxiameigui. According to the method of cluster analysis, Qiuhongbao and Lihongbao were of higher drought resistance; Jinghongbao, Thompson Seedless, Jumoli and Molixiang of moderate drought resistance; and Flame Seedless, Wanheibao, Zaoxiameigui, Wuhecuibao and Crimson Seedless of low drought resistance. Gray correlation analysis showed that drought stress had a significant effect on all the parameters. The grey correlation analysis showed that the correlation between each index and drought was chlorophyll b content, total chlorophyll content, chlorophyll a content, carotenoid content, root relative membrane permeability, NPQ, Fp, Fv/Fm, leaf relative membrane permeability, qP, Rfd, Qy, Fv and Fm. Except for Fv, Qy, Fm and Rfd, the correlation coefficients of all the parameters with drought resistance were higher than 0.8, and the correlations of chlorophyll a, chlorophyll b, carotenoids, total chlorophyll content and root membrane leakage with drought resistance were higher than 0.85. 【Conclusion】 Lihongbao and Qiuhongbao were identified as of high drought resistance at seedling stage, which could be used as materials for drought resistance breeding and for study of the mechanism and regulation of drought resistance in table grapes. The photosynthetic pigment contents, membrane leakage of the roots and NPQ were highly correlated with drought resistance, which could be used as the simple and intuitive indices of drought resistance in table grapes for identifying drought resistant resources at seedling stage.

Key words: Table grape; Seedlings; Drought resistance differences; Index screening; Comprehensive evaluation

葡萄(Vitis vinfera L.)是葡萄科葡萄屬的一種落葉藤本植物,栽培面積廣、經(jīng)濟(jì)效益好、果實(shí)營(yíng)養(yǎng)價(jià)值高[1]。葡萄多種植于干旱和半干旱區(qū)地區(qū),因此水分虧缺是限制葡萄優(yōu)產(chǎn)高產(chǎn)的主要因素之一[2]。選育抗旱葡萄品種是保障旱地葡萄優(yōu)產(chǎn)高產(chǎn)的有效途徑之一,研究不同葡萄品種的抗旱性,篩選抗旱相關(guān)指標(biāo),可為葡萄抗旱育種和干旱區(qū)葡萄栽培提供理論參考。

全球變暖引起的干旱災(zāi)害嚴(yán)重制約農(nóng)業(yè)發(fā)展,影響植物生長(zhǎng)和發(fā)育,故干旱對(duì)植物的影響是近年來的研究重點(diǎn)[3]。研究表明[3],干旱對(duì)植物的影響首先體現(xiàn)在表型特征上,植株失水導(dǎo)致植株生長(zhǎng)緩慢,葉片萎蔫下垂,葉片數(shù)和葉片面積減少,甚至引發(fā)植株死亡。除表型外,細(xì)胞膜透性也會(huì)因缺水而改變,膜透性的改變又會(huì)引起相對(duì)電導(dǎo)率的變化[4]。有研究發(fā)現(xiàn)在干旱脅迫下,植株葉片光合色素含量顯著減少[5],而光合色素的下降引起光反應(yīng)進(jìn)程變化,從而導(dǎo)致葉綠素?zé)晒鈪?shù)下降[6]。植物對(duì)干旱的影響體現(xiàn)在多個(gè)指標(biāo)上,前人使用聚類分析、主成分分析或灰色關(guān)聯(lián)度分析等方法把多個(gè)單一性狀進(jìn)行聯(lián)合分析,開展了柑橘、茶用菊和大麥等作物品種間抗旱性鑒定及關(guān)鍵抗旱指標(biāo)的篩選工作[7-9]。

目前對(duì)葡萄抗旱性鑒定的研究主要集中在砧木葡萄、野生葡萄上,但應(yīng)用相關(guān)性分析、主成分分析、聚類分析和灰色關(guān)聯(lián)度分析四種方法聯(lián)合分析鮮食葡萄品種抗旱性及抗旱指標(biāo)篩選的報(bào)道卻很少。因此,基于筆者課題組前期葡萄幼苗抗性研究基礎(chǔ)[10],本研究中對(duì)11個(gè)鮮食葡萄品種幼苗進(jìn)行干旱處理,并利用相關(guān)性分析、主成分分析、聚類分析和灰色關(guān)聯(lián)度分析相結(jié)合的方法,分析干旱對(duì)11個(gè)鮮食葡萄品種幼苗光合色素含量、葉綠素?zé)晒鈪?shù)和電導(dǎo)率的影響,從而篩選出抗旱性強(qiáng)的鮮食葡萄品種以及與葡萄抗旱關(guān)聯(lián)度高的指標(biāo),以期為干旱地區(qū)葡萄品種選育及種植提供理論和現(xiàn)實(shí)依據(jù)。

1 材料和方法

1.1 試驗(yàn)材料

供試葡萄共計(jì)11個(gè)品種,其中山西品種5個(gè),遼寧品種3個(gè),新疆品種1個(gè),美國品種2個(gè),具體品種名稱、父母本和來源等信息見表1。

于2021年12月收集芽飽滿的扦插條沙藏,并于2022年4月取出種植于山西農(nóng)業(yè)大學(xué)園藝站(112°34′31″ N,37°25′31″ E,海拔791.4 m),扦插苗種植沿用課題組幼苗培育體系[10]。正常肥水管理至幼苗10~12枚葉片后,選取長(zhǎng)勢(shì)一致、無病蟲害的幼苗進(jìn)行試驗(yàn)。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)于2022年8月在山西農(nóng)業(yè)大學(xué)園藝站進(jìn)行。每個(gè)品種選取20株長(zhǎng)勢(shì)一致、無病蟲害的幼苗,共計(jì)220株進(jìn)行試驗(yàn)。采用斷水處理模擬自然干旱,分別在斷水0、3、6、9和12 d采樣,土壤含水量使用盆栽稱重法[11]計(jì)算。于第0天時(shí)澆透水,此時(shí)土壤含水量最高,植株處于正常狀態(tài);第3天時(shí)土壤含水量下降至61.29%,此時(shí)植株遭受輕度干旱;第6天時(shí)土壤含水量為22.12%,植株遭受中度干旱;第9天時(shí)土壤含水量下降至7.97%,為重度干旱;第12天時(shí)土壤含水量下降至1.55%,含水量最低,葡萄幼苗遭受極度干旱脅迫。試驗(yàn)期間外界環(huán)境平均溫度為29.3 ℃,平均濕度為51.9%。

