999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

丙戊酸對雙峰駝成纖維細胞重編程影響

2023-07-09 07:53:36張啟冉李宗帥馬甜李怡娜趙興緒張勇
中國農業科學 2023年12期
關鍵詞:差異信號

張啟冉,李宗帥,馬甜,李怡娜,趙興緒,,張勇,

丙戊酸對雙峰駝成纖維細胞重編程影響

1甘肅農業大學生命科學技術學院/甘肅農業大學甘肅省動物生殖生理及繁殖調控重點實驗室,蘭州 730070;2甘肅農業大學動物醫學院,蘭州 730070

【目的】探討提高雙峰駝成纖維細胞重編程效率,減少因原癌基因引入造成致瘤風險。試驗在成纖維細胞重編程過程中添加丙戊酸(valproic acid,VPA),探索小分子物質對雙峰駝成纖維細胞重編程的影響,為雙峰駝發病機制研究提供參考依據。【方法】采用3月齡雙峰駝胎兒成纖維細胞,結合經典誘導組合OSKM(Oct4、Sox2、Klf4和c-Myc及治療)和EGFP等5種逆轉錄病毒對雙峰駝成纖維細胞進行重編程(OSKM組),并在第二次病毒感染后添加VPA處理7 d(OSKM+VPA組)收集細胞。利用PCR技術對所得細胞進行內、外源基因檢測以證實逆轉錄病毒對雙峰駝成纖維細胞的修飾作用,根據RNA-seq數據從VPA影響較為明顯的基因中隨機挑選8個基因,檢驗其在添加VPA前后的變化趨勢是否與RNA-seq數據趨勢一致,以驗證RNA-seq數據的準確性。通過GO分析對轉錄組樣本基因進行分類,并使用KEGG通路富集分析和超幾何驗證分析明確目的基因顯著富集通路。對收集到的細胞進行總RNA提取并結合RNA-seq技術和實時熒光定量PCR(Real time-quantitative interpretation,RT-qPCR)技術檢測VPA對雙峰駝成纖維細胞重編程的影響。【結果】使用PCR技術檢測內、外源基因在不同分組的表達,結果顯示、、、、在OSKM和OSKM+VPA組中均有表達,且OSKM+VPA組表達量高于OSKM組,而其在BCEFs組不表達。隨機挑選8個基因檢測,結果表明與細胞周期信號通路有關的、、這3個基因在添加VPA后表達量下調;與癌癥表型特征相關的、、、表達下調;PI3k-Akt信號通路中表達上調;此表達趨勢與組學數據趨勢一致。結果顯示在添加VPA后,增殖基因和表達下調,而凋亡基因表達上調。對轉錄組數據進行KEGG和超幾何驗證分析,根據分析結果篩選出959個差異表達基因,富集在276個信號通路中,其中Q值小于0.05的信號通路有八條:類固醇生物合成、細胞周期、PPAR信號通路、孕酮介導的卵母細胞成熟、脂肪酸代謝、ECM-受體相互作用、細胞黏附分子和膽固醇代謝。經篩選獲得與細胞周期、脂肪酸代謝、細胞黏附分子和膽固醇代謝等相關的26個差異表達基因,并隨機選取其中四個基因進行檢測,結果表明:VPA可使雙峰駝成纖維細胞黏附分子信號通路中、、三個基因表達上調,細胞間互作增強,同時上調脂肪酸信號通路中基因的表達。【結論】VPA可將細胞阻滯在分裂期之前,以減少重編程過程中分化幾率。同時,VPA對雙峰駝成纖維細胞重編程過程中多條信號通路均具有影響,調節信號通路中相關基因表達趨勢,有效提高細胞重編程效率,在雙峰駝成纖維細胞重編程中發揮重要作用。

誘導多能干細胞;雙峰駝;丙戊酸;細胞重編程

0 引言

【研究意義】雙峰駝是荒漠特有物種,主要生活在我國西北地區,近年來由于人口數量不斷增長,開墾范圍進一步擴大,導致野生雙峰駝的水源地被人為破壞,造成其數量急劇下降,現已被列為瀕危動物。雙峰駝不僅在歷史文化中有著重要作用,在科研方面也具有很好的研究前景。因此,運用科學技術手段對其種質資源進行保護具有重要意義。【前人研究進展】日本京都大學Takahashi等[1]成功將與細胞多能性相關的4個基因、、和隨機整合到小鼠胚胎成纖維細胞中,從而將其重編程為一類具有類似于胚胎干細胞的誘導多能干細胞(induced pluripotent stem cells,iPSCs),此過程被稱為iPS經典誘導途徑。iPSCs在細胞形態、增殖能力、分化能力及形成畸胎瘤等方面均與胚胎干細胞相似,且可以避免因使用胚胎干細胞而造成的倫理問題,這對于干細胞、表觀遺傳學及生物醫學等研究領域具有深遠影響。此外,研究人員還利用此技術成功得到人類和多種動物的iPSCs[2-10]。【本研究切入點】然而,到目前為止有關雙峰駝iPSCs的報道屈指可數,獲得雙峰駝iPSCs對其種質資源保護顯得尤為重要。在經典誘導途徑中外源誘導因子參與調控多條癌癥信號通路,且其易與細胞基因組發生整合,因此減少細胞重編程中外源誘導因子的使用,可提高細胞重編程的安全性。隨著不斷探索,研究人員發現許多小分子化合物,如丙戊酸(valproic acid,VPA)、5-氮雜氧胞苷(5-Azadeoxycytidine,Aza)、維生素C等可有效提高細胞重編程效率[11-13]。其中,丙戊酸是一種組蛋白去乙酰化酶抑制劑(histone deacetylase inhibitors,HDACi),可代替小鼠成纖維細胞重編程中的c-Myc誘導因子[14],甚至可以在人成纖維細胞重編程中代替c-Myc和Klf4完成細胞重編程過程[12]。不僅如此,VPA還可將iPSCs的誘導效率提高100倍以上,并保持其穩定性[14-16]。【擬解決的關鍵問題】本試驗通過在雙峰駝成纖維細胞重編程過程中添加VPA,并運用RNA-seq、RT-qPCR技術對收集到的細胞進行分析,以闡明VPA在雙峰駝成纖維細胞重編程過程中的作用及iPSCs早期誘導過程中的分子機制,為雙峰駝發病機制研究及細胞替代性治療、新藥篩選等提供參考依據。

