陳玉梅,張聰聰,胡麗蓉,房浩,竇金煥,郭剛,王炎,劉巧香,王雅春,徐青
熱應激對奶牛啟動子區DNA甲基化水平的影響

1北京交通大學生命科學與生物工程研究院,北京 100044;2中國農業大學動物科技學院,北京 100193;3北京農學院,北京 102206;4北京首農畜牧發展有限公司,北京 100029;5北京生物種業創新聯合體,北京 100125
【目的】熱應激嚴重影響奶牛的生產和健康,是制約奶業持續健康發展的重要因素。DNA甲基化作為一種重要的表觀遺傳調控機制參與動物的熱應激反應,但其在奶牛熱應激過程中的作用和分子機制研究較少。研究通過檢測奶牛熱應激相關的DNA甲基化變化,篩選和驗證DNA甲基化相關的關鍵基因,為奶牛熱應激的表觀遺傳機制研究積累數據。【方法】以北京市三元綠荷金銀島牧場的24頭中國荷斯坦牛(泌乳階段及胎次相同) 為研究對象,分別于春季 (非應激期,2017年4月份) 和夏季(熱應激期,2017年7月份) 采集試驗個體的血液,提取DNA,共獲得48份DNA樣本。首先,隨機選擇其中15頭奶牛,并隨機分為3組,每組5份DNA樣本混合,通過全基因組重亞硫酸鹽測序法(Whole- genome bisulfite sequencing, WGBS) 檢測奶牛基因組DNA的甲基化狀態,篩選差異甲基化區域 (Differential methylation region, DMR; 1000 bp windows, 500 bp overlap,<0.05) 及相關基因,利用PROMO和Methprimer軟件預測基因啟動子的轉錄因子結合位點和CpG島區。然后,39 ℃熱處理牛乳腺上皮細胞 (Bovine mammary gland epithelial cells, Mac-T)不同時間 (24 h, 48 h, 72 h),MTT法檢測細胞活力。最后,利用亞硫酸鹽測序法 (Bisulfite sequencing PCR, BSP)分別對春夏季的24頭奶牛及39 ℃熱處理不同時間的Mac-T細胞中目的基因啟動子區的甲基化狀態進行分析。【結果】通過WGBS共得到49 861個DMRs,其中一個DMR注釋到基因GNAS復合體基因座(GNAS complex locus,)的啟動子區,其整體甲基化水平在夏季熱應激期極顯著上調(<0.001),且該區域預測到一個352 bp的CpG島,包含Sp1、C/EBP等重要轉錄因子的結合區域。24頭奶牛個體中啟動子區31個CG位點的整體甲基化水平在熱應激期顯著上調(<0.05),與WGBS結果一致,其中,21號(-113 bp,Chr13:57532733)和27號CG (-63 bp,Chr13:57532683) 位點甲基化水平顯著上調(<0.05)。Mac-T 細胞熱處理48和72 h后,細胞活力極顯著下降(<0.01),啟動子的CG 位點整體甲基化水平顯著上調 (<0.05),21號和27號CG均為顯著上調的差異甲基化位點,與個體水平結果一致。【結論】熱應激會引起奶牛啟動子甲基化水平增加,是奶牛熱應激DNA甲基化調控的潛在靶基因。
熱應激;奶牛;WGBS;DNA甲基化;GNAS基因
【研究意義】全球氣候的持續變暖對人類發展、動物生存和地球的生態平衡造成了威脅[1-2],日趨嚴重的熱應激問題制約了畜牧業的持續健康發展,而氣候變暖以及產奶量提高所導致的奶牛代謝熱增加都加重了熱應激對奶牛養殖業的影響,如導致奶牛生產性能、繁殖性能和免疫能力的下降,乳房炎、子宮內膜炎等多種疾病發病率的增加[3-7],對奶牛行業造成了巨大的經濟損失。因此,研究奶牛熱應激的分子機制,從表觀遺傳調控角度探索潛在的關鍵基因,對于尋找奶牛熱應激抗性育種的分子標記和思路具有重要意義。【前人研究進展】近年來,奶牛熱應激的相關研究取得了較大的進展。通過大量熱應激相關的奶牛生理、生化和生產性能表型的收集和分析,全基因組關聯分析等研究,定位了重要的熱應激相關的數量性狀基因座,鑒定了顯著相關的遺傳標記[6-8]。隨著高通量檢測技術的發展,組學分析已應用到奶牛熱應激研究中,發現熱應激會引起奶牛體內基因表達、代謝物和胃腸道微生物的顯著變化,并影響多個生物學通路的生物功能[9-11]。由此可見,奶牛熱應激是一個復雜過程,由多基因和非遺傳因素共同作用,涉及的分子機制復雜,需要從更多角度包括表觀遺傳學等進行探索研究。DNA甲基化是調節基因表達的重要表觀遺傳修飾方式之一[12],在動植物應對環境壓力過程中起重要的調節作用。研究表明DNA甲基化參與生物的熱應激反應[13-15]。2021年,LIVERNOIS等報道,熱應激會引起荷斯坦牛血細胞基因組DNA甲基化水平的變化[16],進一步證實了DNA甲基化在奶牛熱應激反應過程中的重要作用。