1.3 測(cè)定指標(biāo)與方法

葉片保水力參照鐘灶發(fā)等[12]的方法測(cè)定,于處理第0天,選取各品種葡萄幼苗相同部位葉片2枚,置于A4紙上,使其自然脫水。自葉片脫離植株后開始計(jì)時(shí),每24 h觀察1次并拍照記錄表型,連續(xù)記錄48 h。

電導(dǎo)率參照張星等[13]的方法測(cè)定,取植株相同部位葉片和根0.1 g,加入5 mL蒸餾水浸泡12 h后,使用雷磁DDS-307A電導(dǎo)率儀測(cè)定葉片和根系電導(dǎo)率。

葉綠素含量參照張曉艷等[14]的方法測(cè)定,取植株相同部位功能葉0.05 g,加入95%丙酮、乙醇體積比為1∶2的混合液10 mL浸提24 h,測(cè)定光合色素含量。

葉綠素?zé)晒鈪?shù)參照倪建中等[15]的方法測(cè)定,將植株第3~4節(jié)位的健康功能葉暗處理0.5 h后,使用Fluor Pen FP110手持葉綠素?zé)晒鈨x(捷克FluorCam公司)測(cè)定最大熒光(Fm)、最大可變熒光(Fu)、PSⅡ最大光化學(xué)效率(Fv/Fm)、PSⅡ的有效量子產(chǎn)率(Qy)、閃光脈沖(Fp)、非光化學(xué)淬滅系數(shù)(NPQ)、光化學(xué)淬滅系數(shù)(qP)和熒光下降比值(Rfd)等。

1.4 數(shù)據(jù)處理

使用SPSS 19.0進(jìn)行數(shù)據(jù)整理分析,對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行主成分分析、聚類分析、相關(guān)性分析和灰色關(guān)聯(lián)度分析,使用GraphPad Prism 8、RStudio、Excel 2010、ChiPlot和Adobe Photoshop 2021進(jìn)行圖表制作。

2 結(jié)果與分析

2.1 干旱脅迫下不同品種葡萄扦插苗形態(tài)和葉片保水力差異分析

由圖1可以看出,葡萄幼苗在干旱脅迫下生長(zhǎng)緩慢且逐漸萎蔫,隨著干旱脅迫天數(shù)的增加幼苗萎蔫程度變大。第0天幼苗外部形態(tài)良好,莖稈堅(jiān)挺,葉片翠綠。隨著干旱時(shí)間的延長(zhǎng),各品種植株出現(xiàn)葉片下垂的現(xiàn)象,這表明干旱導(dǎo)致幼苗細(xì)胞膨壓及水勢(shì)下降。干旱第9天各品種植株外部形態(tài)響應(yīng)差異顯著,火焰無核、無核白、克瑞森無核、無核翠寶和早霞玫瑰相較于其余品種萎蔫嚴(yán)重,說明其體內(nèi)水平衡失衡嚴(yán)重,表明其應(yīng)對(duì)干旱的能力較弱。當(dāng)干旱繼續(xù)加深時(shí),植株死亡,證明此時(shí)幼苗體內(nèi)細(xì)胞原生質(zhì)體失水嚴(yán)重。

葉片在脫離植株后會(huì)因脫水而卷曲、萎蔫和皺縮,其卷曲、萎蔫和皺縮程度能反映不同品種抗旱性差異。在脫離母體24 h內(nèi),晚黑寶、早霞玫瑰、巨茉莉、火焰無核4個(gè)品種葉片顏色變化顯著;晚黑寶、巨茉莉、茉莉香和火焰無核葉片邊緣卷曲程度與其他品種相比較嚴(yán)重。隨著離體時(shí)間延長(zhǎng),葉片變褐、皺縮和萎蔫情況加重,11個(gè)品種中麗紅寶葉片無明顯卷曲、皺縮表現(xiàn);晚黑寶、茉莉香葉片明顯卷曲、皺縮;火焰無核、巨茉莉和無核翠寶葉片明顯變褐,說明相較于其他品種,麗紅寶葉片保水能力最強(qiáng),最能適應(yīng)干旱環(huán)境。

2.2 干旱脅迫下不同品種葡萄扦插苗相對(duì)電導(dǎo)率差異分析

由圖2可以看出,隨著干旱時(shí)間的延長(zhǎng),11個(gè)品種葡萄扦插苗葉片和根系的相對(duì)電導(dǎo)率變化趨勢(shì)相同,均隨著干旱脅迫的延續(xù)呈上升趨勢(shì)。與第0天相比,在11個(gè)葡萄品種中火焰無核、無核翠、秋紅寶和無核白的葉片電導(dǎo)率增幅較大,分別增加2.78、1.53、1.43和1.31倍;而克瑞森無核和晶紅寶的葉片相對(duì)電導(dǎo)率上升趨勢(shì)不顯著,說明其葉片細(xì)胞膜透性在干旱下變化不顯著。巨茉莉、麗紅寶、晶紅寶和秋紅寶4個(gè)品種的根系相對(duì)電導(dǎo)率在干旱下分別顯著升高129.82%、121.39%、100.16%和82.30%。綜合葉片和根系相對(duì)電導(dǎo)率,可以看出在11個(gè)供試品種中,秋紅寶通過調(diào)整細(xì)胞膜透性來抵抗干旱的能力較強(qiáng);而克瑞森無核的細(xì)胞膜透性受干旱影響較小。

