潘國冠 李果明
【摘要】 左心疾病相關肺動脈高壓(PH-LHD)是肺動脈高壓(PH)最常見的形式,是左心疾病晚期常見并發癥,且PH患者預后差、病死率高。目前國內外關于PH-LHD肺血管重塑的形成機制尚未完全明確,可能是多因素作用,與血管活性物質、交感神經系統激活、腎素-血管緊張素-醛固酮系統、炎癥因子、左心房功能障礙等相關。本文將對PH-LHD的定義、血流動力學及肺血管重塑的病理生理機制進行綜述。
【關鍵詞】 左心衰竭 肺動脈高壓 血管重塑 病理生理
[Abstract] Pulmonary hypertension associated with left heart disease (PH-LHD) is the most common form of pulmonary hypertension (PH) and a common complication in the late stage of left ventricular disease, and PH patients have poor prognosis and high mortality. At present, the formation mechanism of PH-LHD pulmonary vascular remodeling is not completely clear in China and abroad. It may be due to multi-factor effects, which is related to vasoactive substances, activation of the sympathetic nervous system, renin-angiotensin-aldosterone system, inflammatory factors, left atrial dysfunction, etc. This article will review the definition, hemodynamics and pathophysiological mechanism of pulmonary vascular remodeling of PH-LHD.
[Key words] Left heart failure Pulmonary hypertension Vascular remodeling Pathophysiology
First-author's address: Guangdong Medical University, Zhanjiang 524023, China
doi:10.3969/j.issn.1674-4985.2023.16.043
肺動脈高壓(pulmonary hypertension,PH)是指在海平面、靜息狀態下經右心導管檢查(right heart catheterization,RHC)測量的肺動脈平均壓(mean pulmonary artery pressure,mPAP)≥25 mmHg[1]。正常成年人靜息狀態下mPAP為(14.0±3.3)mmHg,上限不超過20 mmHg[2]。基于臨床數據表明mPAP在21~24 mmHg范圍內的輕度升高與各種形式的PH患者的死亡率增加有關[3],《2022 ESC/ERS肺動脈高壓診斷和治療指南》中將PH血流動力學診斷標準修改為mPAP>20 mmHg[4]。
PH分為五大類:(1)動脈性PH;(2)左心疾病所致PH;(3)肺部疾病和/或低氧所致PH;(4)慢性血栓栓塞性PH和/或其他肺動脈阻塞性病變所致PH;(5)未明和/或多因素所致PH[1]。左心疾病相關肺動脈高壓(PH-LHD)是最常見的形式,約占PH病例的68.5%[5]。左心疾病主要包括缺血性心肌病、高血壓性心臟病、擴張型心肌病、肥厚型心肌病、風濕性心臟病及心臟瓣膜病,其中以缺血性心肌病、高血壓性心臟病常見[6]。心力衰竭是各種心臟疾病的嚴重表現或晚期階段,常并發PH,PH的進展與臨床惡化及死亡風險顯著相關[7]。目前關于PH-LHD的發病機制尚不完全清楚,但肺血管重塑是PH-LHD的病理特征之一,了解PH-LHD肺血管重塑的病理生理機制,對患者的治療與管理具有重要意義。
