李磊 馬憲民



摘 要:為提高電力系統電磁暫態計算精度,輸電線路元件模擬常用分布參數,電磁暫態仿真軟件中,也有與之匹配的輸電線路頻率相關模型。為驗證ATP與PSCAD中該模型的精確度,提出一種時域仿真反推算輸電線路衰減系數的方法,通過卡爾松公式計算輸電線路理論衰減系數;分別建立輸電線路電磁暫態仿真模型,使系統在某一頻率下進行暫態仿真直至穩態,分析線路中點與末端電壓波形,利用穩態參數反推算其衰減系數,比較在不同頻率下與理論計算所得衰減系數的誤差;通過對比輸電線路參數理論計算值與仿真計算值,分析誤差產生的原因。結果表明:輸電線路暫態過程中,高頻下的衰減系數遠大于工頻。隨著頻率的升高,輸電線路參數正序、零序的衰減系數都逐漸增大,且零序表現的更為明顯,在頻率為50 000 Hz時,其衰減系數可達到工頻時的17倍;比較理論與仿真計算結果,ATP中的頻率相關模型參數計算比較精確,50 000 Hz時計算出衰減系數誤差為0.66%,PSCAD中衰減系數誤差較為明顯,50 000 Hz時計算出衰減系數誤差為3.41%,且隨著頻率的增大,衰減系數誤差也越來越大。究其原因,PSCAD中線路參數計算得到的電阻值偏大,其與程序中求解頻變參數計算公式有關,電磁暫態仿真時需予以重視。
關鍵詞:輸電線路;分布參數;反推算;衰減系數;頻變參數
中圖分類號:TM 743
文獻標志碼:
A
文章編號:1672-9315(2023)06-1219
-08
DOI:10.13800/j.cnki.xakjdxxb.2023.0620開放科學(資源服務)標識碼(OSID):
A frequency-dependent model for transient analysis of transmission lines
LI Lei,MA Xianmin(College of Electrical and Control Engineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:
In order to improve the accuracy of electromagnetic transient calculation of power system,the distribution parameters are commonly used in the simulation of transmission line components.In the electromagnetic transient simulation software,there are also corresponding transmission line frequency correlation models.In order to verify the accuracy of the model in ATP and PSCAD,a method for inversely calculating the attenuation coefficient of transmission lines was proposed by time domain simulation,and the theoretical attenuation coefficient of transmission lines was calculated by Karlssons formula.The two software were used to establish the electromagnetic transient simulation model of the transmission line,so that the system can be simulated to the steady state at a certain frequency,the voltage waveforms at the midpoint and the end of the line were analyzed,the attenuation coefficient was inversely calculated by using the steady-state parameters,and the error of the attenuation coefficient was compared with the theoretical calculation at different frequencies.By comparing the theoretical calculation values of transmission line parameters with the simulation calculation values,the causes of errors were analyzed.The results show that the attenuation coefficient at high frequency is much greater than that at power frequency during the transient process of transmission line.With the increase of frequency,the attenuation coefficients of the transmission line parameters in positive sequence and zero sequence gradually increase,and the zero sequence is more obvious.when the frequency is 50 000 Hz,the attenuation coefficient can reach 17 times that of power frequency.Comparing the theoretical and simulation results,the frequency-related model parameters in ATP are more accurate.The error of attenuation coefficient is 0.66% at 50 000 Hz,and the error of attenuation coefficient in PSCAD is more obvious.The error of attenuation coefficient is 3.41% at 50 000 Hz,and with the increase of frequency,the attenuation coefficient error is also increasing.The reason is that the resistance value calculated by line parameters in PSCAD is too large,which is related to the calculation formula of frequency-dependent parameters in the program.Attention should be paid to electromagnetic transient simulation.