2.3 干旱脅迫下不同品種葡萄扦插苗光合參數(shù)差異分析

2.3.1" " 干旱脅迫下不同品種葡萄扦插苗光合色素含量差異" " 由圖3可知,隨著干旱脅迫時(shí)間的延長(zhǎng),葡萄幼苗中葉綠素a和總?cè)~綠素含量呈減少趨勢(shì)。與第0天相比,茉莉香、秋紅寶、無核翠寶和無核白的葉綠素a含量分別顯著下降了56.6%、51.7%、50.3%、49.2%;茉莉香、無核白和無核翠寶的總?cè)~綠素含量顯著減少,分別減少46.0%、44.8%和42.4%。隨著干旱脅迫時(shí)間的延長(zhǎng),無核白和無核翠寶葉綠素b含量降幅較大,為54.3%和20.3%;晶紅寶和早霞玫瑰的葉綠素b含量增幅較大,上升了58.6%和46.1%。干旱脅迫使晚黑寶的類胡蘿卜素含量大幅提高,使茉莉香和無核翠寶的類胡蘿卜素含量顯著降低47.3%和24.0%。

2.3.2" " 干旱脅迫下不同品種葡萄扦插苗葉綠素?zé)晒鈪?shù)差異分析" " 由圖4可知,各品種的Fm隨著干旱脅迫的延續(xù)均呈現(xiàn)降低趨勢(shì),其中麗紅寶、秋紅寶、早霞玫瑰和巨茉莉下降幅度較大,分別下降了67.4%、66.8%、33.3%和31.4%;晚黑寶、克瑞森無核和無核翠寶下降幅度最小,分別下降了16.5%、18.9%和19.6%。干旱脅迫使各品種的Fv顯著下降。干旱脅迫下,除茉莉香外,各品種的Fv/Fm均降低,麗紅寶和秋紅寶與第0天相比分別降低了56.0%和52.2%,茉莉香僅比初始狀態(tài)降低13.2%。干旱脅迫下各品種Fp均下降顯著,與第0天相比,麗紅寶和秋紅寶降低了68.8%和68.3%,無核翠寶、晚黑寶、火焰無核和克瑞森無核僅下降了23.3%、23.1%、22.0%和20.4%。干旱脅迫下早霞玫瑰Qy上升7.1%,其余品種Qy均呈下降趨勢(shì),晶紅寶、克瑞森無核和無核白分別降低50.0%、48.0%和41.7%。與正常狀態(tài)相比,干旱12 d使晶紅寶、麗紅寶和克瑞森無核的NPQ分別降低了70.8%、63.9%和56.9%;而干旱12 d對(duì)無核翠寶的NPQ幾乎無影響,僅降低2.4%。除秋紅寶、早霞玫瑰、無核翠寶和晚黑寶的qP隨著干旱增長(zhǎng)了55.7%、40.9%、12.1%和11.2%外,其余品種的qP均降低,其中晶紅寶、克瑞森無核、無核白和巨茉莉降低54.8%、46.3%、40.9%和40.3%。晶紅寶和麗紅寶的Rfd隨著干旱時(shí)間的延長(zhǎng)降低了75.0%和67.4%,無核白、火焰無核、早霞玫瑰和無核翠寶4個(gè)品種的Rfd在干旱脅迫下變化不顯著。

2.4 干旱脅迫下不同品種葡萄指標(biāo)間相關(guān)性分析

對(duì)11個(gè)品種葡萄幼苗在干旱脅迫12 d內(nèi)各指標(biāo)的變化值進(jìn)行相關(guān)性分析,結(jié)果表明:Rfd與NPQ,F(xiàn)m與Fp、Fv、Fv/Fm,F(xiàn)p與Fv、Fv/Fm,F(xiàn)v與Fv/Fm,葉綠素a含量與總?cè)~綠素含量均呈極顯著正相關(guān)(p<0.001)。而NPQ與Qy,葉綠素b含量與總?cè)~綠素含量,葉綠素a含量與類胡蘿卜素含量呈顯著正相關(guān)(p<0.05)。另外,根系電導(dǎo)率與Rfd、Fm、Fp呈顯著負(fù)相關(guān)(p<0.05)(圖5),說明測(cè)定指標(biāo)之間相互聯(lián)系。

2.5 干旱脅迫下不同品種葡萄幼苗主成分分析

不同品種葡萄幼苗抗旱性能不同,為更好地評(píng)價(jià)其抗旱性強(qiáng)弱,采用主成分分析法對(duì)上述11個(gè)品種葡萄幼苗關(guān)鍵指標(biāo)在干旱脅迫下的變化量絕對(duì)值進(jìn)行綜合分析。提取出4個(gè)主成分,其累計(jì)貢獻(xiàn)率為89.48%(表2),代表性較好,故將14個(gè)單一指標(biāo)轉(zhuǎn)換為4個(gè)綜合指標(biāo)。第一主成分中Fm、Fv和Fp載荷量較高,為0.948、0.943和0.929,主要反映干旱脅迫對(duì)葡萄幼苗PSⅡ反應(yīng)中心的影響;第二主成分中總?cè)~綠素含量和葉片相對(duì)電導(dǎo)率載荷量較高,分別為0.758和-0.735;第三主成分中載荷量較高的是qP和葉綠素b含量;第四主成分中載荷量較高的是類胡蘿卜素含量。

通過主成分模型計(jì)算11個(gè)鮮食葡萄品種的綜合得分,按綜合得分由高到低排序?yàn)椋蝴惣t寶>秋紅寶>茉莉香>巨茉莉>無核白>晶紅寶>火焰無核>晚黑寶>無核翠寶>克瑞森無核>早霞玫瑰(表3),說明在11個(gè)供試品種中秋紅寶和麗紅寶抗旱性較強(qiáng),而早霞玫瑰和克瑞森無核抗旱性較弱。

2.6 干旱脅迫下不同鮮食葡萄品種幼苗聚類分析

對(duì)各葡萄品種主成分綜合得分進(jìn)行聚類分析,可將11個(gè)鮮食葡萄品種分為3類群,第1類是高抗旱品種,包括秋紅寶和麗紅寶;第2類是中抗旱品種,包括晶紅寶、無核白、巨茉莉和茉莉香;第3類是低抗旱品種,包括克瑞森無核、晚黑寶、早霞玫瑰、無核翠寶和火焰無核(圖6)。