1 PH-LHD的定義及血流動力學
PH-LHD定義為海平面、靜息狀態下行RHC,mPAP≥25 mmHg且肺動脈楔壓(pulmonary artery wedge pressure,PAWP)>15 mmHg[1]。結合肺血管阻力(pulmonary vascular resistance,PVR),《2022 ESC/ERS肺動脈高壓診斷和治療指南》將PH-LHD分為兩個亞型:單純性毛細血管后PH(Ipc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR≤2 WU;毛細血管前后混合性PH(Cpc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR>2 WU[4]。
2 PH-LHD肺血管重塑的病理生理
PH-LHD形成早期是因為左心充盈壓上升,壓力逆向傳導,肺靜脈回流受阻,肺血管壓力升高[8],而肺血管結構未有明顯變化,此階段稱為“Ipc-PH”或“被動性PH”。隨著病情進展,肺動脈結構和功能發生改變,涉及血管壁廣泛結構,表現為血管壁增厚變硬,管腔直徑縮小,血管舒張力降低及阻力增加[9],最終導致肺血管阻力持續升高和右心衰,此階段稱為“Cpc-PH”或“反應性PH”。同時左右心室作為功能相互依賴的整體,為了適應肺動脈高壓,右心室代償性肥厚及擴張,室間隔向左心室偏移,使左心室舒張壓力-容量曲線上移,充盈及射血受損,左心功能進一步惡化,加重肺血管血流動力障礙。PH-LHD肺血管系統的組織學特征包括肺動脈平滑肌細胞(PASMCs)增殖與肥大、彈性及膠原纖維成分增加、小動脈閉塞或機化、非平滑肌小動脈轉化為平滑肌小動脈、局部小血管形成等,其主要的病理生理機制尚未明確,可能是多種因素的共同結果。
2.1 肺血管內皮功能障礙 肺血管內皮功能障礙是PH進展的關鍵啟動因素,而且左心功能不全進一步導致血流紊亂、肺血管淤血、缺氧等,進而破壞內皮舒張與收縮因子平衡。肺血管內皮分泌的舒張、收縮因子共同調控肺血管舒張和收縮,血管活性物質主要包括一氧化氮(NO)、前列環素(PGI2)、內皮素-1(endothelin-1,ET-1)、血栓素A2(TXA2)等。NO在內源性因素如緩激肽、乙酰膽堿和兒茶酚胺或機械(剪切應力或拉伸)等刺激下,由內皮型一氧化氮合酶(eNOS)連續合成并立即釋放,迅速擴散到周圍的平滑肌細胞,通過鳥苷酸環化酶(GC)-cGMP-PKG途徑舒張血管[10]。同時NO可通過其他途徑抑制PASMCs增殖,減緩肺血管重塑的進展。大量實驗研究發現了PH-LHD存在肺血管內皮功能障礙、NO合成受損、血管擴張劑反應性降低等現象[11-14]。在炎癥、缺氧、損傷等環境下,機體發生氧化應激,NO過量轉化為過氧亞硝酸鹽(ONOO-),導致NO生物利用度降低[14];同時PKG氧化導致PKG活性受損,通過RhoA/Rho激酶激活誘導血管收縮和血管重塑[15]。
與NO相比,ET-1是有效的血管收縮活性物質,其產生和釋放受血管緊張素Ⅱ(AngⅡ)、活性氧(ROS)、炎癥細胞因子等多種因素調節[16],通過觸發平滑肌細胞增殖和膠原蛋白生成促進血管重塑[17-18]。ET-1主要在肺組織中表達,與血管平滑肌細胞(SMC)ETA、ETB受體結合后,可激活磷脂酶C(PLC),產生第二信使三磷酸肌醇(IP3)和二酰基甘油(DAG),觸發細胞內儲存的鈣釋放,產生持續的血管收縮反應[10]。另外,ET-1過量生成可抑制eNOS表達,導致NO分泌減少[19]。在一項動物實驗研究中,通過行肺靜脈束帶術后發現肺前ET-1及內皮素轉化酶-1的mRNA表達增強,肺內皮素通路上調,肺血管阻力增加,并提出了抑制ET通路可為早期Cpc-PH提供藥物治療靶點[20]。
2.2 神經體液機制
2.2.1 交感神經過度激活 交感神經過度激活是心力衰竭的重要始動因素和促發因素,同時是PH-LHD進展中不可忽視的重要因素。已有大量研究數據表明,交感神經系統過度激活與PH進展相關。肺血管中存在廣泛的交感神經支配,PH患者,特別是臨床癥狀惡化患者,往往存在血兒茶酚胺濃度升高、心率變異性降低、肌肉交感神經活動增加等交感神經系統過度激活的表現。