DNA甲基化的檢測技術眾多[17],而亞硫酸鹽預處理DNA后檢測甲基化為主流方法,其中全基因組重亞硫酸鹽測序法(whole-genome bisulfite sequencing, WGBS)可獲得單堿基分辨率的全基因組甲基化水平,而通過亞硫酸鹽測序法(Bisulfite sequencing PCR, BSP)可快速準確地獲得基因局部區域的甲基化狀態。基因GNAS復合體基因座(GNAS complex locus,)(Entrez ID: 281793)位于奶牛基因組13號染色體上的57465317—57532635區域,全長67 319 bp,包括多種轉錄本,主要編碼G蛋白和神經內分泌蛋白55等,在信號轉導和甲狀旁腺激素反應的生物過程中發揮重要的作用。研究表明,GNAS是一個印跡基因,表現出親本特異性甲基化,其轉錄本NESP55表現為父源等位基因甲基化,僅母本表達,異常甲基化還可導致疾病的發生[18]。GNAS基因的甲基化變化與假性甲狀旁腺功能減退癥[19]和惡性胰腺囊腫[20]相關,但GNAS基因的甲基化狀態與功能的相關在奶牛上未檢索到相關報道。【本研究切入點】雖已有研究表明DNA甲基化與奶牛的熱應激反應密切相關,但相關的分子機制和潛在作用仍不清楚,而GNAS基因啟動子在奶牛熱應激反應中的DNA甲基化的變化還未見報道。【擬解決的關鍵問題】本研究首先通過WGBS檢測和比較春季(非熱應激期)和夏季(熱應激期)奶牛全基因組DNA甲基化的狀態,篩選與奶牛熱應激相關的差異甲基化區域和關鍵基因,然后采用BSP法,在個體和細胞水平上進一步驗證關鍵基因GNAS的啟動子區熱應激前后甲基化水平的變化,從而探索奶牛熱應激相關的表觀遺傳調控機制,以期為奶牛抗熱應激育種積累數據。
選擇泌乳階段和胎次相同、無親緣關系的24頭中國荷斯坦牛為試驗動物,分別在春季非應激期(2017年4月,38<THI(Temperature humidity index)<68)和夏季熱應激期(2017年7月,THI>72[21])采集尾靜脈抗凝血,提取DNA。記錄和計算牛場的溫度和濕度,根據公式THI=0.8×AT+[RH×(AT-14.4)]+46.4[21]計算THI值。從24頭奶牛中隨機選擇15頭用于WGBS測序,24頭牛全部應用于GNAS基因的BSP檢測。所有奶牛來自北京市大興區北京三元綠荷金銀島牧場,試驗個體飼喂條件及營養水平遵從牧場管理要求。具體試驗動物的分組和基因組DNA甲基化的檢測、分析和驗證流程如圖1所示。
在牛乳腺上皮細胞系(Mac-T,BFN607200656,青旗生物技術發展有限公司)中進行細胞實驗。細胞培養液為含10 %胎牛血清和1 %青霉素與鏈霉素的高糖DMEM(Dulbecco’s modified eagle medium)完全培養基。培養過程中觀察細胞形態并拍照。通過免疫熒光對Mac-T細胞進行鑒定:5×104個/孔接種細胞于24孔板中制作細胞爬片。待細胞長到80%—90%后,4%多聚甲醛固定15 min后用0.2% TritonX-100處理5 min,清洗后用免疫染色封閉液QuickBlockTM封閉15 min,再滴加CK8(Immunoway,YT1275)或CK18(Abcam,ab668)一抗4 ℃過夜,然后加入FITC標記的二抗(Immunoway,RS004;ABclonal,AS019)室溫避光孵育30 min,洗滌后加入DAPI(4',6-diamidino- 2-phenylindole)室溫避光孵育10 min,于熒光顯微鏡下觀察并拍照,PBS孵育替換一抗作為陰性對照。細胞熱應激處理過程:37 ℃正常培養24 h后,于39 ℃分別培養24、48和72 h,37℃培養相同時間的細胞作為對照組。每個時間點細胞熱處理后,立即提取熱處理組和對照組細胞的基因組DNA,每個試驗獨立重復3次。
以3×103個/孔接種Mac-T細胞于96孔板中,37 ℃正常培養24 h后每個試驗組再39 ℃分別培養24 h、48 h和72 h,然后每孔加入MTT溶液繼續培養4 h后去掉上清,加入DMSO低速振蕩10 min,于490 nm 處檢測吸光值。根據以下公式計算細胞相對活力:細胞活力=[(39 ℃試驗組OD值-空白對照OD值)/(37 ℃對照組OD值-空白對照OD值)]×100%。
參照Blood DNA Midi Kit試劑盒(成都福際生物技術有限公司)的使用說明提取血液和細胞樣品中的基因組DNA。使用紫外分光光度計檢測DNA的濃度及純度,1%瓊脂糖凝膠電泳檢測DNA樣品的完整性,純度在1.8≤A260/280≤2.0之間,且無降解的DNA樣品視為合格,用于后續試驗。使用EZ DNA Methylation-Gold KitTM(D5005, Zymo Research)試劑盒進行重亞硫酸鹽修飾。

圖1 技術路線圖
