林 珍,王武林,龔 姣,林 彤
(1.福州大學 環境與安全工程學院,福州 350108;2.湖南師范大學 旅游學院,長沙 410081;3.上海理工大學 光電信息與計算機工程學院,上海 200093)
住房是民生之重,經濟之要,住房與城市的經濟、社會、文化與生態發展質量均存在不同程度的耦合協調關系(杜金瑩 等,2022)。大城市住房價格在土地財政、城鎮化、商品房市場化改革等因素刺激下持續升高,公共空間資源(鄭思齊,2013)和住房供需兩者的非平衡性(董冠鵬 等,2011)導致住房價格空間差異顯著。住房價格受城市結構的影響,在空間格局上呈現差異性,例如,城市多中心結構在緩解資源分配的同時會影響住房價格(王秀蘭 等,2022)。隨著生活水平的提升,居民購房選址除了考慮房屋屬性,更注重周邊配套公共資源是否完善,對住房條件及社區環境等與幸福感息息相關的資源格外重視(劉曄 等,2019)。城市核心區公共資源集聚所形成的區域“空間優勢”,會提高區域住房吸引力(李峰清 等,2011;邊艷 等,2020)。
住房價格影響因素包含三類變量,第一類是建筑特征,如住宅使用年限(Stevenson, 2004)、總建筑面積(周佳琪 等,2020)、容積率(盧新海 等,2021)、綠化率(張哲源 等,2020)和房屋朝向(唐銘杰 等,2015)等都是影響住房價格的重要指標。第二類是區位特征,即影響住房價格的核心因素(王少劍 等,2016;楊剩富 等,2016),區位特征的效用機制和作用強度與距離位置緊密相連(薛冰 等,2019),小范圍內住房價格的空間差異并不明顯(王洋 等,2013a)。環境類鄰避設施(黨藝等,2020)、綠色景觀指數(Liao et al., 2022)、城市中心(秦佳睿 等,2021)、軌道交通(高峰 等,2019)、道路密度(Wang et al., 2022)、交通便利性(Luo et al., 2021)、景觀環境(陳庚 等,2015)、機場設施(李伊祺 等,2021)、地鐵可達性(任宏等,2019)及公交站(徐丹萌 等,2021)等區位因素均會影響住房價格。第三類是鄰里特征,如商業發展環境(黃靜 等,2018;Jiang et al., 2022)、醫療設施(彭保發 等,2015))、公園綠地(Trojanek et al., 2018)、社會民生(Zhan et al., 2021)、基礎設施(Liu et al., 2020)、教育資源(宋正娜 等,2021)、銀行(胡建飛 等,2015)和大型超市(武永祥 等,2014)等鄰里范圍內的公共服務因素。
研究方法上,特征價格模型(Hedonic Price Model,HPM)被廣泛運用在住房價格與影響因素的關系分析上(楊剩富 等,2021;Marrouch et al.,2021),地理加權回歸模型(Geographically Weighted Regression, GWR)適用于分析住房價格影響因素的空間異質性(楊俊 等,2018;Soltani et al.,2021;Hu et al., 2022)。其中,HPM 從根本上探討的是住房價格和因素的線性回歸(OLS)問題,缺乏對兩者空間關系的探究,GWR 在HPM 的基礎上,繼承了傳統回歸方法的優勢,進一步探究住房價格與影響因素之間的空間異質性,彌補了HPM的缺陷。GWR 使用的是唯一的帶寬,意味著其對住房價格影響因素的分析,具有均質化回歸特點,缺乏多尺度考量,然而,不同因素對住房價格的影響必然存在不同的尺度效應(吳超 等,2021),而多尺度地理加權回歸模型(Multiscale Geographical Weighted Regression, MGWR)彌補了GWR 的缺陷,允許每個因素擁有專屬帶寬,以研究住房價格影響的多維空間尺度。該模型于2017年被首次提出(Fotheringham et al., 2017),2020 年后得到逐步完善和實踐應用(Yu et al., 2020)。目前應用MGWR的研究較少,且主要側重于環境污染和生態資源等方面的多尺度影響分析,極少數學者將該方法運用于住房價格影響機制探究。