腎上腺素受體(adrenergic receptor,AR)主要為α腎上腺素受體(α-AR)和β腎上腺素受體(β-AR),α-AR(α1、α2)主要介導血管收縮,而β-AR(β1、β2、β3)介導血管舒張。已有研究發現肺血管內皮細胞的β2-AR可調節eNOS產生NO,通過GC-cGMP-PKG途徑誘導平滑肌細胞松弛及血管舒張[21],并且可改善內皮功能障礙、抑制平滑肌細胞異常增殖[22]。血漿中NE通過與肺動脈平滑肌上的α1-AR相結合,與G蛋白偶聯激活PLC,產生IP3和DAG[23],促進鈣離子釋放及內流,細胞內鈣離子濃度升高,導致平滑肌的持續強直收縮;同時可誘導PASMCs和外膜成纖維細胞肥大與增生,出現肺血管阻力增加、肺動脈重塑[23-24]。
研究表明α/β受體拮抗劑阿羅洛爾可減緩野百合堿(monocrotaline,MCT)誘導大鼠PH的發展[25];非選擇性α/β受體阻滯劑卡維地洛通過逆轉缺氧或MCT誘導的PH模型中的右心室衰竭改善MCT大鼠的生存情況[26]。奈必洛爾是選擇性β1受體阻滯劑,且具有β2、β3激動劑功能,可減少炎癥因子生成,改善內皮功能障礙及平滑肌細胞異常增殖[22]。目前去交感神經術治療在動物實驗和臨床階段均表明其具有改善肺動脈阻力作用,減緩PH進展。一項98例Cpc-PH患者的臨床研究結果顯示,肺動脈去神經術(pulmonary artery denervation,PADN)手術組與對照組相比,PVR顯著降低,臨床惡化率下降[27]。
2.2.2 腎素-血管緊張素-醛固酮系統(RAAS)激活 RAAS在維持心血管穩態、水電解質平衡中起著重要作用。左心功能不全,心輸出量減少,RAAS長期激活,嚴重損傷心臟、肺血管結構與功能,并與疾病進展和死亡率密切相關。局部RAAS功能可起到調節血管血流、控制刺激反應,并參與細胞增殖、分化與凋亡等[28]。在PH的動物模型中可反復觀察到血循環中醛固酮升高。醛固酮誘導氧化應激產生ROS,損害內皮素-B(ETB)受體信號通路,降低肺動脈內皮細胞中ETB依賴性NO合成,同時降低NO生物利用度[29]。ACE作用AngⅠ轉化為AngⅡ主要發生在肺部,且肺內皮細胞的ACE活性增加及表達上調,AngⅡ的生成在PH中局部升高[30]。持續暴露的AngⅡ導致血管平滑肌細胞肥大與增殖,并與血管炎癥、纖維化及血管內皮功能受損有關。AngⅡ激活RhoA/Rho激酶信號通路,通過抑制肌球蛋白輕鏈磷酸酶(MLCP)介導血管收縮,且負性調節eNOS和PI3-激酶(PI3K)活性導致內皮功能障礙[31]。
ACE2-Ang(1-7)-Mas軸是RAAS系統主要成員之一,負向調節ACE-AngⅡ-AT1R軸。Ang(1-7)與Mas受體結合后,可促進ECs釋放NO和前列腺素,產生血管舒張、抗增殖、抗炎、抗血栓及改善內皮等作用[32]。臨床研究證實了PH患者血清中ACE2、Ang(1-7)水平或活性降低,而AngⅡ水平升高[33]。ACE2活性增強可降低AngⅡ/Ang(1-7)比值,并通過超氧化物歧化酶2(SOD2)降低活性氧并抑制炎癥,從而改善異常的肺血流動力學[34];ACE2活化誘導eNOS的磷酸化,NO釋放增加[35]。Ang(1-7)通過NO/cGMP信號通路阻止AngⅡ介導的病理重構[36],且抑制血小板衍生的生長因子和AngⅡ介導的PASMCs增殖,以及具有抗血管生成功能[37]。一項對5例PH受試者的臨床研究表明,使用人重組可溶性ACE2(rhACE2)制劑可改善肺動脈壓力、降低氧化應激[34]。另外,ACE2-Ang(1-7)-Mas軸可通過抑制心肌重構、保護心肌細胞、減少炎癥因子產生等作用以抵抗ACE-AngⅡ-AT的不良影響,進一步研究ACE2-Ang(1-7)-Mas軸的機制可為PH提供新的潛在藥物靶點。
2.3 炎癥因子 肺血管炎癥因子浸潤是PH的主要病理特征之一,炎癥反應與血管內皮損傷、PASMCs增殖、間質纖維化等有著密切關系。已有研究表明心力衰竭患者表現出高水平表達的循環炎癥因子,包括白細胞介素-6(IL-6)、腫瘤壞死因子(TNF)-α和C反應蛋白等[38];同時由于心臟泵血功能障礙,左心壓力升高傳導至肺靜脈,肺血管進一步淤血,導致肺血管痙攣收縮、內皮損傷、缺氧、血栓形成等,會促進炎癥細胞活化,浸潤肺血管病變部位。PH患者及相關動物模型表明肺動脈血管結構聚集大量巨噬細胞、T淋巴細胞等,釋放大量細胞因子、趨化因子,如IL-1、IL-6、TNF、CX3CL1,參與PH的發生與進展[39]。