Key words:transmission line;distributed parameter element;inverse estimation;attenuation coefficient;frequency-varying parameter
0 引 言近年來超遠距離、超大容量輸電技術逐漸興起,超特高壓直流、交流輸電方式被各個研究機構關注。為更好地模擬、預測此類輸電方式在各個情況下的運行狀況,電磁暫態仿真必不可少。輸電線路作為最重要的環節之一,其模型的建立會根據研究內容的不同而考慮因素不同,建立的模型特點也參差不齊[1-5]。對于復雜環境下半波傳輸線理論,提出分段建模的辦法,并綜合考慮復長輸電線路沿線電壓和電流分布情況;基于多導體雜環境求解線路分布參數,通過鏈參數矩陣級聯各分段線路,建立精細化傳輸線路模型[6];系統暫態過程中,由于輸電線路會因頻率變化而導致線路參數發生變化,其對計算結果有很大影響,為此提出了線路導納權函數法,通過選取線路的電流沖激響應作為基元,利用卷積運算求解頻變參數線路的暫態過程。但由于導納權函數具有時間較長的多次脈沖,進行卷積運算時必須在某一時刻截斷,故會失去大量信息導致計算誤差[7];為了提高輸電線路頻變特性下參數計算速度與精度,提出前、反行波權函數法,其將線路阻抗特性視為不隨頻率變化常數,再進行加權處理前行波、反行波,再利用指數函數對線路階躍響應及脈沖導納響應進行擬合,利用插值法將卷積運算簡化為由當前輸入值及其歷史值組成的遞推公式,設置收斂值,從而大大節省計算時間,提高計算精度[8];對于具有頻率相關參數的輸電線路,由于存在非線性時變網絡,其中含有的脈沖響應項,將影響線路參數計算速度,為此提出一種簡單有效的脈沖響應計算方法,通過分離不同線路部分從而提高計算速度[26];此外,部分學者通過多相混合模型在不影響計算精度的同時對不同相域進行連續轉置,從而縮短計算時間[27]。輸電線路中的電壓、電流均以行波形式出現。當系統發生某一暫態過程,輸電線路中出現的過電壓或過電流在傳播過程中會以與之匹配的衰減系數衰減至穩態[9-11]。對輸電線路的電磁暫態仿真主要是為了計算分析毫秒級以內的電壓、電流瞬時值變化過程,計算系統各個節點上可能出現的暫態過電壓、過電流,以便根據其對相關電力設備進行合理設計[12-13]。而急劇變化過程中振蕩頻率往往達到上千赫茲,對電壓、電流的波過程有很大影響[13-18]。輸電線路在高頻下的衰減系數大于工頻下的衰減系數,如果仿真時使用工頻參數,則計算的峰值會虛高很多,而且信號的衰減也比實際要慢,計算結果會有很大誤差。根據研究需要,輸電線路模型通常都是在分布參數的基礎上,通過將模擬濾波技術應用于求解頻變參數線路,建立輸電線路頻率相關模型[19-23]。目前,對輸電線路的建模電磁暫態仿真程序都有輸電線路頻率相關模型,但計算精度均有偏差。根據不同考慮因素,常見的電磁暫態計算軟件中包含的頻率相關模型可以分為以下2種:
1)ATP中的JMarti模型;
2)PSCAD中的頻變模型。文中從卡爾松公式入手,計算輸電線路頻率相關模型的基本參數,提出一種時域仿真反推算線路衰減系數的方法,利用ATP-EMTP和PSCAD分別建立輸電線路動態仿真模型,分析線路中點與末端電壓波形,利用穩態參數來反推算其衰減系數,比較在不同頻率下與理論計算所得衰減系數的誤差,對模型的準確性進行比較。
3 線路參數仿真計算仿真線路物理結構與基本參數如圖1所示,仿真中電源取7個頻率:f=0.05,0.5,5,50,500,5 000,50 000 Hz;電源取零序、正序2種情況。電壓幅值可取100 V,能夠保證計算精度,并且便于計算結果的后續使用。仿真總時長按如下取值:電壓前行波到達末端E后,發生全反射,但直到仿真結束反射波沒有到達點M。分別在ATP與PSCAD中使用頻率相關模型建立反推算電路,其中電導均取G=1×10-8 S/km,利用式(7)~(8),分別計算反推算所得正序和零序衰減系數及誤差,反推算值見表3和表4,其線路參數衰減誤差的對比如圖4所示。
通過仿真反推算電路得到的輸電線路正序和零序衰減系數值,與表1和表2得到的理論計算結果進行比較,可以得到相應的計算誤差。從圖4可以看出,隨著頻率的升高,正序、零序的衰減系數都逐漸增大,且零序表現得更為明顯,在50 000 Hz時,其衰減系數已經達到工頻時的17倍,2個仿真模型也同時驗證了上述理論分析的正確性,即輸電線路暫態過程中,高頻下的衰減系數大于工頻,若仿真模擬時僅使用工頻模型,則計算的參數會較實際值虛高很多,且衰減至穩態的速度也會延緩,與實際結果產生誤差,難以對輸電線路的暫態過程進行精確分析。