在24頭中國荷斯坦牛個體中,隨機選擇其中15頭,并隨機分為3組,每組5頭奶牛的DNA樣本進行混合后建庫,通過Illumina HiSeq4000平臺-進行WGBS測序,結果獲得3組非應激期和3組熱應激期奶牛的全基因組甲基狀態測序數據。通過FastQC(v0.11.0)和Fastp(v0.21.0)對測序原始數據進行評估和質控,Bismark(v0.20.1)進行參考基因組序列比對和統計,R包Methylkit進行DMR(1000 bp windows, 500 bp overlap,<0.05)鑒定和注釋,以支持甲基化的reads數/(支持甲基化的reads數+不支持甲基化的reads數)計算甲基化水平。
從NCBI數據庫中獲得基因的基因序列(NC_037340.1),利用PROMO在線軟件預測轉錄因子結合區域(http://alggen.lsi.upc.es/cgi-bin/promo_v3/ promo/promoinit.cgi?dirDB=TF_8.3),使用Methprimer在線軟件(http://www.urogene.org/cgi-bin/methprimer/ methprimer.cgi)預測GNAS基因啟動子區的CpG島,并以長度>300 bp、GC %>50.0 %,及觀察值/期望值≥0.6 的標準鑒定CpG島。以重亞硫酸鹽修飾后的DNA為模板,通過巢式PCR擴增目標片段,BSP的巢式PCR引物如表1所示。PCR反應條件為:98 ℃ 30 s,98 ℃ 10 s,56.5 ℃ 30 s,72 ℃40 s,40個循環,72 ℃ 5 min。通過%瓊脂糖凝膠電泳純化PCR產物,送至生工生物(上海)工程股份有限公司進行測序。甲基化水平計算公式:CG位點上C的甲基化水平=C峰高/(C峰高+T峰值)。
通過卡方檢驗統計DMR,配對T檢驗計算非應激組和熱應激組奶牛的組間差異的顯著性,T檢驗計算細胞水平差異的顯著性。<0.05表示差異有統計學意義,以平均值±標準差表示結果。
根據WGBS的分析結果,如圖2-A所示,夏季熱應激組奶牛和春季非應激組相比,統計發現49 861個DMR(<0.05),其中有4 789個DMR位于啟動子區,并注釋對應到4 069個基因。其中,DMR(Chr13:57532501—57533500,命名為DMR1)位于基因的啟動子和5’-UTR內,即轉錄起始點前879 bp 和后121 bp(圖2-C)。WGBS檢測結果如圖2-B顯示,夏季熱應激組奶牛的DMR1整體甲基化水平極顯著高于非應激組(<0.001)。通過Methprimer軟件分析發現DMR1包含一個352 bp的CpG島,位于GNAS基因的啟動子-364—-12 bp區。本研究對包含該CpG島在內的-454—+144 bp區域(命名為GNAS1)的甲基化水平進行了進一步分析,圖2-C對DMR1、GNAS1、及CpG島的位置等信息進行了詳細的說明。PROMO預測發現,GNAS1區包含36個CG位點,具有Sp1、AP2、C/EBP等重要轉錄因子潛在的結合位點(圖2-D)。WGBS分析結果顯示,夏季熱應激組奶牛GNAS1區的所有CG位點甲基化水平顯著高于春季非應激組(44.20% vs 57.31%,<0.05,圖2-B)。綜上,熱應激組和非應激組個體DMR1和GNAS1區CG位點甲基化水平的顯著差異關系密切。

表1 GNAS基因的巢式PCR引物
通過BSP法分別對24頭奶牛熱應激期和非應激期的GNAS1片段中CG位點的甲基化狀態進行檢測。如圖3-A所示,BSP方法清楚地檢測到了31個CG位點的甲基化狀態。在檢測的48個奶牛樣本中,夏季熱應激條件下,GNAS1的CG位點整體甲基化水平顯著升高(<0.05,圖3-B),與WGBS檢測結果一致。對每一個CG位點的甲基化水平進行分析,結果如圖3-C所示,31個CG位點甲基化水平在夏季熱應激條件下都呈上升趨勢,其中21號和27號CG(分別位于-113 bp和-63 bp處,即基因組上Chr13:57532733和Chr13:57532683處)的甲基化水平分別顯著上調7.37%和7.72%(<0.05)。
對使用的Mac-T細胞進行鑒定。培養過程中,Mac-T細胞穩定傳代且貼壁生長,呈現典型的上皮細胞形態(圖4),低密度時呈現分散生長的多角形單個細胞(圖4-A),密度增大后呈不規則的鵝卵石樣單層聚集(圖4-B),符合上皮細胞形態學特點。Mac-T表達上皮細胞特異性的角蛋白CK8和CK18,其免疫熒光鑒定結果如圖5所示,本研究所用細胞大小清晰,經FITC染色的細胞質可與DAPI染色的細胞核完全重合,且陰性對照無綠色熒光。形態學觀察和免疫熒光鑒定表明實驗所用細胞為牛乳腺上皮細胞Mac-T。

圖5 免疫熒光鑒定Mac-T細胞