在動物實驗中,小鼠IL-6的過表達導致促血管生長因子、血管內皮生長因子、增殖轉錄因子、抗凋亡蛋白等上調,以及出現毛細血管前小動脈嚴重閉塞;另一方面,缺氧誘導的PH轉基因IL-6缺陷小鼠卻表現出較少炎癥及肺血管重塑病變,應用IL-6受體特異性拮抗劑可有效減輕PH小鼠的肺血管重塑[40]。核因子κB(NF-κB)是炎癥的主要調節因子,誘導促炎細胞因子和趨化因子的基因表達[41]。Sawada等[42]研究表明NF-κB導致血管細胞黏附分子(VCAM)-1的激活,與MCT誘導的大鼠PH的發展有關,且使用NF-κB抑制劑吡咯烷二硫代氨基甲酸酯(PDTC)可減輕小動脈閉塞,緩解PH癥狀。Luo等[43]研究發現NF-κB可介導低氧誘導因子(HIF)-1α的轉錄程序并促進PH模型中的血管重塑,同時此研究表明了控制HIF-1α驅動的血管重塑可為PH治療提供新的途徑。心血管疾病患者多合并肥胖、血脂異常、胰島素抵抗、糖尿病等代謝綜合征(metabolic syndrome,MS),MS可誘發全身炎癥反應,而且炎癥因子浸潤及免疫調節失衡是血管重塑的關鍵致病驅動因素,免疫治療應用于PH-LHD可能是新的治療策略。
2.4 左心房功能障礙 在心肺循環中,左心房是銜接左心室與肺循環之間的橋梁,通過規律收縮與舒張使左心室充盈,同時保護肺循環免受左心室反復的壓力沖擊。左心房是一個動態結構,具體功能分為:(1)儲集功能:左室收縮期左心房接受肺靜脈血液回流;(2)通道功能:左室舒張早期抽吸作用通過左心房將血液運輸到左心室;(3)增壓泵功能:舒張末期,左心房主動收縮將剩余血流泵入左心室[44]。
HFpEF、HFrEF、VHD等可導致左心房壓力(LAP)升高、容量增加,進而出現左心房增大、收縮性受損、間質纖維化等重構表現,以至于左心房僵硬、順應性下降及房室運動不協調,作為左心房壓力升高和肺循環之間的屏障作用減弱,壓力被動傳導至肺血管,導致肺靜脈壓力升高、肺淤血。在結構形態方面,左心房重構發生球形變化和擴張,正常曲率改變,打破了左心房三維不對稱結構,干擾正常生理血流動力學,可增加肺靜脈淤血風險[45]。此外,LAP的突然升高可能導致“肺泡-毛細血管應激衰竭”,這是一種可逆的氣壓性損傷,破壞內皮單層結構完整性及肺泡毛細血管屏障,血管內皮通透性改變使紅細胞、蛋白質和液體滲漏到肺泡腔內,出現肺間質及肺泡水腫[9]。左心房壓力持續變化在內皮功能障礙、神經體液因素、炎癥因子浸潤等作用下,導致肺血管系統結構異常、肺血管阻力增加。左心疾病容易出現房顫等心律失常并發癥,心房正常功能喪失,可加重或加快PH-LHD的進展。已有研究表明心房顫動是PH-LHD的危險因素之一[46],與竇性心律相比,房顫心律患者中mPAP、PAWP、肺血管阻力等血流動力學參數值更高。左心房參與肺動脈系統病理生理變化的主要機制很大程度上是未知的,進一步研究可能為PH-LHD提供新的治療靶點。
3 總結與展望
PH-LHD發病率高,且預后差、病死率高,是嚴重影響生命健康的心肺血管疾病。目前PH-LHD肺血管重塑的形成機制尚未完全明確,可能是多因素作用,與血管活性物質、交感神經系統激活、RAAS、炎癥因子、左心房功能障礙等相關,各個因素之間相互影響相互作用。另外,不同類型心力衰竭(HFpEF、HFrEF、HFmrEF)PH的病理生理與血流動力學存在一定差異,完善相關侵入性及非侵入性的血流動力學檢查是明確診斷及治療選擇的關鍵。目前多項關于PH-LHD藥物治療的大規模臨床試驗已在開展[47],期待其可提供新的證據及治療方向。進一步研究及完善PH-LHD肺血管重塑的病理生理機制,尋找新的靶點及其他治療途徑,以期改善或逆轉心肺血管結構病變,降低發病率及病死率。
參考文獻
[1]中華醫學會呼吸病學分會肺栓塞與肺血管病學組,中國醫師協會呼吸醫師分會肺栓塞與肺血管病工作委員會,全國肺栓塞與肺血管病防治協作組,等.中國肺動脈高壓診斷與治療指南(2021版)[J].中華醫學雜志,2021,101(1):11-51.