1 材料與方法

本研究于2019年8月至2021年6月在甘肅省甘肅農業大學甘肅省動物生殖生理及繁殖調控重點實驗室完成。

1.1 質粒的制備

制備經典誘導途徑中PMXS-Oct4、PMXS-Sox2、PMXS-Klf4、PMXS-cMyc和PMXS-EGFP質粒,同時制備用于病毒包裝的pCMV-VSV-G和PumV質粒(甘肅省動物生殖生理及繁殖調控重點實驗室)。

1.2 細胞系和細胞培養條件

雙峰駝胎兒成纖維細胞(BCFFs)來源于三月齡雙峰駝胎兒(甘肅省張掖市駱駝養殖場),組織塊貼壁法消化分離后培養,凍存F1—F3細胞。高轉染293細胞由中國科學院蘭州獸醫研究所捐贈。兩種細胞都在含10%胎牛血清(BI,Israel)的DMEM/F12葡萄糖(Hyclone,USA)培養基中,并置于37 ℃、5% CO2培養箱中進行培養。

1.3 逆轉錄病毒感染和VPA處理

293T包裝細胞以每60 mm培養皿1×106個細胞接種,孵育過夜。次日,根據產品說明書,使用 Lipofectamine 2000(Invitrogen,USA)用5 μg pMXs載體(OSKMG)和5 μg逆轉錄病毒包裝混合物轉染細胞。48 h后,收集培養基作為第一支含病毒上清液并為細胞更換新培養基,24 h后再次收集培養基作為第二支含病毒上清液。

轉導前一天,將BCFFS接種至六孔板(每孔2×105個細胞)。轉導過程中,將含病毒的上清液通過0.45 mm孔徑濾器過濾,濾液等比例混合并補充8 mg·mL-1聚凝胺,置于成纖維細胞培養皿中孵育過夜。轉導24 h后,用第二支含病毒上清液替換已有培養基。

細胞隨機分為對照組和處理組,每組重復3次。兩次轉導后,將培養基更換為iPSC誘導培養基,該培養基由DMEM/F12培養基(Gibco,USA)、20%胎牛血清(Gibco,USA)、2 mmol·L-1非必需氨基酸(Gibco,USA)、0.1 mmol·L-1β-巰基乙醇(Sigma- Aldrich,USA)、20 ng·mL-1FGF2 (Thermo,USA)和10 ng·mL-1白血病抑制因子(Thermo,USA)組成;處理組細胞額外補充1 mmol·L-1丙戊酸(Sigma,USA)。7 d后,通過胰蛋白酶消化處理收集細胞樣品[17],加入TRIzol試劑(Sigma,USA)重懸,液氮速凍后儲存于-80 ℃。

1.4 RNA提取、文庫構建和RNA測序

對照組(n=3)隨機命名為CK-1、CK-2、CK-3;處理組(n=3)隨機命名為T-1、T-2、T-3。根據產品說明,使用TRIzol試劑從6個樣品中提取總RNA。通過Agilent 2100生物分析儀,在去除rRNA后進行無RNase瓊脂糖凝膠電泳檢測RNA質量和濃度。隨后,使用oligo-dT珠子分離Poly (A) mRNA,并通過超聲波中斷mRNA,以片段化mRNA為模板,隨機寡核苷酸為引物,采用M-MuLV逆轉錄酶系統合成第一條cDNA鏈,緊接著使用RNaseH降解RNA鏈,在DNA聚合酶I的作用下,以dNTPs為模板合成第二條cDNA鏈。純化的雙鏈cDNA在末端被修復,連接至poly A尾并連接測序接頭。使用AMPure XP微珠篩選200 bp的cDNA并進行PCR擴增。最后,使用AMPure XP珠對PCR產物進行純化和富集,以構建最終的cDNA文庫。

使用雙末端技術,在Genedenovo Biotechnology Co., Ltd(中國廣州)Illumina測序平臺(Illumina HiSeq? 2500)上對cDNA文庫進行測序。用fastp[18]程序刪除低質量序列(一個序列中有超過50%的堿基質量低于20)、N堿基超過10%的讀數(堿基未知)和包含適配器的序列(表1)。

