郭姣姣 莊清渠



摘要: 研究基于指數標量輔助變量方法的耦合非線性Klein-Gordon-Schr?dinger方程有效數值方法.首先,采用指數標量輔助變量處理方程的非線性項,構造求解方程的無條件能量穩定格式;然后,對方程在時間方向上采用Crank-Nicolson格式進行離散,在空間方向上采用緊致差分格式進行離散,證明全離散格式的修正能量守恒律.最后,通過數值算例進行驗證.結果表明:文中格式具有有效性,修正能量具有守恒性.
關鍵詞: 耦合非線性Klein-Gordon-Schr?dinger方程; 指數標量輔助變量方法; 修正能量; 守恒律
中圖分類號: O 241.8文獻標志碼: A?? 文章編號: 1000-5013(2023)04-0533-08
Energy Stable Method for Coupled Nonlinear Klein-Gordon-Schr?dinger Equation
GUO Jiaojiao, ZHUANG Qingqu
(School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China)
Abstract:
The efficient numerical method of coupled nonlinear Klein-Gordon-Schr?dinger equation based on exponential scalar auxiliary variable method is studied. Firstly, the nonlinear terms of the equation are treated with exponential scalar auxiliary variables, and an unconditional energy stable scheme is constructed to the solution of the equation. Then, the equation is discretized by Crank-Nicolson scheme in time direction and by compact difference scheme in space direction, the modified energy conservation law of the full discrete scheme is proved. Finally, it is verified by numerical examples that the proposed scheme is effective and the modified energy is conserved.
Keywords:
coupled nonlinear Klein-Gordon-Schr?dinger equation; exponential scalar auxiliary variable method; modified energy; conservation law
耦合非線性Klein-Gordon-Schr?dinger(KGS)方程描述了復中子場和中性介子場之間相互作用的經典動力學過程,在量子場理論中起著重要作用[1].近幾十年來,KGS方程得到較為廣泛的關注與研究.夏靜娜等[2]利用齊次平衡原則導出KGS方程的精確孤立波解.Xiang[3]構造具有周期初值的KGS方程的守恒型譜逼近格式,并進行誤差分析.Zhang[4]對KGS方程構造帶參數θ的守恒型差分格式,并進行收斂性分析.Chen等[5]利用Richardson外推法構造一種線性隱式有限差分格式,該格式在時間方向上具有二階精度,在空間方向上具有八階精度.Hong等[6]對KGS方程的5種差分格式的經典保守性質進行比較,并對比這些格式的數值. Zhang等[7]基于兩種不同的離散梯度得到KGS方程的兩種能量守恒格式.
基于近年發展起來的標量輔助變量(SAV) 方法[8-9]及拉格朗日乘子法[10-11],Zhang等[12]構造了求解KGS方程的3種保結構數值求解格式,并對3種格式進行比較.基于拉格朗日乘子法的格式需要求解3組常系數線性系統及1個非線性代數系統,而基于傳統的SAV方法的格式只需求解兩組常系數線性系統.然而,為了保證格式的穩定性,傳統的SAV方法需在計算前給定一個常數C0(C0>0),使模型滿足非線性自由能與C0的和大于零.由于C0的取值會影響數值逼近結果的精度[13],為了消除傳統的SAV方法中C0取值的影響,Liu等[14]在SAV方法的基礎上提出求解相場模型的指數標量輔助變量 (ESAV)方法,嚴格證明ESAV半離散格式的無條件能量穩定性,并給出詳細的計算過程.基于此,本文提出一種求解耦合非線性Klein-Gordon-Schr?dinger方程的能量穩定方法.
非對稱碰撞.式(1)在初始條件下,取一對非對稱碰撞孤立子v1=0.2,x1=-5和v2=-0.7,x2=13,Ω=[-40,40],h=0.1,τ=0.01,T=50.孤立波|ψ|,φ的非對稱碰撞,如圖11,12所示.
由圖11,12可知:兩孤立波在發生碰撞后分離,|ψ|,φ的非對稱碰撞也是有彈性的,碰撞后|ψ|,φ均有余波產生.
兩孤立波在非對稱碰撞下修正能量和修正能量誤差,如圖13,14所示.
由圖13,14可知:格式依舊保持修正能量E守恒.