2.7 干旱脅迫下不同品種葡萄指標(biāo)間灰色關(guān)聯(lián)度分析

對(duì)11個(gè)品種葡萄幼苗在干旱脅迫12 d內(nèi)測(cè)定指標(biāo)的變化值進(jìn)行灰色關(guān)聯(lián)度分析,得出各指標(biāo)與干旱的關(guān)聯(lián)度,結(jié)果(圖7)表明:除Fv、Qy、Fm和Rfd外,其余指標(biāo)與干旱的關(guān)聯(lián)度都大于0.8,葉綠素a、葉綠素b、類胡蘿卜素、總?cè)~綠素含量和根系電導(dǎo)率與干旱的關(guān)聯(lián)度均高于0.85。各指標(biāo)根據(jù)與干旱關(guān)聯(lián)度排序?yàn)椋喝~綠素b含量>總?cè)~綠素含量>葉綠素a含量>類胡蘿卜素含量>根系相對(duì)電導(dǎo)率>NPQ>Fp>Fv/Fm>葉片相對(duì)電導(dǎo)率>qP>Rfd>Qy>Fv>Fm,因此葉綠素b含量、總?cè)~綠素含量、葉綠素a含量、類胡蘿卜素含量、根系相對(duì)電導(dǎo)率和NPQ可以作為評(píng)價(jià)葡萄幼苗抗旱性的較直觀指標(biāo)。

3 討 論

3.1 干旱脅迫對(duì)11個(gè)鮮食葡萄品種幼苗關(guān)鍵指標(biāo)的影響

已有大量研究表明,干旱對(duì)植株的影響首先體現(xiàn)在表型上,本試驗(yàn)中各品種幼苗在干旱脅迫下均出現(xiàn)葉片萎蔫、莖桿彎曲,與前人研究結(jié)果一致,分析原因可能是缺水導(dǎo)致植株體內(nèi)水平衡失衡、細(xì)胞水勢(shì)及膨壓下降,從而導(dǎo)致葉片下垂、萎蔫和脫落,葉面積下降,甚至植株死亡[16]。不同品種的葉片在離體后,均出現(xiàn)變褐、卷曲皺縮等情況,這與鐘灶發(fā)等[12]在柑橘葉片上的研究結(jié)果一致。在本試驗(yàn)中,麗紅寶和秋紅寶外部表型變化較小,說明這兩個(gè)品種葉片保水能力和抗旱能力顯著強(qiáng)于其他品種。

細(xì)胞膜是維持植物體正常生命活動(dòng)和細(xì)胞內(nèi)部環(huán)境穩(wěn)定的重要器官,當(dāng)植物遭受干旱脅迫時(shí),細(xì)胞膜會(huì)通過改變自身通透性來抵御干旱[17],而這種變化可以通過相對(duì)電導(dǎo)率來體現(xiàn),因此植株相對(duì)電導(dǎo)率可以反映植物抗旱能力強(qiáng)弱。相對(duì)電導(dǎo)率作為抗旱性鑒定指標(biāo)之一,在多種植物上均有研究[8,18],其值均會(huì)隨著干旱的延續(xù)上升。筆者在本試驗(yàn)中對(duì)干旱脅迫下11個(gè)鮮食葡萄品種幼苗的葉片和根系電導(dǎo)率進(jìn)行測(cè)定,也得出葡萄葉片和根系的電導(dǎo)率均隨著干旱脅迫的延續(xù)而上升的結(jié)果。11個(gè)品種中,秋紅寶的葉片和根系電導(dǎo)率變化均顯著,麗紅寶的根系電導(dǎo)率變化顯著,而克瑞森無核的葉片和根系電導(dǎo)率變化不顯著。

除了細(xì)胞膜透性的改變,干旱對(duì)葉綠素含量也有影響。葉綠素作為植株光合作用固定光能的重要物質(zhì)[19],包括葉綠素a、葉綠素b、類胡蘿卜素,本試驗(yàn)結(jié)果表明,葡萄葉片的葉綠素a和總?cè)~綠素含量在干旱脅迫時(shí)降低,這表明隨著干旱脅迫時(shí)間的延長(zhǎng),植物體內(nèi)光合代謝過程逐漸被破壞,引發(fā)光合色素含量降低,固定光能的能力減弱,最終導(dǎo)致光合作用減弱,這與李潤(rùn)宇等[20]得出的結(jié)論相同。葡萄品種不同,下降趨勢(shì)也不同,在本試驗(yàn)中茉莉香、無核白、無核翠寶和秋紅寶4個(gè)品種下降顯著,說明這4個(gè)品種葉綠素代謝受干旱影響較大。

葉綠素?zé)晒夥从彻夥磻?yīng)進(jìn)程,是對(duì)逆境較為敏感的關(guān)鍵指標(biāo),主要包括Fm、Fv/Fm、Qy、NPQ和qP等[21]。干旱會(huì)導(dǎo)致PSⅡ反應(yīng)中心關(guān)閉時(shí)的熒光產(chǎn)量下降[22],而本研究也得出相同結(jié)論,猜測(cè)是因?yàn)楦珊祵?dǎo)致PSⅡ的電子傳遞效率下降[23]。PSⅡ最大光化學(xué)量子產(chǎn)量也會(huì)隨著干旱脅迫的延續(xù)減少,引發(fā)PSⅡ反應(yīng)中心光能轉(zhuǎn)化效率降低[24],該試驗(yàn)結(jié)果也驗(yàn)證該猜想。NPQ表示PSⅡ反應(yīng)中心吸收的光能中以熱形式耗散掉的比例[25],本研究表明,隨著干旱脅迫的延續(xù),各品種的NPQ均呈下降趨勢(shì),與其他學(xué)者結(jié)論相同[26],說明植物會(huì)降低以熱形式耗散掉光能的比例來提高光能利用效率。qP表示PSⅡ在光適應(yīng)狀態(tài)下進(jìn)行光化學(xué)反應(yīng)的能力[27],有研究表明干旱脅迫使植物的qP顯著降低[28],本研究也得出了干旱脅迫會(huì)使葡萄葉片qP下降的結(jié)論,這可能是因?yàn)槿彼鹑~片內(nèi)葉綠體結(jié)構(gòu)改變、PSⅡ反應(yīng)中心失活[29],從而導(dǎo)致PSⅡ光化學(xué)反應(yīng)能力降低。同時(shí)葡萄葉片PSⅡ反應(yīng)中心失活會(huì)阻礙葉片利用光能進(jìn)行光合作用,導(dǎo)致Rfd減小,光合能力下降。