表1 引物序列及參數

、、、:轉錄因子;:腫瘤蛋白p53;:細胞周期蛋白B1;:基質金屬肽酶9;:細胞分裂周期20;:S100鈣結合蛋白A4;:血管內皮生長因子C;:紋狀蛋白;:CDC28蛋白激酶調節亞基2;:單克隆抗體Ki 67鑒定抗原;:增殖的細胞核抗原;:半胱天冬酶7;:脂肪酸轉位酶;:神經纖維素;:L1細胞黏附分子;:接觸蛋白1

,,,: Transcription factors;: tumor protein p53;: cyclin B1;: matrix metallopeptidase 9;: cell division cycle 20;: S100 calcium binding protein A4;: vascular endothelial growth factor C;: vimentin;: CDC28 protein kinase regulatory subunit 2;: antigen identified by monoclonal antibody ki 67;: proliferating cell nuclear antigen;: caspase7;: fatty acid translocation enzyme;: neurofascin;: L1 cell adhesion molecule;: contactin 1

1.5 轉錄本組裝和表達值估計

利用HISAT2[19]對RNA測序讀數和雙曲線Camelus bactrianus Ca_bactrianus_MBC_1.0基因組組裝進行對比。

已知雙峰駝基因(https://www.ncbi.nlm.nih.gov/ genome/?term=Camelus+bactrianus)作為基因組參照組。在HISAT2比較的基礎上,使用Stringtie[20]重建轉錄本并計算每個樣本中全部基因的表達水平,校正測序深度以及基因或轉錄本長度,以確保后續分析的準確性。在此之前,計算得到每個基因的FPKM值。

基于基因表達信息,使用R(http://www.r-project. org/)對主成分進行分析(PCA,Principal Component Analysis)并計算皮爾遜相關系數。隨后使用DESeq2[21]軟件進行差異基因表達分析,結合KEGG(//www. kegg.jp/)和GO(//geneontology.org/)研究分析相關途徑。

1.6 引物設計及實時熒光定量PCR

利用NCBI和primer 3.0網站設計特異性引物,以作為內參基因對所選目的基因進行RT- qPCR分析,以檢驗測序結果的準確性并進一步分析轉錄組數據。

使用RevertAid? First Strand cDNA Synthesis Kit (Thermo FisherScientific Inc., USA) 產品說明制備cDNA。RT-qPCR反應體積為20 μL,其中包含10 μLReal Master Mix SYBR、8 μL ddH2O、正向和反向引物各1 μL,以及1 μL cDNA,使用ΔΔCT方法計算所有基因的相對表達量。

1.7 重編程進度檢測

為區分對照組與處理組,將未添加VPA組命名為OSKM,將添加VPA組命名為OSKM+VPA。通過PCR技術測試BCFFs、OSKM和OSKM+VPA此3組中的特定基因,其中包含3組外源基因、干細胞特異性基因和3個胚層標記基因。檢測成纖維細胞中特定基因的表達水平以驗證外源基因對成纖維細胞的修飾作用及重編程進度。

2 結果

2.1 VPA處理

使用293T細胞包裝含有經典組合Oct3、c-Myc、Klf4、Sox2和EGFP逆轉錄病毒載體,在病毒轉導后72 h,觀察到EGFP逆轉錄病毒包裝結果(圖1-A),利用EGFP預測其余4種逆轉錄病毒的轉錄效率。第二次逆轉錄病毒感染后,在iPSC培養基中添加1 mmol·L-1VPA對細胞進行處理,第二次病毒感染后第8天觀察到轉染效果(圖1-B),光學顯微鏡觀察第二次病毒感染后8 d的細胞形態(圖1-D),及未處理的空白對照組細胞形態(圖1-C)。光學顯微鏡觀察VPA處理7 d后的細胞狀態(圖1-F)及其對照組(圖1-E)。

A. 轉導后72 h的EGFP逆轉錄病毒包裝;B. 第二次病毒感染后8 d;C. 培養8 d的成纖維細胞;D. 第二次病毒感染后8 d的細胞形態;E. 培養基中未添加VPA處理7 d的細胞形態;F. 培養基中添加VPA并處理7 d的細胞形態

2.2 基因轉移驗證和組學數據驗證

重編程后雙峰駝成纖維細胞中內、外源基因的表達規律如圖2所示,、、、、在OSKM和OSKM+VPA組中均有表達(圖2-A),且OSKM+VPA組表達量高于OSKM組,而其在BCEFs組不表達。為了驗證組學數據的可靠性,隨機選取8個基因進行檢測,結果顯示、、、、、在OSKM+VPA組中表達下調,且差異極顯著(<0.01);基因表達呈上調趨勢,且差異極顯著(<0.01)。在OSKM+VPA組中表達量無明顯差異(圖2-B),8個基因變化趨勢與RNA-seq組學數據一致,表明組學數據準確可信,可用于后續分析。

A. 半定量PCR檢測BCFFs、OSKM和OSKM+VPA組中內、外源基因mRNA表達水平;B. TP53、CCNB1、MMP9、CDC20、S100A4、VEGFC、VIM和CKS2 mRNA表達水平(內參基因:β-actin)。**表示差異極顯著(P<0.01)

2.3 轉錄組測序分析

為確定VPA在成纖維細胞重編程中的作用,通過RNA-seq技術對處理組和對照組的6個樣本進行轉錄組分析。從6個樣本中分別獲得了61 256 236、65 376 850、66 062 928、69 282 900、68 014 520和67 418 570個clean reads(表2)。其中90.40%、90.12%、90.32%、90.39%、90.12%和90.75%的clean reads被比對到參考基因組(Table 2),并注釋了14 377、14 332、14 399、14 367、14 427和14 427個基因(表3)。