鑒于此,本文嘗試將MGWR 方法應用于城市住房價格實證研究中,以福州中心城區為例,采用MGWR 模型分析住房價格與影響因素的空間尺度關系,以期為中國同類城市經濟可持續發展、城市規劃和購房決策等提供科學依據。
福州市(25°15′—26°39′ N、118°08′—120°31′ E)系福建省省會,山海兼備,背負山地,東臨臺灣海峽,是東部戰區陸軍機關駐地、海上絲綢之路門戶及中國(福建)自由貿易試驗區組成部分,具有重要的戰略地位與經濟貿易地位。福州市國土空間總體規劃(2021—2035 年)提出“一主一副”的國土空間總體格局,“一主”即福州中心城區,“一副”即福清市區。本文將福州中心城區作為研究區域(圖1),具體范圍包括鼓樓區、臺江區、晉安區(不含宦溪鎮、壽山鄉和日溪鄉)、倉山區、馬尾區和長樂區等城市核心區,以及閩侯縣荊溪鎮、上街鎮等城市外圍組團,總面積2 207 km2。

圖1 研究區域及樣本小區Fig.1 Study area and sample plots
數據包括小區屬性數據和距離數據,其中小區屬性數據來源于安居客①www.anjuke.com,具體包括2021年住房平均價格、容積率、綠化率、停車位、樓齡、總戶數和劃片小學等信息。選擇商品住宅小區作為研究對象,故別墅、自建房和商住樓不予考慮,通過篩選和剔除信息不完整的數據,最終獲得3 386 個商品房住宅小區樣本(見圖1)。距離數據來源于百度地圖②https://map.baidu.com,具體指樣本小區至最近繁華中心、地鐵站、公園、大學、商場、超市、醫院、政府機關辦事處和幼兒園等場所的距離。
采用空間自相關分析描述研究單位之間在空間距離上的依賴程度,運用克里金插值法對住房價格進行空間平穩預測,基于多尺度地理加權回歸模型(MGWR)研究住房價格影響因素的多維空間尺度。其中,以最常用的線性形式的特征價格模型為基礎,住房價格為因變量,影響因素為自變量,構建MGWR模型,具體公式如下(沈體雁 等,2020):
式中:yi代表因變量在i小區的值;bw代表模型中回歸系數使用的帶寬;bwj代表第j個變量回歸系數使用的帶寬;(ui,vi)代表樣本小區的坐標;βbwj(ui,vi)代表第j個變量的回歸系數,是基于局部回歸得出的,且帶寬具有一定的專屬性,帶寬即變量的作用尺度,帶寬數值表示受變量影響的樣本小區個數;xij代表變量j在i小區的觀測值;εi為隨機誤差項。MGWR仍以GWR中的核函數和帶寬選擇為準則。本研究使用高斯核函數和AICc 準則,樣本小區坐標采用WGS84坐標系(球面坐標)。
MGWR的估計與GWR使用的加權最小二乘估計明顯不同,MGWR 更接近廣義加性模型(王海軍 等,2021),公式為:
式中:fj代表第j個變量的平滑函數,數值等于第j個變量的回歸系數與觀測值的乘積;xj代表變量j的數值。
廣義加性模型使用后退擬合算法(Back-Fitting Algorithm)對各個平滑項進行擬合,該算法需先對所有的平滑項進行初始化設置,即先期對MGWR 中各個系數進行初步估計。初始化正常有4 種選擇:①GWR估計;②半參數GWR估計;③最小二乘估計;④均設置為0。選擇GWR估計為初始估計,通過計算真實值和初始化估計得到的預測值之間的差距,即初始化殘差。收斂準則的判定方法有2 種——經典的殘差平方和變化比例(SOCRSS)與平滑項變化比例(SOCf),由于后者收斂準則較前者更嚴格,更加關注變量的相對變化,故選擇平滑項變化比例(SOCf)作為收斂準則,收斂閾值設定為1×10-5。
