張文嫻 鄧圣福



摘要: 為研究離散非線性薛定諤方程在不動點附近的1∶1共振問題,將離散非線性薛定諤方程化為差分系統,差分系統線性算子的特征值為兩重根1;然后,利用Picard迭代及時間1映射,將差分系統轉換為常微分系統,推導差分系統不動點的穩定性;最后,用數學軟件模擬差分系統的局部相圖.研究結果表明:不動點是局部漸近穩定的.
關鍵詞: 離散非線性薛定諤方程; 差分系統; 1∶1共振; Picard迭代; 退化平衡點; 多項式函數
中圖分類號: O 175.1文獻標志碼: A?? 文章編號: 1000-5013(2023)04-0526-07
1∶1 Resonance of Discrete Nonlinear Schrdinger Equation
ZHANG Wenxian, DENG Shengfu
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract: In order to study 1∶1 resonance problem of discrete nonlinear Schrdinger equation near the fixed point, firstly, this discrete nonlinear Schrdinger equation is transformed into a difference system, the eigenvalue of the difference system linear operator is double root 1, and then, by? the use of? Picard iteration and the time-one map, this difference system is converted into an ordinary differential system, the stability of the fixed point of the difference system is obtained. Lastly, the local phase portraits of the difference system are also simulated by mathematical software. The result shows that the fixed point is locally asymptotically stable.
Keywords: discrete nonlinear Schrdinger equation; difference system; 1∶1 resonance; Picard iteration; degenerate equilibrium; polynomial function
離散非線性薛定諤方程在科學界受到很大的關注,Holstein[1]在1959年首次獲得與時間無關的形式.Davydov[2]在研究蛋白質和其他生物材料能量轉移時,推導出依賴時間的形式.Pelinovsky等[3-4]考慮一類離散非線性薛定諤方程的規范形,在反連續極限下證明了離散亮孤子和暗孤子的穩定性和不穩定性.Fitrakis等[5]討論具有飽和非線性的動態晶格中的暗孤子,并比較其與立方非線性晶格中的暗孤子.Melvin等[6]考慮具有飽和非線性的離散薛定諤方程中行波的存在性、穩定性及動力學.Tarasov[7]得到一個可以看作是連續薛定諤方程精確離散化的方程.Khawaja等[8]導出具有3次聚焦離散非線性薛定諤方程的PN(Peierls-Nabarro)勢解析公式.2019年,Lin等[9]研究一類離散非線性薛定諤方程基態解的存在性.
本文考慮如下離散非線性薛定諤方程[10],即
4 數值模擬
無控制的情形下,取ε=1,β=-0.15,μ0=4,可知常微分系統(16)的平衡點為不穩定的鞍點,差分系統(3)的不動點為不穩定的鞍點.當ε=1,β=-0.15時,系統(16)在(0,0)附近的相圖,如圖1所示.
當ε>0,β<0時,由系統(3)可知,對任意初值(v0,w0),迭代后(vn,wn)最終只位于第1象限或第3象限.當ε=1,β=-0.15,μ0=4時系統(3)在(0,0)附近的相圖,如圖2所示.圖2中:set為相圖.
取ε=0.5,β=0.5,μ0=4,可知常微分系統(16)的平衡點為穩定的中心,系統(3)的不動點為穩定的中心,其附近由不變曲線構成.當ε=0.5,β=0.5時,系統(16)在(0,0)附近的相圖,如圖3所示.當ε=0.5,β=0.5,μ0=4時,系統(3)在(0,0)附近的相圖,如圖4所示.
在有控制的情形下,取ε=1,β=-0.15,μ0=4,A1,1=0.15,A1,2=-1.55和ε=0.5,β=0.5,μ0=4,A1,1=0.15,A1,2=-1.55.控制系統(17)的不動點是漸近穩定的.當ε=1,β=-0.15時,控制系統(17)在(0,0)附近的相圖,如圖5所示.當ε=0.5,β=0.5時控制系統(17)在(0,0)附近的相圖,如圖6所示.