根據每個樣本基因表達譜,使用PCA(圖3-A)對樣本進行分析,了解樣本重復性并排除異常值。此外,通過小提琴圖將每個樣本中基因豐度的表達可視化(圖3-B)。基因總數是19 748個,根據基因豐度≥1進行篩選后,基因數是11 780個,其中處理組獨有的318個基因、對照組獨有的260個基因,兩者共11 202個基因。如圖3-C所示。基于差異分析結果,在添加VPA處理7d后,FDR<0.05和| log2FC |>1為顯著差異表達基因。因此,根據每個對照組的差異表達基因(469個上調基因和490個下調基因)建立火山圖;基因越接近兩端,差異程度越大(圖3-D)。并且假設具有相似表達模式的基因有共同功能或參與共同代謝途徑和信號傳導途徑,以此為基礎進行了進一步分析。

利用GO分析對樣本基因進行功能分類。基于序列同源性,unigenes分為三大功能類別:生物學過程,細胞組分和分子功能(圖3-E)。為確定目的基因顯著富集通路,使用KEGG通路富集分析和超幾何檢驗分析。篩選獲得959個差異表達基因,富集在276個信號通路中。其中值小于0.05的信號通路有42條,值小于0.05的信號通路有8條。這8條信號通路分別為類固醇生物合成、細胞周期、PPAR信號通路、孕酮介導的卵母細胞成熟、脂肪酸代謝、ECM-受體相互作用、細胞黏附分子和膽固醇代謝(圖3-F)。

表2 計數據比較

Sample:樣本名;Total:過濾核糖體后reads數量,稱為有效reads;Unmapped (%):未比對上參考基因組的reads數及占有效reads比例;Unique_Mapped (%):唯一對比上參考基因組的reads數及占有效reads比例;Multiple_Mapped (%):多處比對上參考基因組的reads數及占有效reads比例;All_Mapped:全部的可以定位到基因組上的reads數量及占有效reads比例

Sample: sample name; Total: number of reads after filtering ribosomes, called valid reads; Unmapped (%): number of reads that are not matched to the reference genome and the proportion of valid reads; Unique_Mapped (%): number of reads that are uniquely matched to the reference genome and the proportion of valid reads; Multiple_Mapped (%): number and proportion of effective reads in the reference genome compared at multiple locations; All_Mapped: the number of reads that can be localized to the genome and the proportion of valid reads

表3 基因檢測統計

Sample:樣本名;Refer genes:參考基因組(或參考基因集合)的基因總數,當不存在新基因時,無該列結果;Sequenced refer genes (%):測序結果所檢測到的Refer genes總數及占Refer genes的百分比,當不存在新基因時,無該列結果;Novel genes:項目發現的新基因數目,當不存在新基因時,無該列結果;Sequenced novel genes (%):測序結果檢測到的Novel genes總數及占Novel genes的百分比,當不存在新基因時,無該列結果;Total genes:所有基因總數,包含參考基因組及新基因;Sequenced total genes (%):測序結果所檢測到的基因總數及占All genes的百分比

Sample: sample name; Refer genes: total number of genes in the reference genome (or reference gene collection), no result in this column when no new genes are present; sequenced Refer genes (%): total number and percentage of Refer genes detected by sequencing results, no result in this column when no new genes are present; Novel genes: number of new genes discovered by the project, no result in this column when no new genes are present; sequenced_Novel genes (%): total number of Novel genes detected by sequencing results and percentage of Novel genes , when no new genes are present, no result in this column; Total_Genes: total number of all genes, when no new genes are present, no result in this column; Total_Genes: total number of all genes, including reference genome and novel genes; sequenced_Total genes (%): total number of genes detected by sequencing results and percentage of All_Genes

2.4 增殖和凋亡基因的影響

增殖和凋亡基因在BCEF、OSKM和OSKM+VPA組的表達規律如圖4所示。iPSC培養基中加入VPA后,增殖基因和表達呈下降趨勢,差異極顯著(<0.01);而凋亡基因表達極顯著上調(<0.01)。

A. 主成分分析:PC1坐標代表第一主成分;PC2坐標代表第二主成分;圖中的彩色點代表每個樣本;B. 樣本的相關熱圖:圖中橫坐標和縱坐標分別為樣本,顏色深度(強度)表示兩個樣本之間的相關系數;C. 樣本或組間基因豐度表達的可視化;D. 維恩圖顯示了兩組的共同和獨特基因;E. 橫坐標代表兩組差異倍數的對數,縱坐標代表兩組差異FDR的負Log10值,紅色(group_2向上,相對于group_1的調節表達)和藍色(下調表達)表示基因表達水平的差異;F. 用不同顏色表示不同樣本基因,顏色越紅,表達越高;顏色越藍,表達越低

A. Principal Component Analysis: the PC1 coordinate represents the first principal component; the PC2 coordinate represents the second principal component; while, the colored dots in the figure represent each sample; B. Correlation heat map of the samples: In the figure, the abscissa and ordinate are the respective samples and the color depth (intensity) indicates the correlation coefficient between the two samples; C. Visualization of gene abundance expression between samples or groups; D. Venn diagram showing the common and unique genes of the two groups; E. The abscissa represents the logarithm of the multiple of the difference between the two groups, the ordinate represents the negative Log10 value of the FDR of the difference between the two groups, and the red (group_2 up-regulated expression relative to group_1) and blue (down-regulated expression) indicate a difference in the gene expression levels; whereas, the black dots represent no difference; F. Genes from different samples are expressed in different colors; the redder the color, the higher the expression; whereas, the bluer the color, the lower the expression