4 結束語
利用ESAV方法構造耦合非線性KGS方程的能量穩定數值求解格式,理論上證明了全離散格式的修正能量守恒定律,并通過數值實驗驗證格式的有效性及修正能量的守恒性.參考文獻:
[1] FUKUDA I,TSUTSUMI M.On coupled Klein-Gordon-Schr?dinger equations,Ⅱ[J].Journal of Mathematical Analysis and Applications,1978,66(2):358-378.DOI:10.1016/0022-247X(78)90239-1.
[2] 夏靜娜,韓淑霞,王明亮.Klein-Gordon-Schr?dinger方程組的精確孤立波解[J].應用數學和力學,2002,23(1):52-58.DOI:10.3321/j.issn:1000-0887.2002.01.007.
[3] XIANG Xinmin.Spectral method for solving the system of equations of Schr?dinger-Klein-Gordon field[J].Journal of Computational and Applied Mathematics,1988,21:161-171.DOI:10.1016/0377-0427(88)90265-8.
[4] ZHANG Luming.Convergence of a conservative difference scheme for a class of Klein-Gordon-Schr?dinger equations in one space dimension[J].Applied Mathematics and Computation,2005,163(1):343-355.DOI:10.1016/j.amc.2004.02.010.
[5] CHEN Juan,CHEN Fangqi.Convergence of a high-order compact finite difference scheme for the Klein-Gordon-Schr?dinger equations[J].Applied Numerical Mathematics,2019,143:133-145.DOI:10.1016/j.apnum.2019.03.004.
[6] HONG Jialin,JIANG Shanshan,KONG Linghua,et al.Numerical comparison of five difference schemes for coupled Klein-Gordon-Schr?dinger equations in quantum physics[J].Journal of Physics A: Mathematical and Theoretical,2007,40:9125-9135.
[7] ZHANG Jingjing,KONG Linghua.New energy-preserving schemes for Klein-Gordon-Schr?dinger equations[J].Applied Mathematical Modelling,2016,40(15/16):6969-6982.DOI:10.1016/j.apm.2016.02.026.
[8] SHEN Jie,XU Jie,YANG Jiang.The scalar auxiliary variable (SAV) approach for gradient flows[J].Journal of Computational Physics,2018,353:407-416.DOI:10.1016/j.jcp.2017.10.021.
[9] WANG Rui,JI Yanzhou,SHEN Jie,et al.Application of scalar auxiliary variable scheme to phase-field equations[J].Computational Materials Science,2022,212:111556.DOI:10.1016/j.commatsci.2022.111556.
[10] CHENG Qing,LIU Chun,SHEN Jie.A new Lagrange multiplier approach for gradient flows[J].Computer Methods in Applied Mechanics and Engineering,2020,367:113070.DOI:10.1016/j.cma.2020.113070.
[11] CHENG Qing,SHEN Jie.Global constraints preserving scalar auxiliary variable schemes for gradient flows[J].SIAM Journal on Scientific Computing,2020,42(4):A2489-A2513.DOI:10.1137/19M1306221.
[12] ZHANG Yanrong,SHEN Jie.Efficient structure preserving schemes for the Klein-Gordon-Schr?dinger equations[J].Journal of Scientific Computing,2021,47:89-47.DOI:10.1007/s10915-021-01649-y.
[13] LIN Lianlei,YANG Zhiguo,DONG Suchuan.Numerical approximation of incompressible navier-stokes equations based on an auxiliary energy variable[J].Journal of Computational Physics,2019,388:1-22.DOI:10.1016/j.jcp.2019.03.012.
[14] LIU Zhengguang,LI Xiaoli.The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing[J].SIAM Journal on Scientific Computing,2020,42(3):B630-B655.DOI:10.1137/19M13 05914.
[15] 任全偉,莊清渠.一類四階微積分方程的緊差分格式[J].華僑大學學報(自然科學版),2014,35(2):232-237.DOI:10.11830/ISSN.1000-5013.2014.02.0232.
[16] 王廷春,郭柏靈.一維非線性 Schr?dinger 方程的兩個無條件收斂的守恒緊致差分格式[J].中國科學:數學,2011,41(3):207-233.DOI:10.1360/0120-846.
(責任編輯: 錢筠? 英文審校: 黃心中)
收稿日期: 2022-06-22
通信作者: 莊清渠(1980-),男,副教授,博士,主要從事微分方程數值解法的研究.E-mail:qqzhuang@hqu.edu.cn.
基金項目: 國家自然科學基金資助項目(11771083); 福建省自然科學基金資助項目(2021J01306)
http:∥www.hdxb.hqu.edu.cn