3.2 11個(gè)鮮食葡萄品種幼苗抗旱性差異分析及抗旱指標(biāo)評(píng)價(jià)

干旱對(duì)葡萄的影響體現(xiàn)在多個(gè)指標(biāo)上,而通過單一指標(biāo)無法準(zhǔn)確評(píng)判葡萄抗旱性強(qiáng)弱,故需要對(duì)多個(gè)單一指標(biāo)進(jìn)行綜合評(píng)價(jià)[30],而綜合評(píng)價(jià)多個(gè)指標(biāo)需要科學(xué)的評(píng)價(jià)體系,目前常用方法主要有隸屬函數(shù)、主成分分析、灰色關(guān)聯(lián)度分析等方法,研究表明采用多指標(biāo)多方法綜合分析可以使結(jié)果更加科學(xué)客觀[31-32]。

王春雪等[32]通過相關(guān)性分析發(fā)現(xiàn)劍麻酶系統(tǒng)中SOD和POD協(xié)同抵抗干旱,將其受到的傷害降至最低。本試驗(yàn)對(duì)11個(gè)品種葡萄幼苗在干旱脅迫12 d內(nèi)的測(cè)定指標(biāo)變化值進(jìn)行相關(guān)性分析,得出Rfd和NPQ,F(xiàn)m和Fp、Fv、Fv/Fm,F(xiàn)p和Fv、Fv/Fm,F(xiàn)v和Fv/Fm,葉綠素a含量和總?cè)~綠素含量協(xié)同抵抗干旱;根系電導(dǎo)率與Rfd、Fm、Fp呈顯著負(fù)相關(guān)(p<0.05),屬拮抗作用。相關(guān)性分析表明葡萄幼苗通過協(xié)調(diào)光合色素、相對(duì)電導(dǎo)率和葉綠素?zé)晒鈦碓鰪?qiáng)植株抗旱性。

指標(biāo)之間相關(guān)性并不能鑒定抗旱性強(qiáng)弱,故通過主成分分析綜合了電導(dǎo)率和光合參數(shù)等關(guān)鍵指標(biāo),得出了11個(gè)鮮食葡萄品種幼苗抗旱性排序:麗紅寶>秋紅寶>茉莉香>巨茉莉>無核白>晶紅寶>火焰無核>晚黑寶>無核翠寶>克瑞森無核>早霞玫瑰。王爽等[5]使用該方法分析了葉綠素相對(duì)含量、凈光合速率等指標(biāo),對(duì)7個(gè)鮮食葡萄品種扦插幼苗的抗旱性能進(jìn)行了鑒定;由佳輝等[6]使用該方法分析干旱脅迫下7年生葡萄的新梢生長(zhǎng)量、光合參數(shù)和葉綠素?zé)晒鈪?shù)的變化,鑒定了17個(gè)砧木葡萄品種的抗旱性強(qiáng)弱。與由佳輝等[6]的研究不同,該試驗(yàn)以盆栽扦插幼苗為材料,其根系分布與大田成齡葡萄略有區(qū)別,因此本試驗(yàn)得出的抗旱性排序還需在大田成齡葡萄上進(jìn)一步驗(yàn)證。

李潔等[33]通過聚類分析將50份菜豆品種按抗旱度量值分為5個(gè)抗旱級(jí)別,結(jié)果較理想。故本試驗(yàn)通過聚類分析將11個(gè)鮮食葡萄品種分為3個(gè)抗旱級(jí)別,第1類是高抗旱品種(秋紅寶和麗紅寶);第2類是中抗旱品種(晶紅寶、無核白、巨茉莉和茉莉香);第3類是低抗旱品種(克瑞森無核、晚黑寶、早霞玫瑰、無核翠寶和火焰無核)。

作物對(duì)干旱的響應(yīng)體現(xiàn)在多個(gè)指標(biāo)上,選擇合理指標(biāo)是作物抗旱性研究的關(guān)鍵[34],國內(nèi)外學(xué)者在篩選與抗旱相關(guān)指標(biāo)上進(jìn)行了大量研究,發(fā)現(xiàn)灰色關(guān)聯(lián)度分析法能很好地達(dá)到這一目的,目前該方法已應(yīng)用于多種作物。例如李小玉等[35]通過灰色關(guān)聯(lián)度分析證明干旱脅迫下油菜單株產(chǎn)量與產(chǎn)量關(guān)聯(lián)度最為密切。本試驗(yàn)通過灰色關(guān)聯(lián)度分析得出葡萄光合色素含量、根系相對(duì)電導(dǎo)率和NPQ可以作為葡萄幼苗抗旱性研究的主要指標(biāo)。

4 結(jié) 論

筆者在本試驗(yàn)中測(cè)定了干旱脅迫下不同鮮食葡萄品種扦插幼苗形態(tài)、葉片及根系電導(dǎo)率、葉綠素含量及葉綠素?zé)晒鈪?shù)等16個(gè)指標(biāo),利用相關(guān)性分析、主成分分析、聚類分析和灰色關(guān)聯(lián)度分析相結(jié)合的方法,綜合評(píng)價(jià)11個(gè)鮮食葡萄品種的抗旱性差異并篩選抗旱相關(guān)指標(biāo)。其中秋紅寶和麗紅寶為高抗旱品種,適宜在干旱及半干旱地區(qū)推廣種植;測(cè)定指標(biāo)中光合色素含量、根系相對(duì)電導(dǎo)率和NPQ與干旱密切相關(guān),可作為評(píng)價(jià)葡萄抗旱性的主要指標(biāo)。

參考文獻(xiàn)References:

[1] 賀普超. 葡萄學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,1999:2-6.

HE Puchao. Viticulture[M]. Beijing:China Agriculture Press,1999:2-6.

[2] 鄔燕,劉志華,劉釗. PEG模擬干旱脅迫下4種葡萄生理指標(biāo)的變化及其抗旱性評(píng)價(jià)[J]. 分子植物育種,2020,18(4):1319-1325.

WU Yan,LIU Zhihua,LIU Zhao. Changes of physiological indexes and drought resistance evaluation of 4 grapes variety under PEG simulated drought stress[J]. Molecular Plant Breeding,2020,18(4):1319-1325.