圖3 轉錄組測序、相關性的基本分析和組間差異

Fig. 3 Transcriptomic sequencing, basic analysis of correlations, and differences between groups

2.5 VPA處理影響的路徑分析

在本研究中,根據值小于0.05的8個KEGG通路,篩選出與細胞周期、脂肪酸代謝、細胞黏附分子和膽固醇代謝等相關的26個差異表達基因,根據這些基因構建熱圖,分析其在不同分組的表達差異。結果顯示,在OSKM和OSKM+VPA組之間這些差異表達基因在重編程細胞中表達具有顯著性差異,尤其是脂肪酸合酶和細胞黏附分子(圖5-A)。在OSKM組中表達量顯著下調(<0.01),經VPA處理后(OSKM+VPA組)較OSKM組表達量上調,且差異顯著(<0.01)(圖5-B);在OSKM組中表達量下調,且差異顯著(<0.01),其在VPA處理后(OSKM+VPA組)表達量無明顯差異(圖5-C);和,在OSKM+VPA組中表達量顯著上調(<0.01),而在BCEF組中不表達(圖5-D、E);和基因在OSKM和OSKM+VPA組均有表達,且OSKM+VPA組表達量高于OSKM組,而其在BCEFs組不表達(圖5-F)。

A. Mki67 mRNA表達水平(內參基因:β-actin);B. PCNA mRNA表達水平(內參基因:β-actin);C. CASP7 mRNA表達水平(內參基因:β-actin)。**表示差異極顯著(P<0.01)

3 討論

細胞重編程技術在種質資源保護、再生醫學和新藥篩選等方向都具有潛在的應用價值。但因其重編程效率較低,使得該技術很難由實驗室向臨床應用發展,導致重編過程中因原癌基因引入造成的安全問題限制了其在臨床上的應用[22]。隨著對重編程技術的探索,研究人員發現小分子物質可以提高重編程的效率以及減少原癌基因的使用。本研究以雙峰駝成纖維細胞為研究對象,結合RNA-seq、RT-qPCR和半定量PCR等方法,探討小分子物質丙戊酸對雙峰駝成纖維細胞重編程的影響。結果表明,丙戊酸可抑制細胞周期信號通路,阻滯細胞分化,并通過影響細胞黏附分子信號通路增強細胞間互作,在脂肪酸代謝途徑中發揮調控作用。

3.1 丙戊酸對細胞周期信號通路的影響

細胞衰老是OSKM因子感染細胞使其進入重編程的阻礙之一,而VPA可通過將細胞阻滯在G2/M期來提高細胞重編程的效率[23-24]。本研究檢測了與細胞周期信號通路相關的、、、、和等基因,其中效應凋亡蛋白是參與細胞凋亡的重要成員之一[25],有研究表明的缺乏會減弱大鼠細胞凋亡程度[26];在細胞復制和DNA修復過程中表達,從細胞G1期開始合成,S期達到峰值,G2和M期表達量開始下降[27]。研究發現在添加VPA后增殖相關基因、、和表達下調,而凋亡基因則呈上調趨勢。這一結果提示VPA通過調控重編程中增殖和凋亡基因的表達趨勢將細胞阻滯在未分化階段,以促進雙峰駝成纖維細胞重編程效率。

3.2 丙戊酸對脂肪酸代謝相關基因的影響

脂肪酸作為脂質組成中最基礎同時也是最重要的組成部分,是機體主要能量來源之一,其合成對于人類多能干細胞的生存有重要意義[28]。Abumrad等[29]通過克隆大鼠脂肪細胞膜蛋白,發現大鼠脂肪酸轉位酶(fatty acid translocase,FAT)與人有同源性,證明了的FAT活性,從而明確了其在脂肪酸攝取中的作用。本研究結果顯示VPA可使脂肪酸代謝途徑中的表達量上調,提示VPA可上調表達從而促進長鏈脂肪酸的吸收,調節脂肪酸代謝,以期獲得質量更優的重編程細胞。

A. 26個差異表達基因的熱圖;B. CD36 mRNA表達水平(內參基因:β-actin);C. NFASC mRNA表達水平(內參基因:β-actin);D. L1CAM mRNA表達水平(內參基因:β-actin);E. CNTN1 mRNA表達水平(內參基因:β-actin);F. 半定量PCR檢測BCFFs、OSKM和OSKM+VPA三組中L1CAM、CNTN1 mRNA表達水平。**表示差異極顯著(P<0.01)

3.3 丙戊酸對細胞黏附分子信號通路的影響

細胞黏附分子介導的細胞間互作,對人類多能干細胞的自我更新和多能干細胞狀態有重要貢獻[30]。細胞黏附分子一般分為5類,包括整合素、選擇素、鈣黏素、免疫球蛋白超家族(IgSF)和黏蛋白血管地址素[31]。研究發現,人類干細胞表面存在很多CAM家族成員,它們對干細胞的自身更新和多能性具有調節作用[1,32-36]。試驗檢測了、和這3個與細胞黏附分子信號通路相關的基因,其中和屬于免疫球蛋白超家族成員(IgSF)且已被證明由未分化的人類胚胎干細胞表達,但其作用機制尚不完全清楚[36]。結果表明,丙戊酸可以促進、和的表達,使其表達量上調,這一結果提示丙戊酸可以促進與細胞黏附分子信號通路相關的基因表達,增強細胞重編程過程中互作作用,從而促進重編程過程中細胞的自我更新。