利用MTT法檢測熱應激對細胞活力的影響,結果表明39 ℃熱處理影響Mac-T細胞活力。如圖6所示,與對照組相比,48和72 h熱處理組細胞活力極顯著下降(<0.01),而24 h熱處理組的細胞活力變化不明顯。通過BSP法檢測了Mac-T細胞不同熱處理組的的甲基化水平,結果表明熱處理后GNAS1甲基化水平顯著升高。如圖7-A所示,39 ℃熱處理48 h后,GNAS1的CG位點甲基化的平均水平從58.93%上調至65.02%(<0.01),熱處理72 h后則上調到63.84%(<0.05)。對于單個CG位點,熱處理48 h和72 h后的細胞中,31個CG位點都呈現甲基化水平上調趨勢,而21號和27號CG位點甲基化水平的上調較顯著(圖7-B)。綜上,熱應激會引起牛乳腺上皮細胞基因啟動子甲基化水平的顯著上調,21號和27號CG位點可能是熱應激相關的重要甲基化位點。

**表示P<0.01;** represents P<0.01
目前,熱應激問題是奶牛養殖業面臨的巨大挑戰之一。熱應激會嚴重降低奶牛的生產性能[22]和免疫能力[23],引發乳房炎和其他健康問題,甚至會直接導致奶牛死亡[24]。生物機體可通過熱休克反應[25]、脂肪代謝[26]和氧化應激[27]等調節方式響應熱應激,但DNA甲基化在奶牛熱應激過程中發揮的作用鮮少報道。因此,本研究從DNA甲基化的角度出發,在個體和細胞水平上,采用不同方法組合檢測和分析奶牛熱應激后基因組甲基化的變化,為奶牛熱應激的表觀遺傳機制研究積累數據和提供思路。

A:Mac-T細胞39 ℃熱處理不同時間后GNAS1的甲基化水平;B:Mac-T細胞39 ℃熱處理不同時間后21和27號CG位點的甲基化水平。*表示P<0.05;**表示P<0.01
WGBS被稱為甲基化檢測的金標準,雖價格昂貴且數據分析復雜,但特異性和靈敏度較高,能夠獲得個體全基因組范圍內的甲基化狀態[28],常用于小樣本全基因組甲基化狀態的檢測。BSP法通過一代測序技術則能準確快速獲得部分區域的甲基化狀態[29],常用于大樣本中已知基因啟動子區域甲基化水平的檢測。WGBS在牛的甲基化檢測中已有廣泛的應用,比如2020年,Zhou等采用WGBS檢測分析了荷斯坦牛16個組織的全基因組甲基化水平狀態和不同組織的差異[30],WANG等[31]對不同乳蛋白和乳脂率的泌乳荷斯坦牛乳腺組織中全基因組DNA甲基化進行了檢測,而IBEAGHA-AWEMU等[32]對DNA 甲基化在奶牛的回腸和回腸淋巴結對鳥分枝桿菌亞種反應中的作用進行了研究。本研究首先利用WGBS檢測了熱應激下小樣本奶牛全基因組甲基化狀態的變化關系,篩選到關鍵基因,再通過BSP法在大樣本個體和細胞模型中深入驗證熱應激下關鍵基因啟動子區域的甲基化水平的變化。根據檢測方法的特點,經濟、快速、準確地獲得了試驗結果。
DNA甲基化是指在DNA甲基轉移酶(DNA methyltransferases,DNMTs)的催化下,以S-腺苷甲硫氨酸為甲基供體,將甲基轉移到胞嘧啶的第五位碳原子上,使DNA分子的堿基結合甲基的過程[33]。作為一種重要的表觀遺傳修飾,DNA甲基化與細胞生長、胚胎發育和衰老等生命活動密切相關[34],同時參與生物對環境的適應性過程。長期的熱應激可導致機體DNA甲基化的改變。KOROTKO等[35]在2021年研究了熱應激不同處理時間擬南芥的基因組DNA甲基化變化,發現熱應激降低了DNA甲基化水平,并發現了Hsp70等關鍵差異甲基化基因。VINOTH等[36]發現雞胚胎發育過程中的,熱應激可引起啟動子區域甲基化水平的變化,從而提高雞出生后的耐熱能力,表明啟動子區域甲基化是促進表觀遺傳適應的重要因素。在2021年LIVERNOIS[16]的報道中,分析了熱應激前后奶牛外周血單核細胞基因組啟動子區的DNA甲基化變化,結果提示啟動子區域的DNA甲基化狀態與奶牛對熱應激反應的響應有關。已有的研究說明DNA甲基化與奶牛熱應激關系密切,在熱應激下基因的DNA甲基化水平可發生異常改變。在本研究中,奶牛個體和細胞熱應激后,GNAS基因啟動子的甲基化水平顯著升高,表明GNAS基因通過DNA甲基化參與了奶牛的熱應激反應,可能是調控奶牛響應熱應激的一種重要方式。
2018年報道氧應激后TPM2基因的甲基化水平增加[37],Corbett等[38]總結NR3C1啟動子的高甲基化與應激暴露相關,同時ZHANG等[39]報道同型半胱氨酸引起GPX4基因高甲基化,與氧化應激有關,以上與本研究結果相似,表現為應激條件下基因的甲基化水平增加。熱應激引起基因甲基化水平的變化,可能與機體內的DNMTs(形成和維持DNA甲基化的關鍵酶)的表達量和活性變化等因素有關。已有研究表明應激會改變機體DNMTs表達,導致DNA甲基化水平的改變,牛卵母細胞熱應激24 h后DNMT1基因表達水平顯著增加[40],而酒精刺激導致了神經前體細胞和小鼠胚胎成纖維細胞DNMT3A基因的表達水平上調[41]。