[2] SIMONNEAU G,MONTANI D,CELERMAJER D S,et al.Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J].Eur Respir J,2019,53(1):1801913.
[3] DOUSCHAN P,KOVACS G,AVIAN A,et al.Mild elevation of pulmonary arterial pressure as a predictor of mortality[J].Am J Respir Crit Care Med,2018,197(4):509-516.
[4] HUMBERT M,KOVACS G,HOEPER M M,et al.2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Respir J,2022,43(38):3618-3731.
[5] WIJERATNE T D,LAJKOSZ K,BROGLY S B,et al.Increasing incidence and prevalence of WHO groups 1-4 pulmonary hypertension: a population-based cohort study in Ontario, Canada[J/OL].Circ Cardiovasc Qual Outcomes,2018,11(2):e003973.https://pubmed.ncbi.nlm.nih.gov/29444925/.
[6] VOS T,BARBER R M,BELL B,et al.Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J].Lancet,2015,386(9995):743-800.
[7] BARYWANI S B,FU M.Impact of systolic pulmonary artery pressure on all-cause mortality in elderly cardiac patients[J].Scand Cardiovasc J,2018,52(2):80-84.
[8] VACHI?RY J L,ADIR Y,BARBER? J A,et al.Pulmonary hypertension due to left heart diseases[J].J Am Coll Cardiol,2013,62(25):D100-D108.
[9] ROSENKRANZ S,GIBBS J S R,WACHTER R,et al.Left ventricular heart failure and pulmonary hypertension[J].Eur Heart J,2016,37(12):942-954.
[10] BREITLING S, RAVINDRAN K,GOLDENBERG N M,et al.The pathophysiology of pulmonary hypertension in left heart disease[J].Am J Physiol Lung Cell Mol Physiol,2015,309(9):L924-L941.
[11] DRISS A B,DEVAUX C,HENRION D,et al.Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure[J].Circulation,2000,101(23):2764-2770.
[12] SCOTT D,TAN Y,SHANDAS R,et al.High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression[J].Am J Physiol Lung Cell Mol Physiol,2013,304(1):L70-L81.
[13] KEREM A,YIN J,KAESTLE S M,et al.Lung endothelial dysfunction in congestive heart failure[J].Circulation Research,2010,106(6):1103-1116.
[14] EVANS C E,ZHAO Y Y.Molecular basis of nitrative stress in the pathogenesis of pulmonary hypertension[J].Adv Exp Med Biol,2017,967:33-45.
[15] HAO Y D,CAI L,MIRZA M K,et al.Protein kinase G-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation[J].Am J Pathol,2012,180(6):2268-2275.
[16] KR?GER-GENGE A,BLOCKI A,FRANKE R P,et al.Vascular endothelial cell biology: an update[J].Int J Mol Sci,2019,20(18):4411.
[17] KIM F Y,BARNES E A,YING L,et al.Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia[J].Am J Physiol Lung Cell Mol Physiol,2015,308(4):L368-L377.
[18] ROSSI G P,SECCIA T M,BARTON M,et al.Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part Ⅱ: Role in disease conditions: a joint consensus statement from the European Society of Hypertension working group on endothelin and endothelial factors and the Japanese Society of Hypertension[J].J Hypertens,2018,36(3):462-471.
[19] GUPTA R M,LIBBY P,BARTON M.Linking regulation of nitric oxide to endothelin-1: the Yin and Yang of vascular tone in the atherosclerotic plaque[J].Atherosclerosis,2020,292:201-203.
[20] VAN DUIN R W B,STAM K,CAI Z,et al.Transition from post-capillary pulmonary hypertension to combined pre-and post-capillary pulmonary hypertension in swine: a key role for endothelin[J].J Physiol,2019,597(4):1157-1173.
[21] BANQUET S,DELANNOY E,AGOUNI A,et al.Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β2-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery[J].Cellular Signalling,2011,23(7):1136-1143.
[22] PERROS F,RANCHOUX B,IZIKKI M,et al.Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension[J].J Am Coll Cardiol,2015,65(7):668-680.