從2個仿真模型誤差結果也可看到,相同模型參數下,ATP中頻率相關模型仿真反推算得到的衰減系數與理論計算結果較為契合,衰減系數誤差均保持在1%之內。而PSCAD的計算結果,雖然其衰減系數變化趨勢與理論計算結果吻合,但隨著頻率的升高,計算誤差也呈現逐漸增大的趨勢,相較于ATP計算結果,其計算精確度存在較大偏差。為了進一步驗證造成ATP中頻率相關模型和PSCAD中頻率相關模型衰減系數不同的原因,利用ATP和PSCAD中的線路參數計算模塊分別對圖1所示的線路模型進行參數計算,得到其與理論計算結果的比較情況見表5和表6。
由表5和表6可知,低頻、工頻時,ATP與PSCAD分別計算的線路零序和正序電阻值與理論計算值誤差極小,均在0.02%左右,可忽略不計;高頻時,ATP的計算值誤差也都保持在1%以內,PSCAD的計算誤差逐漸開始變大,隨著頻率的升高,計算誤差也越來越大。
輸電線路暫態過程與線路參數有關,波在其暫態過程傳播時的難易程度,即在電阻上的損耗程度,可用衰減系數來表示。造成PSCAD中頻率相關模型的衰減系數偏大的原因是在PSCAD線路參數計算中,輸電線路的計算模型與實際不符,建模過程中,求解線路頻變參數的計算公式程序在計算高頻時存在偏差,導致參數計算值偏大,衰減系數偏大。ATP線路模型求解線路頻變參數的計算公式程序與實際比較貼合,計算結果較為精確。
4 模型對比由于高壓輸電線路電壓等級一般為220 kV及以上,為了更進一步說明高壓輸電線路ATP中的頻率相關模型和PSCAD中頻率相關模型的區別,利用ATP和PSCAD分別建立高壓輸電線路模型并進行三相空載合閘試驗仿真。三相空載合閘試驗可以反映輸電線路末端對電壓電流波形的反射作用,同時也能夠比較不同輸電線路模型中電壓電流高頻分量的衰減過程。PSCAD中的頻率相關
模型的衰減系數大于理論值,這對輸電線路電磁暫態過程有明顯影響。
通過正序三相空載合閘試驗,分析使用不同仿真模型
ATP和PSCAD中頻率相關模型產生的不同暫態過程。
圖5為建立的220 kV輸電線路分別在ATP和PSCAD的頻率相關模型下,三相空載合閘時A相的末端電壓。線路在空載合閘過程中,產生大量的高頻分量,導致2個程序計算的線路參數的不同,過渡到穩態的時間不同。其中圖(b)是圖(a)的局部放大圖。
從圖5可以看出,2種程序所搭建的高壓輸電線路模型在合閘瞬間波形和最終穩態波形均比較接近,其不同點是暫態向穩態過渡過程存在較大差異。2種計算模型下,紅色線條剛開始包絡黑色線條,到后期逐漸被黑色線條包絡,即PSCAD頻率相關模型受計算公式程序影響,暫態起始值較大,且對高頻分量的衰減比較快,而ATP的高頻分量的衰減相對慢一些,與實際情況接近。
5 結 論1)輸電線路暫態過程中,高頻下的衰減系數遠大于工頻。隨著頻率的升高,輸電線路參數正序、零序的衰減系數都逐漸增大,且零序表現得更為明顯,在頻率為50 000 Hz時,其衰減系數可達到工頻時的17倍。2)比較理論與仿真計算結果,ATP中的頻率相關模型參數計算比較精確,PSCAD中的頻率相關模型存在一定的誤差。相同模型參數下,ATP中頻率相關模型仿真反推算得到衰減系數與理論計算結果較為契合,衰減系數誤差均保持在1%之內。PSCAD雖衰減系數變化趨勢與理論計算結果吻合,但隨著頻率的升高,計算誤差呈現逐漸增大趨勢。3)PSCAD頻率相關模型在高頻計算時誤差較大,其原因是該軟件在建立模型時,求解線路頻變參數計算程序公式與實際存在偏差,導致計算電阻值偏大,衰減系數偏大。故在高頻仿真時需要引起足夠的重視。參考文獻(References):
[1]
李智琦,羅日成,李穩,等.±800 kV特高壓直流輸電線路帶電作業電位轉移特性分析[J].高壓電器,2020,56(3):164-168,175.LI Zhiqi,LUO Richeng,LI Wen,et al.Analysis of potential transfer characteristics of live working on ±800 kV UHVDC transmission lines[J].High Voltage Apparatus,2020,56(3):164-168,175.[2]林偉芳,易俊,賈俊川,等.故障后半波長輸電線路的穩態過電壓控制措施[J].電力建設,2019,40(2):109-116.