本研究中GNAS基因啟動子的DNA甲基化水平在熱應激后顯著增加,可能與DNMTs表達上調有關。在人上,GNAS基因與假性甲狀旁腺功能減退癥、骨異型增生和垂體瘤等疾病的發生發展有關,LI 等[42]報道GNAS基因的甲基化狀態可能是一種用于卵母細胞質量檢測的新型表觀遺傳標記。劉明哲等[43]在GNAS基因上獲得了與頭孢類藥物過敏高度相關的DNA甲基化差異位點,而POIRIER等[44]在泌乳早期牛卵母細胞中發現了代謝相關的差異甲基化區域。在本研究中,熱應激后奶牛GNAS基因的啟動子CpG島的CG胞嘧啶整體甲基化水平顯著升高,且所有CG位點的胞嘧啶甲基化水平在熱應激后都呈現上升趨勢。基因啟動子區CpG島的甲基化具有重要作用,可通過影響轉錄因子等調控元件的結合而調控基因表達[45]。在該研究中,采用PROMO預測GNAS基因啟動子的轉錄因子結合位點,發現重要轉錄因子C/EBP和Sp1結合區域富含多個CG位點,且其位點的甲基化水平均上調,而Sp1的結合區域中的27號CG位點熱應激后甲基化水平顯著增加。Sp1是甲基化敏感轉錄因子,其與基因啟動子區域的結合受到DNA甲基化的影響[46],DNA 甲基化可抑制Sp1與靶基因的結合,導致基因表達沉默。許多啟動子區域富含CG的基因,例如FOXF2、KEAP1和NDRG2等的表達受到 Sp1和DNA甲基化的聯合作用的調控[46-48]。Sp1和DNMT1通過與靶基因啟動子區域競爭性結合可調控靶基因的甲基化狀態和轉錄表達。本研究中,GNAS的Sp1結合區域的CG位點甲基化水平顯著增加,可能會干擾Sp1與GNAS啟動子的結合,從而影響基因的表達,因此27號CG位點可能是奶牛熱應激GNAS基因的關鍵甲基化位點,后續可進一步分析該位點的DNA甲基化在奶牛熱應激中的作用。目前,GNAS基因甲基化在熱應激中的功能研究鮮少報道。本研究發現了熱應激下GNAS基因啟動子甲基化水平的變化趨勢,為奶牛熱應激研究提供了新的候選表觀遺傳標志,具體的甲基化調控機制和功能有待更深入的挖掘和探索。
本研究通過WGBS和BSP檢測了奶牛個體和細胞水平上的DNA甲基化狀態,結果顯示熱應激條件下啟動子的甲基化水平顯著增加,且在31個CG位點中,位于基因組上Chr13:57532733 (-113 bp)和Chr13:57532683(-63 bp)處的CG位點的甲基化水平熱應激后顯著上調。綜上,通過分析了奶牛熱應激與GNAS基因啟動子甲基化的關系,提示DNA甲基化在動物熱應激反應中的重要調控功能。
[1] ROSSIELLO M R, SZEMA A. Health effects of climate change- induced wildfires and heatwaves. Cureus, 2019, 11(5): e4771.
[2] ALI M Z, CARLILE G, GIASUDDIN M. Impact of global climate change on livestock health: Bangladesh perspective. Open Veterinary Journal, 2020, 10(2): 178-188.
[3] RANJITKAR S, BU D P, WIJK M, MA Y, MA L, ZHAO L S, SHI J M, LIU C S, XU J C. Will heat stress take its toll on milk production in China? Climatic Change, 2020, 161(4): 637-652.
[4] BAGATH M, KRISHNAN G, DEVARAJ C, RASHAMOL V P, PRAGNA P, LEES A M, SEJIAN V. The impact of heat stress on the immune system in dairy cattle: a review. Research in Veterinary Science, 2019, 126: 94-102.
[5] BERNABUCCI U, BIFFANI S, BUGGIOTTI L, VITALI A, LACETERA N, NARDONE A. The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 2014, 97(1): 471-486.
[6] 胡麗蓉, 康玲, 王淑慧, 李瑋, 鄢新義, 羅漢鵬, 董剛輝, 王新宇, 王雅春, 徐青. 冷熱應激對北京地區荷斯坦牛產奶性能及血液生化指標的影響. 中國農業科學, 2018, 51(19): 3791-3799. doi:10. 3864/j.issn.0578-1752.2018.19.015.