對福州中心城區住房價格做趨勢分析可以得出(圖2),住房價格在東西方向(綠色)分布相對對稱且呈倒“U”型,在南北方向(藍色)也呈倒“U”型,但差異較大,北部住宅分布比南部密集且平均住宅價格高于南部住宅。利用偏度系數、峰度系數和數據集的擬合程度對福州中心城區住房價格進行檢驗,經過對數變換后發現偏度系數為0.10,峰度系數為4.12,通過檢驗,其正態分布趨勢線擬合程度高,符合正態分布,滿足克里金插值的基本條件。

圖2 福州市中心城區住房價格趨勢分析Fig.2 Analysis of housing price trends in the central city of Fuzhou
福州中心城區住房價格空間分布呈“一主兩副”的多中心模式(圖3),“一主”核心區位于鼓樓區三坊七巷周圍,該區域住房價格普遍高于38 000元/m2,區域內有東百中心、大洋百貨等大型商業綜合體,住宅圍繞福州實驗小學、井大小學、錢塘小學等重點學校分區劃片,協和醫院、福建省婦幼保健院等多所三甲醫院集中在該范圍內,比鄰有西湖公園和左海公園。“兩副”核心區分別位于晉安區泰禾廣場周圍和倉山區萬達廣場周圍,晉安泰禾廣場副核心區住房價格25 300元/m2,倉山萬達廣場副核心區住房價格29 800元/m2,2個副核心區內均有大型商業綜合體、三甲醫院和公園,但區域內學校為非重點學校。

圖3 福州市中心城區住房價格克里金插值結果Fig.3 Interpolation results of housing price kriging in the central city of Fuzhou
福州中心城區住房價格高的小區呈現“傾閩江、傾重點學區、傾商場、傾醫院、傾城區生態資源”的空間特征(見圖3)。閩江沿岸的平均住房價格比附近非沿江平均住房價格高;重點學校集中分布在鼓樓區,教育資源嚴重不均衡,重點學校所在片區的住房價格比非重點學校所在片區的住房價格高;大型商場周邊的住房價格比遠離商場的高;醫院附近住房價格比遠離醫院高;公園附近的住房價格普遍高于遠離公園的住房。
空間自相關結果顯示,全局莫蘭指數為0.47,Z得分31.60,P值<0.01,通過顯著性檢驗(即住房價格在1%顯著性水平下具有正的空間相關性),住房價格在空間上相互依賴且存在集聚特征。局部空間自相關結果表明(圖4),住房價格“高-高”聚類分布區域與“一主”核心區重疊,該區域擁有優越的區位和鄰里特征。“低-高”聚類分布受“高-高”聚類影響,緊鄰“高-高”聚類呈環狀分布。“高-低”聚類零星分布在東二環以西、西三環以東和北三環以北地區,多分布在江河附近。“低-低”聚類分布在東二環東西兩側、南二環以北、南三環以北以及三環以外的郊區,交通、基礎設施和教育資源等水平均較低。

圖4 福州市中心城區住房價格聚類分析Fig.4 Clustering analysis of housing prices in the central city of Fuzhou
剔除VIF>5 的影響因素(繁華中心、土地等級和火車站),確保剩余影響因素之間不存在多重共線關系。對比OLS、GWR 和MGWR 回歸模型(表1),MGWR模型擬合優度R2和調整后的R2均最高,AICc準則較其他2種模型明顯下降,殘差平方和低于另外2 個模型,可判斷出3 個回歸模型中,MGWR 模型擬合效果最優,穩健性最好,相較于另外2個模型,MGWR模型考慮了各影響因素的空間作用尺度,回歸分析結果更可靠,故選擇MGWR模型對住房價格影響因素進行空間尺度分析。

表1 OLS、GWR和MGWR模型參數描述Table 1 Description of OLS, GWR and MGWR model parameters