[3] 沈少炎,吳玉香,鄭郁善. 植物干旱脅迫響應(yīng)機(jī)制研究進(jìn)展:從表型到分子[J]. 生物技術(shù)進(jìn)展,2017,7(3):169-176.

SHEN Shaoyan,WU Yuxiang,ZHENG Yushan. Review on drought response in plants from phenotype to molecular[J]. Current Biotechnology,2017,7(3):169-176.

[4] 易家寧,王康才,張琪綺,董雨青,毛曉敏,鄧艷婷. 干旱脅迫對(duì)紫蘇生長(zhǎng)及品質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào),2020,34(6):1320-1326.

YI Jianing,WANG Kangcai,ZHANG Qiqi,DONG Yuqing,MAO Xiaomin,DENG Yanting. Effects of drought stress on growth and quality of Perilla frutescens[J]. Journal of Nuclear Agricultural Sciences,2020,34(6):1320-1326.

[5] 王爽,侯毅興,褚佳瑤,盧倩倩,周龍. 干旱脅迫下7個(gè)鮮食葡萄品種光合日變化特征的差異分析[J]. 經(jīng)濟(jì)林研究,2021,39(4):126-136.

WANG Shuang,HOU Yixing,CHU Jiayao,LU Qianqian,ZHOU Long. A difference analysis of diurnal variation characteristics of photosynthesis of 7 fresh grapes varieties under drought stress[J]. Non-Wood Forest Research,2021,39(4):126-136.

[6] 由佳輝,褚佳瑤,馮琳驕,高林,周龍,李樹德. 基于光合特性的17個(gè)葡萄砧木品種抗旱性比較[J]. 中外葡萄與葡萄酒,2021(6):42-48.

YOU Jiahui,CHU Jiayao,F(xiàn)ENG Linjiao,GAO Lin,ZHOU Long,LI Shude. Comparative study on photosynthetic and chlorophyll fluorescence characteristics of 17 grape rootstock varieties[J]. Sino-Overseas Grapevine amp; Wine,2021(6):42-48.

[7] 羅國濤,劉曉納,張曼曼,余洪,胡洲,王福生,朱世平,趙曉春. 柑橘砧木根系形態(tài)特征與植株耐旱性評(píng)價(jià)[J]. 果樹學(xué)報(bào),2020,37(9):1314-1325.

LUO Guotao,LIU Xiaona,ZHANG Manman,YU Hong,HU Zhou,WANG Fusheng,ZHU Shiping,ZHAO Xiaochun. Root morphology of citrus rootstocks and drought tolerance evaluation of their grafted plants[J]. Journal of Fruit Science,2020,37(9):1314-1325.

[8] 湯肖瑋,蘇江碩,管志勇,房偉民,陳發(fā)棣,張飛. 茶用菊苗期抗旱性和耐澇性的綜合評(píng)價(jià)[J]. 園藝學(xué)報(bào),2021,48(12):2443-2457.

TANG Xiaowei,SU Jiangshuo,GUAN Zhiyong,F(xiàn)ANG Weimin,CHEN Fadi,ZHANG Fei. Comprehensive evaluation of tea chrysanthemum’s drought and waterlogging tolerance at seedling stage[J]. Acta Horticulturae Sinica,2021,48(12):2443-2457.

[9] 徐銀萍,潘永東,劉強(qiáng)德,姚元虎,賈延春,任誠,火克倉,陳文慶,趙鋒,包奇軍,張華瑜. 大麥種質(zhì)資源成株期抗旱性鑒定及抗旱指標(biāo)篩選[J]. 作物學(xué)報(bào),2020,46(3):448-461.

XU Yinping,PAN Yongdong,LIU Qiangde,YAO Yuanhu,JIA Yanchun,REN Cheng,HUO Kecang,CHEN Wenqing,ZHAO Feng,BAO Qijun,ZHANG Huayu. Drought resistance identification and drought resistance indexes screening of barley resources at mature period[J]. Acta Agronomica Sinica,2020,46(3):448-461.

[10] 李雪雪. 葡萄砧木種苗抗寒性評(píng)價(jià)及胚挽救幼苗微嫁接體系優(yōu)化[D]. 太谷:山西農(nóng)業(yè)大學(xué),2019.

LI Xuexue. Evaluation of cold resistance of grape rootstock seedlings and optimization of micrografting system for embryo-rescued seedlings[D]. Taigu:Shanxi Agricultural University,2019.

[11] 毛曉佩,孫永玉,戚建華,王順利,張春華. 干旱脅迫下不同地理種源高山栲幼苗生理生化響應(yīng)[J]. 林業(yè)與生態(tài)科學(xué),2022,37(3):258-265.

MAO Xiaopei,SUN Yongyu,QI Jianhua,WANG Shunli,ZHANG Chunhua. Physiological and biochemical response of different provenances Castanopsis delavayis seedlings under drought stress[J]. Forestry and Ecological Sciences,2022,37(3):258-265.

[12] 鐘灶發(fā),張利娟,高思思,彭婷. 干旱脅迫下4種柑橘砧木葉片細(xì)胞學(xué)特征及抗旱性比較[J]. 園藝學(xué)報(bào),2021,48(8):1579-1588.

ZHONG Zaofa,ZHANG Lijuan,GAO Sisi,PENG Ting. Leaf cytological characteristics and resistance comparison of four Citrus rootstocks under drought stress[J]. Acta Horticulturae Sinica,2021,48(8):1579-1588.

[13] 張星,張劍俠. 葡萄砧木雜種的抗旱性評(píng)價(jià)[J]. 中國果樹,2020(5):59-64.

ZHANG Xing,ZHANG Jianxia. Evaluation of drought resistance of grape rootstock hybrids[J]. China Fruits,2020(5):59-64.

[14] 張曉艷,李連國,郭金麗,李曉艷. 歐李葉片光合色素提取方法的比較分析[J]. 北方園藝,2021(9):104-110.

ZHANG Xiaoyan,LI Lianguo,GUO Jinli,LI Xiaoyan. Comparison and analysis of isolation methods of photosynthetic pigment of leaves in Cerasus humilis[J]. Northern Horticulture,2021(9):104-110.