5 結束語
研究離散非線性薛定諤方程在退化不動點處的穩定性.首先,利用Picard迭代及時間1映射將差分系統轉化為常微分系統,差分系統不動點的定性性質等價于常微分系統高階退化平衡點(0,0)的定性性質,然后,利用正規形及Briot-Bouquet變換得到平衡點的性質.從而得到當ε>0,β<0時,差分系統(3)的不動點(0,0)為不穩定的鞍點;當ε>0,β>0時,差分系統(3)的不動點(0,0)為穩定的中心,其附近由不變曲線構成.最后,使用多項式函數控制離散系統,使其不動點(0,0)局部漸近穩定.參考文獻:
[1] HOLSTEIN T.Studies of polaron motion: Part I.the molecular-crystal model[J].Annals of Physics,1959,8(3):325-342.DOI:10.1016/0003-4916(59)90002-8.
[2] DAVYDOVA S.Solitons in quasi-one-dimensional molecular structures[J].Soviet Physics Uspekhi,1982,25(12):898-918.DOI:10.1070/PU1982v025n12ABEH005012.
[3] PELINOVSKY D E,KEVREKIDIS P G,FRANTZESKAKIS D T.Stability of discrete solitons in nonlinear Schrdinger lattices[J].Physica D Nonlinear Phenomena,2005,212(1):1-19.DOI:10.1016/j.physd.2005.07.021.
[4] PELINOVSKY D E,KEVREKIDIS P G.Stability of discrete dark solitons in nonlinear Schrdinger lattices[J].Journal of Physics A: Mathematical and Theoretical,2008,41(18):185-206.DOI:10.1088/1751-8113/41/18/185206.
[5] FITRAKIS E P,KEVREKIDIS P G,SUSANTO H,et al.Dark solitons in discrete lattices: Saturable versus cubic nonlinearities[J].Physical Review E,2007,75(6):66608.DOI:10.1103/PhysRevE.75.066608.
[6] MELVIN T R O,CHAMPNEYS A R,KEVREKIDIS P G,et al.Travelling solitary waves in the discrete Schrdinger equation with saturable nonlinearity: Existence,stability and dynamics[J].Physica D: Nonlinear Phenomena,2008,237(4):551-567.DOI:10.1016/j.physd.2007.09.026.
[7] TARASOV V E.Exact discretization of Schrdinger equation[J].Physics Letters A,2016,380(1/2):68-75.DOI:10.1016/j.physleta.2015.10.039.
[8] KHAWAJA U A,AL-MARZOUG S M,BAHLOULI H.Peierls-Nabarro potential profile of discrete nonlinear Schrdinger equation[J].Communications in Nonlinear Science and Numerical Simulation,2017,46:74-80.DOI:10.1016/j.cnsns.2016.10.019.
[9] LIN Genghong,ZHOU Zhan,YU Jianshe.Ground state solutions of discrete asymptotically linear Schrdinger equations with bounded and non-periodic potentials[J].Journal of Dynamics and Differential Equations,2019,32:1-29.DOI:10.1007/s10884-019-09743-4.
[10] ZHU Qing,ZHOU Zhan,WANG Lin.Existence and stability of discrete solitons in nonlinear Schrdinger lattices with hard potentials[J].Physica D: Nonlinear Phenomena,2020,403(C):132326.DOI:10.1016/j.physd.2019.132326.
[11] MORGANTE A M,JOHANSSON M,KOPIDAKIS G,et al.Standing wave instabilities in a chain of nonlinear coupled oscillators[J].Physica D: Nonlinear Phenomena,2002,162(1):53-94.DOI:10.1016/S0167-2789(01)00378-5.
[12] KUZNETSOV Y A.Elements of Applied Bifurcation Theory[M].New York:Springer,1998.
[13] 張芷芬,丁同仁,黃文灶,等.微分方程定性理論[M].北京:科學出版社,1992.
[14] YU Pei,CHEN Guanrong.Hopf bifurcation control using nonlinear feedback with polynomial functions[J].International Journal of Bifurcation and Chaos,2004,14(5):1683-1704.DOI:10.1142/S0218127404010291.
[15] YU Pei.Controlling and anti-controlling Hopf bifurcations in discrete maps using polynomial functions[J].Chaos, Solitons and Fractals,2005,26(4):1231-1248.DOI:10.1016/j.chao.2005.03.009.
[16] ALI I,SAEED U,DIN Q.Bifurcation analysis and chaos control in a discrete-time plant quality and larch budmoth interaction model with Ricker equation[J].Mathematical Methods in the Applied Sciences,2019,42(18):7395-7410.DOI:10.1002/mma.5837.
(責任編輯:? 陳志賢? 英文審校: 黃心中)