LIN Weifang,YI Jun,JIA Junchuan,et al.Study on system stability control measures for steady-state overvoltage in UHV half wavelength transmission lines[J]
.Electric Power Construction,2019,40(2):109-116.
[3]肖宏峰,羅日成,黃軍,等.基于多重雷擊的超高壓輸電線路雷過電壓分析[J].高壓電器,2022,58(8):245-251.XIAO Hongfeng,LUO Richeng,HUANG Jun,et al.
Lightning overvoltage analysis of ultra-high voltage transmission line based on multiple lightning strikes[J].High Voltage Apparatus,2022,58(8):245-251.
[4]周治伊,牛浩明,崔力心,等.特高壓輸電線路故障工頻相量高精度提取方法[J].電工技術,2020(23):11-14.
ZHOU Zhiyi,NIU Haoming,CUI Lixin,et al.High precision extraction method of power frequency phasor for UHV transmission line fault[J].Electric Engineering,2020(23):11-14.
[5]CARSON J R.Wave propagation in overhead wires with ground return[J].Bell System Technical Journal,1926(5):539-554.
[6]焦重慶,汪貝,李昱蓉.用于半波長輸電線路的精細化傳輸線模型[J].高電壓技術,2018,44(1):3-13.
JIAO Chongqing,WANG Bei,LI Yurong.Refined transmission line model for half-wavelength transmission lines[J].High Voltage Engineering,2018,44(1):3-13.
[7]李云閣.輸電線路電磁暫態仿真及應用[M].北京:中國電力出版社,2019.
[8]郎凱,張重遠.強干擾下的輸電線路參數測量研究和實現[J].陜西電力,2012,40(12):39-42.
LANG Kai,ZHANG Zhongyuan.Research and realization of transmission line parameter measurement under strong interference[J].Shaanxi Electric Power,2012,40(12):39-42.
[9]段建東,程文姬,魏朝陽,等.PSASP2 ATP暫態模型參數轉換研究及軟件研發[J].智慧電力,2021,49(1):102-108.DUAN Jiandong,CHENG Wenji,WEI Chaoyang,et al.Research on parameter conversion and software development of PSASP2 ATP transient model[J].Smart Power,2021,49(1):102-108.
[10]肖遙,范毅,程瀾.單回及同塔雙回交流輸電線路參數測量理論[J].中國電機工程學報,2016,36(20):5515-5522.
XIAO Yao,FAN Yi,CHENG Lan.A parameter measurement theory of single and double circuit AC transmission lines[J].Proceedings of the CSEE,2016,36(20):5515-5522.
[11]MARTI J R.Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations[J].IEEE Transactions on Power Apparatus and
Systems,1982,101(1):147-157.
[12]黃宇辰,楊真.雷擊輸電線路時全波電磁暫態特性研究[J].電網與清潔能源,2022,38(9):10-16.HUANG Yuchen,YANG Zhen.A study on full-wave electromagnetic transient characteristics when lightning strikes a transmission line[J].Power System and Clean Energy,2022,38(9):10-16.
[13]陳勇,李鵬,張忠軍,等.基于PCA-GA-LSSVM的輸電線路覆冰負荷在線預測模型[J].電力系統保護與控制,2019,47(10):110-119.
CHEN Yong,LI Peng,ZHANG Zhongjun,et al.On-line forecasting model of transmission line icing load based on PCA-GA-LSSVM[J].Power System Protection and Control,2019,47(10):110-119.
[14]MEYER W S,DOMMEL H W.Numerical modeling of frequency-dependent transmission parameters in an electromagnetic transient program[J].IEEE PICA Conference,1974,93(5):1401-1409.
[15]張韻琦,叢偉,張玉璽.基于初始電壓行波頻域衰減速率的MMC-HVDC線路保護方案[J].電力自動化設備,2020,40(12):143-155.ZHANG Yunqi,CONG Wei,ZHANG Yuxi.MMC-HVDC line protection scheme based on frequency domain attenuation rate of initial voltage traveling wave[J].Electric Power Automation Equipment,2020,40(12):143-155.
[16]MARTI L.Low-order approximation of transmission line parameters for frequency-dependent models[J].IEEE Transactions on Power Apparatus and Systems,1983,102(11):3582-3589.