[15] 倪建中,羅倩,陳小宇,代色平,王偉. 木棉葉片葉綠素?zé)晒鈪?shù)和SPAD值對(duì)干旱脅迫的響應(yīng)[J]. 亞熱帶植物科學(xué),2021,50(4):257-261.

NI Jianzhong,LUO Qian,CHEN Xiaoyu,DAI Seping,WANG Wei. Responses of chlorophyll fluorescence parameters and SPAD value in leaves of Bombax ceiba to drought stress[J]. Subtropical Plant Science,2021,50(4):257-261.

[16] 李劍威,晏舒蕾,黃元城,夏曉雪,儲(chǔ)凌峰,李財(cái)運(yùn),王正加. 薄殼山核桃幼苗對(duì)干旱脅迫的生理生化響應(yīng)[J]. 核農(nóng)學(xué)報(bào),2020,34(10):2326-2334.

LI Jianwei,YAN Shulei,HUANG Yuancheng,XIA Xiaoxue,CHU Lingfeng,LI Caiyun,WANG Zhengjia. Physiological and biochemical responses of pecan seedlings to drought stress[J]. Journal of Nuclear Agricultural Sciences,2020,34(10):2326-2334.

[17] WANG W N,MIN Z,WU J R,LIU B C,XU X L,F(xiàn)ANG Y L,JU Y L. Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress[J]. Plant Physiology and Biochemistry,2021,167:400-409.

[18] 葉旭波,馬玲芳,李陽,代曉華. 不同種質(zhì)資源銀柴胡抗旱性研究[J]. 植物生理學(xué)報(bào),2020,56(6):1295-1304.

YE Xubo,MA Lingfang,LI Yang,DAI Xiaohua. Study on drought resistance of different germplasm resources of Stellaria dichotoma[J]. Plant Physiology Journal,2020,56(6):1295-1304.

[19] MEHER,SHIVAKRISHNA P,ASHOK R K,MANOHAR R D. Effect of PEG-6000 imposed drought stress on RNA content,relative water content (RWC),and chlorophyll content in peanut leaves and roots[J]. Saudi Journal of Biological Sciences,2018,25(2):285-289.

[20] 李潤(rùn)宇,閔卓,房玉林. 獨(dú)腳金內(nèi)酯對(duì)干旱脅迫‘赤霞珠’葡萄幼苗生長(zhǎng)的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,47(5):67-77.

LI Runyu,MIN Zhuo,F(xiàn)ANG Yulin. Effects of strigolactones on growth of ‘Cabernet Sauvignon’ seedlings under drought stress[J]. Journal of Northwest A amp; F University (Natural Science Edition),2019,47(5):67-77.

[21] BAKER N R. Chlorophyll fluorescence:A probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59:89-113.

[22] 李澤,譚曉風(fēng),盧錕,張琳,龍洪旭,呂佳斌,林青. 干旱脅迫對(duì)兩種油桐幼苗生長(zhǎng)、氣體交換及葉綠素?zé)晒鈪?shù)的影響[J]. 生態(tài)學(xué)報(bào),2017,37(5):1515-1524.

LI Ze,TAN Xiaofeng,LU Kun,ZHANG Lin,LONG Hongxu, Lü Jiabin,LIN Qing. Influence of drought stress on the growth,leaf gas exchange,and chlorophyll fluorescence in two varieties of tung tree seedlings[J]. Acta Ecologica Sinica,2017,37(5):1515-1524.

[23] GUO Y Y,YU H Y,KONG D S,YAN F,ZHANG Y J. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings[J]. Photosynthetica,2016,54(4):524-531.

[24] 黃桂芬. 模擬酸雨對(duì)臺(tái)灣榿木生理特征的影響及Ca2+的調(diào)節(jié)效應(yīng)[D]. 福州:福建農(nóng)林大學(xué),2011:26-27.

HUANG Guifen. Physiological characteristics on effects of simulated acid rain on Alnus formosana and regulation of Ca2+[D]. Fuzhou:Fujian Agriculture and Forestry University,2011:26-27.

[25] 戴偉,王剛,胡振陽,譚廣文. 五種園林灌木對(duì)NaCl脅迫的光合特性響應(yīng)比較研究[J]. 廣東農(nóng)業(yè)科學(xué),2018,45(7):48-55.

DAI Wei,WANG Gang,HU Zhenyang,TAN Guangwen. Comparative study on photosynthetic characteristics responses of 5 garden shrubs under NaCl stress[J]. Guangdong Agricultural Sciences,2018,45(7):48-55.

[26] 朱波,徐綺雯,馬淑敏,劉幫艷,段美春,王龍昌. 干旱缺鉀對(duì)油菜內(nèi)源激素、光合作用和葉綠素?zé)晒馓匦缘挠绊慬J]. 中國油料作物學(xué)報(bào),2022,44(3):570-580.

ZHU Bo,XU Qiwen,MA Shumin,LIU Bangyan,DUAN Meichun,WANG Longchang. Effect of potassium deficiency on endogenous hormones,photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress[J]. Chinese Journal of Oil Crop Sciences,2022,44(3):570-580.

[27] 魏曉東,陳國祥,施大偉,劉丹,唐加紅,李霞. 干旱脅迫對(duì)銀杏葉片光合系統(tǒng)Ⅱ熒光特性的影響[J]. 生態(tài)學(xué)報(bào),2012,32(23):7492-7500.

WEI Xiaodong,CHEN Guoxiang,SHI Dawei,LIU Dan,TANG Jiahong,LI Xia. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica,2012,32(23):7492-7500.

[28] TOUNEKTI T,MAHDHI M,AL-TURKI T A,KHEMIRA H. Water relations and photo-protection mechanisms during drought stress in four coffee (Coffea arabica) cultivars from southwestern Saudi Arabia[J]. South African Journal of Botany,2018,117:17-25.

[29] AZHAR A,MAKIHARA D,NAITO H,ASANO K,TAKAGI M,UNOKI S,TOMITA R,ABBAS B,EHARA H. Sago palm (Metroxylon sagu Rottb.) response to drought condition in terms of leaf gas exchange and chlorophyll a fluorescence[J]. Plant Production Science,2021,24(1):65-72.