[23] VISWANATHAN G,MAMAZHAKYPOV A,SCHERMULY R T,et al.The role of G protein-coupled receptors in the right ventricle in pulmonary hypertension[J].Front Cardiovasc Med,2018,5:179.
[24] LIU R,ZHANG Q,LUO Q,et al.Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling[J].Int J Biochem Cell Biol,2017,88:100-112.
[25] ISHIKAWA M,SATO N,ASAI K,et al.Effects of a pure α/β-adrenergic receptor blocker on monocrotaline-induced pulmonary arterial hypertension with right ventricular hypertrophy in rats[J].Circulation Journal,2009, 3(12):2337-2341.
[26] BOGAARD H J,NATARAJAN R,MIZUNO S,et al.Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats[J].Am J Respir Crit Care Med,2010,182(5):652-660.
[27] ZHANG H,ZHANG J,CHEN M,et al.Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre-and post-capillary pulmonary hypertension associated with left heart failure: the PADN-5 study[J].JACC Cardiovasc Interv,2019,12(3):274-284.
[28] FORRESTER S J,BOOZ G W,SIGMUND C D,et al.Angiotensin Ⅱ signal transduction: an update on mechanisms of physiology and pathophysiology[J].Physiological Reviews,2018,98(3):1627-1738.
[29] MARON B A,ZHANG Y Y,WHITE K,et al.Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension[J].Circulation,2012,126(8):963-974.
[30] MARON B A,LEOPOLD J A.Emerging concepts in the molecular basis of pulmonary arterial hypertension (PAH): Part Ⅱ: neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of PAH[J].Circulation,2015,31(23):2079-2091.
[31] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[32] LAHM T,HESS E,BAR?N A E,et al.Renin-angiotensin-aldosterone system inhibitor use and mortality in pulmonary hypertension[J].Chest,2021,159(4):1586-1597.
[33] SANDOVAL J,DEL VALLE-MONDRAG?N L,MASSO F,et al.Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension[J].Eur Respir J,2020,56(1):1902416.
[34] HEMNES A R,RATHINASABAPATHY A,AUSTIN E A,et al.A potential therapeutic role for angiotensin converting enzyme 2 in human pulmonary arterial hypertension[J].Eur Respir J,2018,51(6):1702638.
[35] LI G,ZHANG H,ZHAO L,et al.Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase[J].J Am Soc Hypertens,2017,11(12):842-852.
[36] GOMES E R M,LARA A A,ALMEIDA P W M,et al.Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3',5'-cyclic monophosphate-dependent pathway[J].Hypertension,2010,55(1):153-160.
[37] ZHANG F,CHEN A,PAN Y,et al.Research Progress on pulmonary arterial hypertension and the role of the angiotensin converting enzyme 2-angiotensin-(1-7)-mas axis in pulmonary arterial hypertension[J].Cardiovasc Drugs Ther,2022,36(2):363-370.
[38] ABERNETHY A,RAZA S,SUN J,et al.Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction[J/OL].J Am Heart Assoc,2018,7(8):e007385.https://pubmed.ncbi.nlm.nih.gov/29650706/.
[39] FUNK-HILSDORF T C,BEHRENS F,GRUNE J,et al.Dysregulated immunity in pulmonary hypertension: from companion to composer[J].Front Physiol,2022,13:819145.
[40] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[41] ZENG X,ZHU L,XIAO R,et al.Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension[J].Hypertension,2017,69(5):844-854.
[42] SAWADA H,MITANI Y,MARUYAMA J,et al.A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats[J].Chest,2007,132(4):1265-1274.
[43] LUO Y,TENG X,ZHANG L,et al.CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension[J].Nature Communications,2019,10:3551.
[44] BISBAL F,BARANCHUK A,BRAUNWALD E,et al.Atrial failure as a clinical entity: JACC review topic of the week[J].J Am Coll Cardiol,2020,75(2):222-232.
[45] KILNER P J,YANG G Z,WILKES A J,et al.Asymmetric redirection of flow through the heart[J].Nature,2000,404(6779):759-761.
[46] LEUNG C C,MOONDRA V,CATHERWOOD E,et al.Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction[J].Am J Cardiol,2010,106(2):284-286.
[47] LTEIF C,ATAYA A,DUARTE J D.Therapeutic challenges and emerging treatment targets for pulmonary hypertension in left heart disease[J/OL].J Am Heart Assoc,2021,10(11):e020633.https://pubmed.ncbi.nlm.nih.gov/34032129/.
(收稿日期:2022-11-11) (本文編輯:陳韻)