HU L R, KANG L, WANG S H, LI W, YAN X Y, LUO H P, DONG G H, WANG X Y, WANG Y C, XU Q. Effects of cold and heat stress on milk production traits and blood biochemical parameters of Holstein cows in Beijing area. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799. doi:10.3864/j.issn.0578-1752.2018.19.015. (in Chinese)
[7] ABBAS Z, SAMMAD A, HU L R, FANG H, XU Q, WANG Y C. Glucose metabolism and dynamics of facilitative glucose transporters (GLUTs) under the influence of heat stress in dairy cattle. Metabolites, 2020, 10(8): 312.
[8] KHAN A, KHAN M Z, UMER S, KHAN I M, XU H T, ZHU H B, WANG Y C. Cellular and molecular adaptation of bovine granulosa cells and oocytes under heat stress. Animals: An Open Access Journal from MDPI, 2020, 10(1): 110.
[9] LIU S H, YUE T T, AHMAD M J, HU X W, ZHANG X X, DENG T X, HU Y, HE C J, ZHOU Y, YANG L G. Transcriptome analysis reveals potential regulatory genes related to heat tolerance in Holstein dairy cattle. Genes, 2020, 11(1): 68.
[10] ZHAO S G, MIN L, ZHENG N, WANG J Q. Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows. Animals: An Open Access Journal from MDPI, 2019, 9(11): 925.
[11] KOCH F, ALBRECHT D, G?RS S, KUHLA B. Jejunal mucosa proteomics unravel metabolic adaptive processes to mild chronic heat stress in dairy cows. Scientific Reports, 2021, 11: 12484.
[12] GAO F, LUO Y L, LI S T, LI J, LIN L, NIELSEN A L, S?RENSEN C B, VAJTA G, WANG J, ZHANG X Q, DU Y T, YANG H M, BOLUND L. Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS ONE, 2011, 6(10): e25901.
[13] ZHAO J G, LU Z G, WANG L, JIN B. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 2020, 22(1): 117.
[14] OUELLET V, LAPORTA J, DAHL G E. Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology, 2020, 150: 471-479.
[15] WU J, ZHANG W W, LI C H. Recent advances in genetic and epigenetic modulation of animal exposure to high temperature. Frontiers in Genetics, 2020, 11: 653.
[16] LIVERNOIS A M, MALLARD B A, CARTWRIGHT S L, CáNOVAS A. Heat stress and immune response phenotype affect DNA methylation in blood mononuclear cells from Holstein dairy cows. Scientific Reports, 2021, 11(1): 11371.
[17] KHODADADI E, FAHMIDEH L, KHODADADI E, DAO S, YOUSEFI M, TAGHIZADEH S, ASGHARZADEH M, YOUSEFI B, KAFIL H S. Current advances in DNA methylation analysis methods. BioMed Research International, 2021, 2021: 8827516.
[18] JüPPNER H. Molecular definition of pseudohypoparathyroidism variants. The Journal of Clinical Endocrinology & Metabolism, 2021, 106(6): 1541-1552.
[19] MANTOVANI G, DE SANCTIS L, BARBIERI A M, ELLI F M, BOLLATI V, VAIRA V, LABARILE P, BONDIONI S, PEVERELLI E, LANIA A G, BECK-PECCOZ P, SPADA A. Pseudohypoparathyroidism and GNAS epigenetic defects: Clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. The Journal of Clinical Endocrinology & Metabolism, 2010, 95(2): 651-658.
[20] FAIAS S, DUARTE M, PEREIRA L, CHAVES P, CRAVO M, DIAS PEREIRA A, ALBUQUERQUE C. Methylation changes at the GNAS imprinted locus in pancreatic cystic neoplasms are important for the diagnosis of malignant cysts. World Journal of Gastrointestinal Oncology, 2020, 12(9): 1056-1064. doi:10.4251/wjgo.v12.i9.1056.
[21] MCDOWELL R E, HOOVEN N W, CAMOENS J K. Effect of climate on performance of holsteins in first lactation. Journal of Dairy Science, 1976, 59(5): 965-971.
[22] HAMMAMI H, BORMANN J, M’HAMDI N, MONTALDO H H, GENGLER N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. Journal of Dairy Science, 2013, 96(3): 1844-1855.
[23] KOCH F, THOM U, ALBRECHT E, WEIKARD R, NOLTE W, KUHLA B, KUEHN C. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(21): 10333-10338.
[24] TOKUHISA K, TSURUTA S, DE VRIES A, BERTRAND J K, MISZTAL I. Estimation of regional genetic parameters for mortality and 305-d milk yield of US Holsteins in the first 3 parities. Journal of Dairy Science, 2014, 97(7): 4497-4502.
[25] KIM W S, NEJAD J G, PENG D Q, JUNG U S, KIM M J, JO Y H, JO J H, LEE J S, LEE H G. Identification of heat shock protein gene expression in hair follicles as a novel indicator of heat stress in beef calves. Animal, 2020, 14(7): 1502-1509.