3.2.1 影響因素選擇及描述 住房價格是由多方面因素綜合作用形成,學者們從不同角度闡述住房價格的影響機制。例如,在國民發展水平角度上,影響因素可歸為經濟發展(王洋 等,2013b)、貨幣水平(Luciani et al., 2013)和稅收政策(Du et al.,2015)三大類;在配套設施角度上,影響因素可歸為社區特征、公共配套設施和交通出行三大類(徐丹萌 等,2021);在居住條件角度上,影響因素可歸為建筑特征(王洋 等,2014)、鄰里特征(薛冰等,2019)和區位特征(孫倩 等,2015)三大類。本文結合以上學者研究,試圖從配套設施和居住條件角度出發,從建筑特征、鄰里特征、區位特征、公共配套設施、交通出行等類別中選取適合的影響因素進行分析,具體如表2所示。

表2 福州市中心城區住房價格影響因素描述Table 2 Description of factors influencing housing prices in the central city of Fuzhou
3.2.2 帶寬及空間異質性分析 OLS、GWR 和MGWR 模型的帶寬數值及檢驗P值如表3 所示。OLS 是在全局范圍內的擬合,不能體現空間差異,即影響因素均為全局尺度,共用1個帶寬,帶寬數值為總樣本量3 386。GWR回歸結果可以體現影響因素的空間差異,但不能體現其空間差異程度,即影響因素的作用位置雖不同,但在GWR 表達下尺度范圍均一致,該尺度范圍以最優帶寬332 表示。OLA 和GWR 都只有1 個帶寬,忽略了影響因素的空間異質性程度,對住房價格影響因素的空間解釋精準度不足(吳超 等,2021)。相比之下,MGWR模型中各影響因素均有專屬帶寬,帶寬取值范圍為[46, 3 386],表明MGWR不僅強調影響因素的空間異質性,而且能更加精準地解釋影響因素的空間作用尺度。影響因素的帶寬越大,表明該因素在大尺度范圍甚至全局尺度范圍內影響住房價格;帶寬越小,表明該因素在局部尺度范圍內影響住房價格(沈體雁 等,2020)。

表3 OLS、GWR和MGWR模型帶寬比較Table 3 Comparison of bandwidth of OLS, GWR and MGWR model
由表3 可知,綠化率、停車位、總戶數等9 個影響因素檢驗P值不顯著,表明上述影響因素在MGWR 模型中沒有顯著作用,故不多作解釋。容積率、樓齡、地鐵站、長途汽車站、大學、商場、醫院和小學等級檢驗P值顯著,表明MGWR 模型中,上述影響因素對住房價格具有顯著作用,故而對具有顯著影響力的因素詳細解釋與分析。容積率、樓齡、商場、醫院和小學等級帶寬分別為1 217、46、68、239、46,上述因素作用尺度均屬于局部尺度,即只在局部范圍內對住房價格產生顯著影響。其中,樓齡、商場和小學等級的帶寬分別占整體樣本的1.36%、2.01%和1.36%,故這些因素的作用尺度接近街道尺度,遠小于其他影響因素,空間異質性大,對住房價格的空間影響尺度小;容積率和醫院的帶寬分別占整體樣本的35.96%和7.06%,接近區級行政尺度,空間異質性中等,對住房價格的空間影響處于中級尺度。地鐵站、長途汽車站和大學帶寬分別為3 386、3 308、3 315,幾乎接近整體樣本總數,空間異質性小,對住房價格的空間影響尺度大,屬于全局尺度。
3.2.3 回歸系數結果 表4顯示,顯著影響因素對住房價格的作用強度平均值絕對值由大到小依次為小學等級(0.237)、樓齡(0.189)、長途汽車站(0.110)、商場(0.089)、容積率(0.088)、大學(0.069)、醫院(0.052)和地鐵站(0.029)。其中,小學等級、長途汽車站、容積率、醫院與住房價格呈正相關,樓齡、商場、大學和地鐵站與住房價格呈負相關。即,區域內住房價格隨容積率的增加、小學等級的提升、距附近汽車站距離的增加、距鄰近醫院距離的增加而上升;住房價格隨小區樓齡的增加、距最近商場距離的增加、距鄰近大學距離的增加、距附近地鐵站距離的增加而下降。

表4 MGWR模型回歸系數結果Table 4 MGWR model regression coefficient results