4 結論

丙戊酸可抑制細胞周期信號通路,減少重編程中細胞分化幾率;同時在脂肪酸代謝中發揮調控作用;上調細胞黏附分子信號通路中相關基因表達,增強細胞間互作。丙戊酸在雙峰駝成纖維細胞重編程中通過調控相關信號通路從而對重編程起到促進作用。這將為丙戊酸促進雙峰駝成纖維細胞重編程作用機制的研究提供試驗基礎,同時為雙峰駝種質資源保護提供理論參考。

[1] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.

[2] YU J, VODYANIK M A, SMUGA-OTTO K, ANTOSIEWICZ- BOURGET J, FRANE J L, TIAN S, NIE J, JONSDOTTIR G A, RUOTTI V, STEWART R, SLUKVIN I I, THOMSON J A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917-1920.

[3] EZASHI T, TELUGUA B P V. L., ALEXENKO A P., SACHDEV S, SINHA S, ROBERTS M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993-10998.

[4] HAN X, HAN J, DING F, CAO S, LIM S S, DAI Y, ZHANG R, ZHANG Y, LIM B, LI N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. CellResearch, 2011, 21(10): 1509-1512.

[5] LIAO J, CUI C, CHEN S, REN J, CHEN J, GAO Y, LI H, JIA N, CHENG L, XIAO H, XIAO L. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell, 2009, 4(1): 11-15.

[6] NAGY K, SUNG H, ZHANG P, LAFLAMME S, VINCENT P, AGHA-MOHAMMADI S, WOLTJEN K, MONETTI C, MICHAEL I P, SMITH L C, NAGY A. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Reviews and Reports, 2011, 7(3):693-702.

[7] LIU J, BALEHOSUR D, MURRAY B, KELLY J M, SUMER H, VERMA P J. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012, 77(2): 338-346.

[8] LIU H, ZHU F, YONG J, ZHANG P, HOU P, LI H, JIANG W, CAI J, LIU M, CUI K, QU X, XIANG T, LU D, CHI X, GAO G, JI W, DING M, DENG H. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 2008, 3(6): 587-590.

[9] BUEHR M, MEEK S, BLAIR K, YANG J, URE J, SILVA J, MCLAY R, HALL J, YING Q, SMITH A. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 2008, 135(7): 1287-1298.

[10] LI P, TONG C, MEHRIAN-SHAI R, JIA L, WU N, YAN Y, MAXSON R E, SCHULZE E N, SONG H, HSIEH C, PERA M F, YING Q. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 2008, 135(7): 1299-1310.

[11] WERNIG M,LENGNER C J, HANNA J, LODATO M A, STEINE E, FOREMAN R, STAERK J, MARKOULAKI S, JAENISCH R. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnol, 2008, 26(8): 916-924.

[12] HUANGFU D, OSAFUNE K, MAEHR R, GUO W, EIJKELENBOOM A, CHEN S, MUHLESTEIN W, MELTON D A. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnol, 2008, 26(11): 1269-1275.

[13] ESTEBAN M A, WANG T, QIN B, YANG J, QIN D, CAI J, LI W, WENG Z, CHEN J, NI S, CHEN K, LI Y, LIU X, XU J, ZHANG S, LI F, HE W, LABUDA K, SONG Y, PETERBAUER A, WOLBANK S, REDL H, ZHONG M, CAI D, ZENG L, PEI D. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 2010, 6(1): 71-79.

[14] HUANGFU D, MAEHR R, GUO W, EIJKELENBOOM A, SNITOW M, CHEN A E, MELTON D A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnol, 2008, 26(7): 795-797.

[15] GURVICH N, TSYGANKOVA O M, MEINKOTH J L, KLEIN P S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Research, 2004, 64(3): 1079-1086.

[16] PHIEL C J, ZHANG F, HUANG E Y, GUENTHER M G, LAZAR M A, KLEIN P S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry, 2001, 276(39): 36734-36741.

[17] GIORGETTI A, MONTSERRAT N, AASEN T, GONZALEZ F, RODRíGUEZ-PIZà, VASSENA R, RAYA A, BOUé S, BARRERO M J, CORBELLA B A, TORRABADELLA M, VEIGA A, BELMONTE J C I. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 2009, 5(4): 353-357.

[18] CHEN S, ZHOU Y, CHEN Y, GU J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.

[19] KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360.

[20] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550-571.

[21] SUN J, LI W, SUN Y, YU D, WEN X, WANG H, CUI J, WANG G, HOFFMAN A R, HU J. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Research, 2014, 42(15): 9588-9601.

[22] 苗向陽, 陳曉瑛. 誘導性多能干細胞的研究及應用. 中國農業科學, 2012, 45(2): 369-375. doi: 10.3864/j.issn.0578-1752.2012. 02.020.