[26] HENG J H, TIAN M, ZHANG W F, CHEN F, GUAN W T, ZHANG S H. Maternal heat stress regulates the early fat deposition partly through modification of m 6 A RNA methylation in neonatal piglets. Cell Stress & Chaperones, 2019, 24(3): 635-645.
[27] WANG Y R, YANG C X, ELSHEIKH N A H, LI C M, YANG F X, WANG G L, LI L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging, 2019, 11(15): 5535-5547.
[28] LI Q, HERMANSON P J, SPRINGER N M. Detection of DNA methylation by whole-genome bisulfite sequencing. Methods in Molecular Biology (Clifton, N J), 2018, 1676: 185-196.
[29] AKIKA R, AWADA Z, MOGHARBIL N, ZGHEIB N K. Region of interest methylation analysis: A comparison of MSP with MS-HRM and direct BSP. Molecular Biology Reports, 2017, 44(3): 295-305.
[30] ZHOU Y, LIU S L, HU Y, FANG L Z, GAO Y H, XIA H, SCHROEDER S G, ROSEN B D, CONNOR E E, LI C J, BALDWIN R L, COLE J B, VAN TASSELL C P, YANG L G, MA L, LIU G E. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biology, 2020, 18(1): 85.
[31] WANG M Q, BISSONNETTE N, DUDEMAINE P L, ZHAO X, IBEAGHA-AWEMU E M. Whole genome DNA methylation variations in mammary gland tissues from Holstein cattle producing milk with various fat and protein contents. Genes, 2021, 12(11): 1727.
[32] IBEAGHA-AWEMU E M, BISSONNETTE N, BHATTARAI S, WANG M Q, DUDEMAINE P L, MCKAY S, ZHAO X. Whole genome methylation analysis reveals role of DNA methylation in cow's ileal and ileal lymph node responses tosubsp. paratuberculosis infection. Frontiers in Genetics, 2021, 12: 797490.
[33] WEBER M, SCHüBELER D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Current Opinion in Cell Biology, 2007, 19(3): 273-280.
[34] TATE P H, BIRD A P. Effects of DNA methylation on DNA-binding proteins and gene expression. Current Opinion in Genetics & Development, 1993, 3(2): 226-231.
[35] KOROTKO U, CHWIA?KOWSKA K, SA?KO-SAWCZENKO I, KWASNIEWSKI M. DNA demethylation in response to heat stress in. International Journal of Molecular Sciences, 2021, 22(4): 1555.
[36] VINOTH A, THIRUNALASUNDARI T, SHANMUGAM M, UTHRAKUMAR A, SUJI S, RAJKUMAR U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress & Chaperones, 2018, 23(2): 235-252.
[37] ZHANG J, ZHANG J, XU S, ZHANG X, WANG P, WU H, XIA B, ZHANG G, LEI B, WAN L, ZHANG D, PANG D. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cellular Physiology and Biochemistry, 2018, 45(2): 692-705.
[38] CORBETT R J, LUTTMAN A M, WURTZ K E, SIEGFORD J M, RANEY N E, FORD L M, ERNST C W. Weaning induces stress-dependent DNA methylation and transcriptional changes in piglet PBMCs. Frontiers in Genetics, 2021, 12: 633564.
[39] ZHANG X Y, HUANG Z B, XIE Z A, CHEN Y L, ZHENG Z Y, WEI X A, HUANG B, SHAN Z, LIU J H, FAN S W, CHEN J, ZHAO F D. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radical Biology and Medicine, 2020, 160: 552-565.
[40] PAVANI K C, ROCHA A, BARON E, LOUREN?O J, FAHEEM M, DA SILVA F M. The effect of kinetic heat shock on bovine oocyte maturation and subsequent gene expression of targeted genes. Zygote (Cambridge, England), 2017, 25(3): 383-389.
[41] MIOZZO F, ARNOULD H, DE THONEL A, SCHANG A L, SABéRAN-DJONEIDI D, BAUDRY A, SCHNEIDER B, MEZGER V. Alcohol exposure promotes DNA methyltransferase DNMT3A upregulation through reactive oxygen species-dependent mechanisms. Cell Stress & Chaperones, 2018, 23(1): 115-126.
[42] LI Q N, LI A, SUN S M, LIU W B, MENG T G, GUO X P, SCHATTEN H, SUN Q Y, OU X H. The methylation status in GNAS clusters May Be an epigenetic marker for oocyte quality. Biochemical and Biophysical Research Communications, 2020, 533(3): 586-591.
[43] 劉明哲, 郭華林, 馮彥, 李建國, 李鵬飛, 高彩榮, 郭相杰. 過敏者外周血DNA甲基化差異. 法醫學雜志, 2021, 37(2): 211-214.
LIU M Z, GUO H L, FENG Y, LI J G, LI P F, GAO C R, GUO X J. DNA methylation differences in peripheral blood of patients with anaphylaxis. Chinese Journal of Rehabilitation Medicine, 2021, 37(2): 211-214. (in Chinese)
[44] POIRIER M, TESFAYE D, HAILAY T, SALILEW-WONDIM D, GEBREMEDHN S, RINGS F, NEUHOFF C, SCHELLANDER K, HOELKER M. Metabolism-associated genome-wide epigenetic changes in bovine oocytes during early lactation. Scientific Reports, 2020, 10: 2345.