[17]王煒,王全金,尹力,等.基于零模行波波速量化的高壓輸電線路雙端故障定位方法[J].電力自動化設備,2022,42(12):165-170.WANG Wei,WANG Quanjin,YIN Li,et al.Two-terminal fault location method for high-voltage transmission line based on zero-mode traveling wave velocity quantization[J].Electric Power Automation Equipment,2022,42(12):165-170.
[18]林先堪,姜蘇.基于多脈沖回擊電流模型的輸電線路耦合過電壓研究[J].電工技術,2021(4):55-56,58.LIN Xiankan,JIANG Su.Study on coupling overvoltage of transmission line based on multi-pulse return current model[J].Electric Engineering,2021(4):55-56,58.
[19]滿九方,謝小榮,唐健,等.適用于柔直系統高頻諧振分析的輸電線路模型[J].電網技術,2021,45(5):1782-1789.MAN Jiufang,XIE Xiaorong,
TANG Jian,et al.Transmission line model suitable for high frequency resonance analysis of flexible and direct system[J].Power System Technology,2021,45(5):1782-1789.
[20]CASTELLANOS F,
MARTI J R.Full frequency-dependent phase-domain transmission line model[J].IEEE Transactions on Power Systems,1997,12(3):1331-1339.
[21]哈恒旭,于洋,張旭光,等.考慮頻率相關參數的直流輸電線路故障特征分析[J].電力系統自動化,2012,36(16):70-75.HA Hengxu,YU Yang,ZHANG Xuguang,et al.Frequency characteristics of fault transients for HVDC transmission line with frequency-dependent distributed parameters[J].Automation of Electric Power Systems,2012,36(16):70-75.
[22]劉俊,郭瑾程,魏占宏,等.頻變輸電線路模型中的低階擬合方法[J].電網技術,2017,41(4):1197-1203.
LIU Jun,GUO Jincheng,WEI Zhanhong,et al.Low-order approximation method for frequency-dependent transmission line model[J].Power System Technology,2017,41(4):1197-1203.
[23]符傳福,姚冬,陳欽柱,等.輸電線路桿塔縱向不平衡載荷動態預測模型研究[J].自動化與儀器儀表,2020(1):142-145.FU Chuanfu,YAO Dong,CHEN Qinzhu,et al.Study on dynamic prediction model of longitudinal unbalanced load of transmission line tower[J].Automation and Instrumentation,2020(1):142-145.
[24]NGUYEN H V,DOMMEL H W,MARTI J R.Direct phase-domain modeling of frequency dependent overhead transmission lines[J].IEEE Transactions on Power Delivery,1997,12(3):1335-1342.
[25]陳鵬輝,周羽生,葛天科,等.基于ATP-EMTP的交直流同塔多回輸電線路耐雷性能分析[J].電瓷避雷器,2019(3):111-117.CHEN Penghui,ZHOU Yusheng,GE Tianke,et al.Lightning performance analysis of AC/DC multi-circuit transmission lines on the same tower based on ATP-EMTP[J].Insulators and Surge Arresters,2019(3):111-117.
[26]MAFFUCCI A,MIANO
G.An accurate time-domain model of transmission lines with frequency-dependent parameters[J].International Journal of Circuit Theory and Applications,2000,28:263-280.
[27]GUSTAVSEN B.Frequency-dependent transmission line modeling utilizing transposed conditions[J].IEEE Transactions on Power Delivery,2002,17(3):834-839.
[28]MORCHED A,
GUSTAVSEN
B,TARTIBI
M.A universal model for accurate calculation of eletromagnetic transients on overhead lines and underground cables[J].IEEE Transactions on Power Delivery,1999,14(3):1032-1038.
[29]時帥,安鵬,符楊,等.含風電場的多端柔性直流輸電系統小信號建模方法[J].電力系統自動化,2020,44(10):92-102.SHI Shuai,AN Peng,FU Yang,et al.Small signal modeling method of multi-terminal flexible DC transmission system with wind farm[J].Automation of Electric Power Systems,2020,44(10):92-102.
[30]藍磊,張韜,文習山,等.±1 100 kV輸電線路雷電屏蔽特性的模型試驗及觀測[J].電網技術,2020,44(1):105-113.LAN Lei,ZHANG Tao,WEN Xishan,et al.Model test and observation of lightning shielding characteristics of ±1 100 kV transmission lines[J].Power System Technology,2020,44(1):105-113.
(責任編輯:高佳)