MIAO X Y, CHEN X Y. Study and application of induced pluripotent stem cells. Scientia Agricultura Sinica, 2012, 45(2): 369-375. doi: 10.3864/j.issn.0578-1752.2012.02.020. (in Chinese)

[23] ZHAI Y, CHEN X, YU D, LI T, CUI J, WANG G, HU J, LI W. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming- induced senescence stress. Experimental Cell Research, 2015, 337(1): 61-67.

[24] 魏如雪, 郝海生, 趙學明, 杜衛華, 朱化彬. 抑制體細胞衰老促進誘導性多潛能干細胞(iPSC)生成的研究進展. 中國農業科學, 2015, 48(16): 3258-3265. doi: 10.3864/j.issn.0578-1752.2015. 16.015.

WEI R X, HAO H S, ZHAO X M, DU W H, ZHU H B. Studies of improved efficiency of induced pluripotent stem cell generation by restraining somatic cell senescence. Scientia Agricultura Sinica. 2015, 48(16): 3258-3265. doi: 10.3864/j.issn.0578-1752.2015.16.015. (in Chinese)

[25] YANG Y B, PANDURANGAN M, HWANG I. Targeted suppression of mu-calpain and caspase 9 expression and its effect on caspase 3 and caspase 7 in satellite cells of Korean Hanwoo cattle. Cell Biology International, 2012, 36(9):843-849.

[26] LAKHANI S A, MASUD A, KUIDA K, JR G A P, BOOTH C J, MEHAL W Z, INAYAT I, FLAVELL R. Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science, 2006, 311(5762): 847-851.

[27] WERNIG M, MEISSNER A, FOREMAN R, BRAMBRINK T, KU M, HOCHEDLINGER K, BERNSTEIN B E, JAENISCH R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318-324.

[28] TANOSAKI S, TOHYAMA S, FUJITA J, SOMEYA S, HISHIKI T, MATSUURA T, NAKANISH H, OHTO-NAKANISH T, AKIYAMA T, MORITA Y, KISHINO Y, OKADA M, TANI H, SOMA Y, NAKAJIMA K, KANAZAWA H, SUGIMOTO M, KO M S H, SUEMATSU M, FUKUDA K. Fatty acid synthesis is indispensable for survival of human pluripotent stem cells. iScience, 2020, 23(9): 101535-101568.

[29] ABUMRAD N A, EL-MAGHRABI M R, AMRI E Z, LOPEZ E, GRIMALDI P A. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. The Journal of Biologic Chemistry, 1993, 268(24): 17665-17668.

[30] LI L, BENNETT S A L, WANG L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhesion Migration, 2012, 6(1): 59-70.

[31] SAMANTA D, ALMO S C. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity. Cellular and Molecular Life Sciences, 2015, 72(4): 645-658.

[32] PROKHOROVA T A, RIGBOLT K T G, JOHANSEN P T, HENNINGSEN J, KRATCHMAROVA I, KASSEM M, BLAGOEV B. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Molecular Cellular Proteomics, 2009, 8(5): 959-970.

[33] LI L, WANG S, JEZIERSKI A, MOALIM-NOUR L, MOHIB K, PARKS R J, RETTA S F, WANG L. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells, 2010, 28(2): 247-257.

[34] ROWLAND T J, MILLER L M, BLASCHKE A J, DOSS E L, BONHAM A J, HIKITA S, JOHNSON L V, CLEGG D O. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells and Development, 2010, 19(8): 1231-1240.

[35] CHEN T, YUAN D, WEI B, JIANG J, KANG J, LING K, GU Y, LI J, XIAO L, PEI G. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells, 2010, 28(8): 1315-1325.

[36] SON Y S, SEONG R H, RYU C J, CHO Y S, BAE K, CHUNG S J, LEE B, MIN J, HONG H J. Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency. Stem Cells, 2011, 29(12): 2094-2099.

Effect of Valproic Acid on Reprogramming of Bactrian Camel Fibroblasts

1College of Life Science and Technology/Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070;2College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070