[45] ZEMACH A, MCDANIEL I E, SILVA P, ZILBERMAN D. Genome- wide evolutionary analysis of eukaryotic DNA methylation. Science, 2010, 328(5980): 916-919.
[46] TIAN H P, LUN S M, HUANG H J, HE R, KONG P Z, WANG Q S, LI X Q, FENG Y M. DNA methylation affects the SP1-regulated transcription of FOXF2in breast cancer cells. Journal of Biological Chemistry, 2015, 290(31): 19173-19183.
[47] GUO D, WU B, YAN J H, LI X S, SUN H M, ZHOU D S. A possible gene silencing mechanism: Hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells. Biochemical and Biophysical Research Communications, 2012, 428(1): 80-85.
[48] SHEN L, QU X, MA Y, ZHENG J, CHU D, LIU B, LI X, WANG M, XU C, LIU N, YAO L, ZHANG J. Tumor suppressor NDRG2 tips the balance of oncogenic TGF-β via EMT inhibition in colorectal cancer. Oncogenesis, 2014, 3(2): e86.
Effect of Heat Stress on DNA Methylation ofPromoter Region in Dairy Cows

1Institute of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044;2College of Animal Science and Technology, China Agricultural University, Beijing 100193;3Beijing University of Agriculture, Beijing 102206;4Beijing Sunlon Livestock Development Company Limited, Beijing 100029;5Beijing Innovation Consortium of Bio-breeding, Beijing 100125
【Objective】Heat stress has seriously impaired the production and health of dairy cows, causing the subsequent limitation in sustainable development of dairy industry. DNA methylation is an important epigenetic regulatory mechanism involved in an animal’s heat stress response, but the potential functions and molecular mechanisms of which are not clear. The current study was conducted to detect the DNA methylation related to heat stress in dairy cows and to identify target genes related to DNA methylation, so as to provide a better insight into the epigenetics mechanism of heat stress in dairy cows.【Method】In the study, 24 Chinese Holstein lactation cows (same lactation stage and same parity) in Sanyuan dairy farm were used for the blood samples collection in heat stress period (July in the summer of 2017) and non-heat stress period (April in spring 2017), respectively, followed by DNA extraction. To explore the DNA methylation differences in dairy cows from different heat stress period, 15 of 24 animals were randomly assigned to 3 groups (N=5 animals/group), 5 DNA samples in one group were mixed together to get a single pooled DNA sample, thus 6 pooled DNA samples including 3 from spring and 3 from summer were used for the DNA methylation detection by the whole-genome bisulfite sequencing (WGBS), then the differential methylation region (DMR; 1000 bp windows, 500 bp overlap,<0.05) and key gene were identified. PROMO and Methprimer software were used to predict transcription factor binding sites and CpG islands, respectively. Then, the bovine mammary gland epithelial cells (Mac-T) were treated at 39 ℃ for 24 h, 48 h, and 72 h, and the cell viability were detected by MTT method. Finally, using the bisulfite sequencing PCR (BSP), the methylation levels of target gene promoter in 24 dairy cows in spring and summer and Mac-T cells treated in 39℃ were examined, respectively. 【Result】Based on the DNA methylation analysis of WGBS data, 49 861 differential methylation regions (DMRs) associated with heat stress were identified. One of DMRs was attributed to the promoter area of GNAS complex locus (), whose methylation level significantly increased in heat-stressed animals (<0.001). Also, there was a 352 bp CpG island in the promoter ofcontaining potential binding sites for Sp1, C/EBP and other important transcription factors. Further the methylation status of thegene promoter region in heat stressed dairy cows were verified by BSP, and the average methylation level in all cytosine of 31 CpG sites was higher in heat stress cows than that in control groups (<0.05), which corresponding to the above WGBS results. Moreover, the 21 (-113 bp, Chr13:57532733) and 27 (-63 bp, Chr13:57532683) CpG sites showed significant differences between the spring and summer groups (<0.05). In Mac-T cells, after 48 h and 72 h heat treatment, the cell viability decreased significantly (<0.01), but the overall CG methylation level of 31 CpG sites in thegene promoter region increased significantly (<0.05), and also the similar significant methylation changes appeared in the site 21 and 27 CpG in cell. 【Conclusion】Heat stress increased the methylation levels of the promoter region of thein dairy cows as well as in cells, which indicated thatwas a potential target gene regulated DNA methylation in heat stress response of dairy cows.
heat stress; dairy cows; WGBS; DNA methylation;

10.3864/j.issn.0578-1752.2023.12.013
2022-02-09;
2022-07-28
國家自然科學基金外國青年學者研究基金(3175011045)、財政部和農業農村部:國家現代農業產業技術體系(CARS-36)
陳玉梅,Tel:18813021971;E-mail:19121601@bjtu.edu.cn。通信作者徐青,Tel:13520490069;E-mail:qingxu@bjtu.edu.cn
(責任編輯 林鑒非)