從局部顯著因素的MGWR 回歸系數及空間分布看,容積率、樓齡、商場、醫院以及小學等級的顯著樣本占總樣本分別為90.7%、39.9%、23.8%、30.5%以及49.0%。其中,容積率帶寬數值為1 217,空間異質性中等,回歸系數的空間分布(圖5-a)取值區間為 [0.041, 0.166],空間分布上從鼓樓區向四周呈環狀遞減,衰減速度先快后慢,各方向的衰減趨勢相似。理論上,容積率代表居住密度,密度越大居住舒適度越低,在不考慮其他因素的情況下,住房價格應隨著容積率的增加而降低,但鼓樓區公共資源集中,“空間優勢”顯著,居民為了享受便利的公共教育等資源,愿意接受高密度的居住環境,并且離市中心距離越近,購買意愿越強烈。樓齡帶寬數值為46,空間異質性大,回歸系數的空間分布(圖5-b)取值區間為 [-1.391, 1.000],樓齡對住房價格的影響在大部分區域為負,即住房價格隨樓齡的增加而降低,因為房屋折舊會造成住房部分功能的損失,然而,樓齡又對小部分住宅小區影響為正,原因在于重點小學輻射范圍內的片區,屬于傳統意義上的“老破小”學區房,即便樓齡增加,住房價格不降反增。商場帶寬數值為68,空間異質性大,回歸系數的空間分布(圖5-c)取值區間為 [-1.690, 0.645],商場對絕大部分的住房價格影響為負,即大部分緊鄰商場的小區住房價格比商場外圍的小區價格更低,原因在于商場噪聲污染大、交通擁擠并且人流量密集,會造成緊鄰商場的小區居住品質下降,緊鄰商場的住房對居民的吸引力降低,相比之下,商場外圍小區在享受便利的購物條件的同時,擁有更安靜舒適的居住環境,居民對商場外圍小區的購買需求更強。醫院帶寬數值為239,空間異質性中等,回歸系數的空間分布(圖5-d)取值區間為[-0.344, 0.434],醫院對絕大部分小區的住房價格起正向影響,對小部分小區的住房價格起負向影響,說明大部分小區距離醫院越近,住房價格越高,而存在小部分小區可能主要受到其他因素影響,故而醫院對小部分小區住房價格影響不大或為負影響。小學等級帶寬數值46,空間異質性大,回歸系數的空間分布(圖5-e)取值區間為 [-0.985, 1.294],小學等級對主城區的住房價格影響為正,對郊區小區的住房價格影響為負,表明主城區教育資源優質且集中,周圍小區住房價格受“教育紅利”的影響呈高水平,而郊區優質教育資源稀缺,住房價格受小學等級影響不大,主要受其他因素的影響,故而,郊區小學等級對住房價格影響不大或為負影響。

圖5 福州市中心城區MGWR模型回歸系數的空間分布Fig.5 Spatial distribution of regression coefficients of the MGWR model in the central city of Fuzhou
從全局顯著因素的多尺度地理加權回歸系數結果及空間分布看,地鐵站、長途汽車站、大學的顯著樣本占總樣本的100%,3 個因素的帶寬趨近樣本總數,對研究范圍內所有研究小區均起顯著影響。其中,地鐵站帶寬數值為3 386,空間異質性小,回歸系數的空間分布(圖5-f)取值區間為[-0.033,-0.013],小區離最近地鐵站的距離增加導致住房價格下降,說明居民對離地鐵站近的住房有更強的購買意愿,從回歸系數空間分布看,地鐵1號線對住房價格的影響要高于地鐵2號線,原因可能是地鐵1號線運行時間較長且貫穿福州中心城區繁榮地帶。長途汽車站帶寬數值為3 308,空間異質性小,回歸系數的空間分布(圖5-g)取值區間為 [0.084, 0.113],小區離最近長途汽車站的距離增加導致住房價格增加,不考慮其他因素的影響,理論上距離增加會造成交通不便,從而導致住房價格的下降,但實際上長途汽車站對住房價格反而起抑制作用,參考福州市自然資源和規劃局(2022)公示的《福州城市綜合交通規劃(2020—2035 年)》可知,長途汽車站多分布在遠離人群的郊區,因為車站附近,人口流動性強、噪聲嘈雜、犯罪率較高及居住舒適度低等問題會對附近居民造成負面影響,即便汽車站交通便利,其住房吸引力也會有所減弱。大學帶寬數值為3 315,空間異質性小,回歸系數的空間分布(圖5-h)取值區間為 [-0.075,-0.038],小區住房價格隨其離最近大學的距離增加而下降,大學周邊不僅擁有完善的公共服務設施,而且具有優質的人文環境,所以其周邊住房對居民吸引力強。