【Objective】To improve the efficiency of the reprogramming process of Bactrian camel fibroblasts and to reduce the risk of tumorigenesis caused by the introduction of proto-oncogenes. In this experiment, valproic acid (VPA) was added to the fibroblast reprogramming process to explore the effect of small molecules on the reprogramming of Bactrian camel fibroblasts. 【Method】Given this, March-aged Bactrian camel fetal fibroblasts were used as test materials, combined with classic induction combination OSKM (Oct4, Sox2, Klf4, and c-Myc) and EGFP five retrovirus reprogramming of Bactrian camel fibroblasts (OSKM group), and the cells by adding VPA treatment for 7 days after the second viral infection (OSKM+VPA group) were collected. Endogenous and exogenous genes were examined by using PCR to confirm the modification effect of retrovirus on Bactrian camel fibroblasts. Eight genes were randomly selected from those more significantly affected by VPA. According to RNA-seq data, whether their trends before and after VPA addition were consistent with the trends of RNA-seq data was checked to verify the accuracy of RNA-seq data. The transcriptome sample genes were classified by GO analysis and significant enrichment pathways for target genes were clarified by using KEGG pathway enrichment analysis and hypergeometric validation analysis. Total RNA was extracted from the collected cells, and then, combined with RNA-seq and Real time-quantitative interpretation (RT-qPCR) techniques to detect the effect of VPA on the reprogramming of Bactrian camel fibroblasts. 【Result】 It was detected by using PCR that the expression of endogenous and exogenous genes in different groups. The results showed that,,,, andgenes were expressed in both OSKM and OSKM+VPA groups, and the expression in OSKM+VPA group was higher than that in the OSKM group, while they were not expressed in BCEFs group. Eight genes were randomly selected for testing, and the results showed that: three genes of,, andwere down-regulated in expression after the addition of VPA, which were related to the cell cycle signaling pathway.,,, andgenes signaling were down-regulated in expression, which was related to the phenotypic characteristics of cancer;gene expression was up-regulated in the PI3k-Akt signaling pathway. This expression trend was consistent with the trend of the histological data. The results showed that the expression of proliferation genesandwere down-regulated, while the expression of apoptosis genewas up-regulated after the addition of VPA. KEGG and hypergeometric validation analyses of the transcriptome data were performed, and 959 differentially expressed genes were screened according to the analysis results, which were enriched in 276 signaling pathways, including eight signaling pathways with Q values less than 0.05: steroid biosynthesis, cell cycle, PPAR signaling pathway, progesterone-mediated oocyte maturation, fatty acid metabolism, ECM-receptor interactions, cell adhesion molecules, and cholesterol metabolism. The 26 differentially expressed genes related to cell cycle, fatty acid metabolism, cell adhesion molecule, and cholesterol metabolism were screened, and four of which were randomly selected for testing, showing that VPA upregulated the expression of,andgenes in the Bactrian camel fibroblast adhesion molecule signalling pathway and enhanced intercellular interactions. It was also upregulated that the expression ofgene in the fatty acid signaling pathway. 【Conclusion】 The results showed that the VPA blocked cell before the split phase to reduce risk differentiation during the process of reprogramming. Meanwhile, VPA affected several signaling pathways in the reprogramming process of Bactrian camel fibroblasts, and regulated the expression trend of related genes in the signaling pathways, which effectively improved the reprogramming efficiency of the cells and played an important role in the reprogramming of Bactrian camel fibroblasts.

induced pluripotent stem cells; Bactrian camel; valproic acid; cell reprogramming

10.3864/j.issn.0578-1752.2023.12.014

2022-03-14;

2022-05-19

國家自然科學基金(31560638,31960725)

張啟冉,E-mail:1074671622@qq.com。通信作者張勇,E-mail:zhychy@163.com

(責任編輯 林鑒非)

猜你喜歡
差異信號
相似與差異
音樂探索(2022年2期)2022-05-30 21:01:37
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
找句子差異
孩子停止長個的信號
DL/T 868—2014與NB/T 47014—2011主要差異比較與分析
生物為什么會有差異?
基于LabVIEW的力加載信號采集與PID控制
一種基于極大似然估計的信號盲抽取算法
M1型、M2型巨噬細胞及腫瘤相關巨噬細胞中miR-146a表達的差異
主站蜘蛛池模板: 亚洲综合亚洲国产尤物| 国产成人a在线观看视频| 色婷婷色丁香| 一级做a爰片久久免费| 国产福利微拍精品一区二区| 五月激激激综合网色播免费| 亚洲国产精品久久久久秋霞影院| 欧美一级视频免费| 国产性爱网站| 99无码中文字幕视频| 97综合久久| 亚洲Av综合日韩精品久久久| 亚洲女同欧美在线| a色毛片免费视频| 欧美一区二区啪啪| 亚洲色欲色欲www在线观看| 一区二区三区精品视频在线观看| 欧美狠狠干| 四虎成人精品在永久免费| 伊人福利视频| 国产福利观看| 久久国产香蕉| 日韩黄色在线| 又粗又大又爽又紧免费视频| 国产特级毛片aaaaaa| 午夜激情福利视频| 亚洲国产理论片在线播放| 日本午夜视频在线观看| 911亚洲精品| 日本午夜精品一本在线观看| 日韩专区欧美| 手机在线国产精品| 成人日韩视频| 影音先锋丝袜制服| 国产亚洲精品自在久久不卡| 久久精品只有这里有| 亚洲精品另类| 丰满人妻被猛烈进入无码| 蜜芽一区二区国产精品| 奇米影视狠狠精品7777| 日韩性网站| 亚洲午夜18| 国产精品自在拍首页视频8| 波多野结衣二区| 最新国产你懂的在线网址| 亚洲第一区欧美国产综合| 成人另类稀缺在线观看| 成人在线亚洲| 色偷偷男人的天堂亚洲av| 亚洲国产天堂在线观看| 久久精品人人做人人综合试看 | 天天做天天爱天天爽综合区| 一本久道久综合久久鬼色| 国产成人精品综合| 亚洲日韩国产精品综合在线观看| 色综合久久无码网| 五月丁香伊人啪啪手机免费观看| 国产高清在线精品一区二区三区| 最新国产高清在线| 日韩欧美中文字幕在线精品| 一区二区三区四区精品视频 | 成人永久免费A∨一级在线播放| 97精品久久久大香线焦| 人妻精品全国免费视频| 亚洲欧美一级一级a| 亚洲美女久久| 中文字幕一区二区视频| 黄色网站不卡无码| 呦女亚洲一区精品| 欧美一级高清片久久99| 伊人久久大香线蕉综合影视| 青青青视频蜜桃一区二区| 精品国产中文一级毛片在线看| 日本不卡在线播放| 免费无遮挡AV| 国产精品美女网站| 97国产在线播放| 亚洲资源站av无码网址| 幺女国产一级毛片| a欧美在线| 99资源在线| 精品人妻一区无码视频|