[30] 李忠旺,陳玉梁,羅俊杰,石有太,馮克云,陳子萱. 棉花抗旱品種篩選鑒定及抗旱性綜合評(píng)價(jià)方法[J]. 干旱地區(qū)農(nóng)業(yè)研究,2017,35(1):240-247.

LI Zhongwang,CHEN Yuliang,LUO Junjie,SHI Youtai,F(xiàn)ENG Keyun,CHEN Zixuan. Screening and evaluation for drought resistance of cotton varieties[J]. Agricultural Research in the Arid Areas,2017,35(1):240-247.

[31] 劉競(jìng)擇,曹檸,張艷霞,陳祖民,史曉敏,王振平. 葡萄砧木冬季抗抽干能力及抗旱性綜合評(píng)價(jià)[J]. 果樹學(xué)報(bào),2020,37(3):339-349.

LIU Jingze,CAO Ning,ZHANG Yanxia,CHEN Zumin,SHI Xiaomin,WANG Zhenping. Comprehensive evaluation on resistance of different grape rootstocks to vine dehydration and drought stress during overwintering[J]. Journal of Fruit Science,2020,37(3):339-349.

[32] 王春雪,紀(jì)中華,潘志賢,岳學(xué)文,李紀(jì)潮,閆幫國,陳濤. 不同苗齡劍麻(Agave sisalana)生理指標(biāo)的相關(guān)性分析及抗旱性評(píng)價(jià)[J]. 熱帶作物學(xué)報(bào),2015,36(7):1254-1260.

WANG Chunxue,JI Zhonghua,PAN Zhixian,YUE Xuewen,LI Jichao,YAN Bangguo,CHEN Tao. Correlation analysis on physiological indexes and drought resistance evaluation of different age of Agave sisalana seedlings[J]. Chinese Journal of Tropical Crops,2015,36(7):1254-1260.

[33] 李潔,張小寧,晉凡生,韓彥龍,李海金. 普通菜豆種質(zhì)資源苗期抗旱性綜合評(píng)價(jià)[J]. 核農(nóng)學(xué)報(bào),2022,36(8):1516-1529.

LI Jie,ZHANG Xiaoning,JIN Fansheng,HAN Yanlong,LI Haijin. Comprehensive evaluation of drought resistance at seedling stage in common bean (Phaseolus vulgaris L.) material[J]. Journal of Nuclear Agricultural Sciences,2022,36(8):1516-1529.

[34] 汪燦,周棱波,張國兵,張立異,徐燕,高旭,姜訥,邵明波. 薏苡種質(zhì)資源苗期抗旱性鑒定及抗旱指標(biāo)篩選[J]. 中國農(nóng)業(yè)科學(xué),2017,50(15):2872-2887.

WANG Can,ZHOU Lingbo,ZHANG Guobing,ZHANG Liyi,XU Yan,GAO Xu,JIANG Ne,SHAO Mingbo. Drought resistance identification and drought resistance indices screening of Job’s tears (Coix lacryma-jobi L.) germplasm resources at seedling stage[J]. Scientia Agricultura Sinica,2017,50(15):2872-2887.

[35] 李小玉,田宏先,王瑞霞. 灰色關(guān)聯(lián)度分析和主成分分析在油菜抗旱育種中的應(yīng)用[J]. 種子,2021,40(9):92-97.

LI Xiaoyu,TIAN Hongxian,WANG Ruixia. Application of grey correlation degree analysis and principal component analysis in drought resistance breeding of Brassica juncea L.[J]. Seed,2021,40(9):92-97.

主站蜘蛛池模板: 國產尤物AV尤物在線觀看| 日韩精品专区免费无码aⅴ| 国产精品亚洲五月天高清| 欧美黄网在线| 国产99欧美精品久久精品久久| 熟妇人妻无乱码中文字幕真矢织江| 爆乳熟妇一区二区三区| 最新日本中文字幕| 国产自在自线午夜精品视频| 国产h视频在线观看视频| 久操线在视频在线观看| 91久草视频| 国产美女无遮挡免费视频| 国产欧美性爱网| 欧美精品在线观看视频| 91在线国内在线播放老师| 日本精品视频一区二区| 91探花在线观看国产最新| 热这里只有精品国产热门精品| 114级毛片免费观看| 精品国产自在现线看久久| 香蕉在线视频网站| 国产激情无码一区二区APP | 久久黄色一级片| 国产一区二区三区免费观看| 日韩一区精品视频一区二区| 亚洲色成人www在线观看| 免费高清毛片| 亚洲色成人www在线观看| 日本久久久久久免费网络| 91精品久久久无码中文字幕vr| a级毛片毛片免费观看久潮| 亚洲首页在线观看| 91福利国产成人精品导航| 五月婷婷精品| 亚洲成A人V欧美综合天堂| 欧美丝袜高跟鞋一区二区| 国产麻豆aⅴ精品无码| 亚洲黄网在线| 六月婷婷激情综合| 国内毛片视频| a级毛片免费网站| 伊人精品视频免费在线| 亚洲欧美极品| 影音先锋亚洲无码| 国产伦片中文免费观看| 亚洲欧美激情另类| 国产精品免费p区| 91久久精品日日躁夜夜躁欧美| 亚洲欧洲自拍拍偷午夜色无码| 99视频精品全国免费品| 精品第一国产综合精品Aⅴ| 亚洲资源在线视频| 亚洲三级视频在线观看| 69免费在线视频| 国产精品思思热在线| 九九热这里只有国产精品| 亚洲综合亚洲国产尤物| 久久婷婷色综合老司机| 国产成人1024精品下载| 亚洲成a人在线观看| 综合色88| 91九色视频网| 中文字幕永久视频| 老司机久久精品视频| 久久综合色88| 国产91精品调教在线播放| 视频国产精品丝袜第一页| 伊人久久久大香线蕉综合直播| 成人午夜视频在线| 婷五月综合| 亚洲一区精品视频在线| 国产精品福利导航| 久久精品这里只有国产中文精品| 中文字幕在线看| 精品久久人人爽人人玩人人妻| 高清国产va日韩亚洲免费午夜电影| 国产精品亚洲а∨天堂免下载| 久久99精品久久久大学生| 欧美成人国产| 亚洲国产一区在线观看| 日韩无码视频播放|