本文以福州中心城區為研究區域,運用空間統計方法和多尺度地理加權回歸模型等方法,分析了福州中心城區住房價格的空間分布特征及其價格影響因素,并得到以下主要結論:
1)從東西方向和南北方向上看,福州中心城區住房價格均呈倒“U”型,且東西方向對稱,南北方向上北部住房較密集且價格高于南部;住房價格呈現“一主兩副”的多中心分布模式,“一主”核心區位于鼓樓區三坊七巷周圍,“兩副”核心區分別為晉安區泰禾廣場和倉山區萬達廣場。住房價格高的小區呈現“傾閩江、傾重點學區、傾商場、傾醫院、傾生態資源”的空間特征。
2)對于本研究MGWR 模型較OLS 模型和GWR 模型擁有更好的擬合效果和穩健性,回歸分析結果更加可靠。根據帶寬大小將各顯著影響因素劃分為作用尺度接近街道、作用尺度接近區級行政區、作用尺度為福州中心城區全局3種類型,樓齡、商場和小學等級等作用尺度接近街道,該類因素帶寬小,空間異質性大,只影響街道范圍內小區的住房價格;容積率和醫院等作用尺度接近區級行政區,該類因素帶寬中等,空間異質性中等;地鐵站、長途汽車站和大學等作用尺度為福州中心城區全局,該類因素帶寬趨近樣本總數,空間異質性小,對全局范圍內的小區住房價格均有影響。
3)從MGWR模型回歸結果的平均值的絕對值看,對住房價格的作用強度由大到小依次為小學等級(0.237)、樓齡(0.189)、長途汽車站(0.110)、商場(0.089)、容積率(0.088)、大學(0.069)、醫院(0.052)、地鐵站(0.029)。住房價格隨容積率增加、小學等級提升、距附近汽車站距離增加、距鄰近醫院距離增加而上升,隨小區樓齡增加、距最近商場距離增加、距鄰近大學距離增加、距附近地鐵站距離增加而下降。
住房價格受到各種類型因素的影響,各要素的影響范圍尺度不盡相同,尺度作為地理學研究的基本范疇,是現象闡述的重要參考視角,細分不同類型影響因素的作用強度及空間尺度對城市規劃具有重要意義。福州市作為東部沿海二線城市,住房價格空間分布具有地域特色,呈現多中心模式,本研究對擁有獨特地域特色的多核心城市具有針對性借鑒意義。首先,城市規劃需秉持因地制宜原則,針對城市住房價格空間格局和分布規律進行恰當地規劃布局,減緩住房價格空間分布差異帶來的困境,促進經濟可持續發展。其次,帶寬數值較小代表其空間異質性較大,該類因素作用范圍為局部尺度,例如商場、小學等級和醫院,即在小范圍內對小區住房價格產生影響,在規劃布局時應著重考慮具體影響因素的空間作用效果,合理分配基礎設施服務和教育資源等公共資源。帶寬數值較大的影響因素在全局尺度上對住房價格產生影響,例如地鐵站、長途汽車站和大學,對該類公共基礎設施進行空間規劃時需從大尺度空間范圍進行評估和考量。此外,影響因素的作用強度是城市規劃需考慮的重要因素之一,針對拉動力強的影響因素,如小學等級、樓齡與商場,需合理規劃資源分配的數量以及空間位置布局,提出適宜的規劃方案,最終達到拉動經濟穩步增長和滿足居民購買意愿的目的。
本文在空間視角上對住房價格分布特征及其影響因素的作用尺度進行闡述,對城市規劃和居民購房具有一定的指導意義。但受限于數據獲取和分析的時限性,在時間尺度分析及住房單元屬性特征等方面仍有所欠缺。具體而言,本文僅選取2021年的數據,缺乏住房價格長期空間分布特征及影響因素的時間變化趨勢的分析;研究對象為小區,忽略了住房單元面積、朝向等屬性特征。未來將繼續深化研究,以期在時空視角、小區和單元層面獲得更加完善的研究結論。