李 丁 王 坤
(北京市第八十中學)
李大潛院士表示,《普通高中數學課程標準(2017年版)》的頒布,強調了數學建模教育對培養中學生核心素養方面的重要作用,進一步凸顯了數學建模的重要性.但同時也提出了在中學階段如何有效進行數學建模的教學與實踐活動的嶄新課題,對于廣大教師既是一個極大的鼓舞,更是一個巨大的挑戰.本文首先闡述在國內普通高中開展數學建模教育的現狀,其次總結過去多年國內開展中學數學建模教學的經驗和不足,最后根據本人在高中開展數學建模教學的經驗提出了一些具體建議.
數學是研究現實世界中的數量關系和空間形式的科學,它的產生和許多重大發展都是與現實世界的生產和其他相應學科的需要密切相關的.當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言進行表述,也就是建立數學模型,然后用通過計算得到的結果來解釋實際問題,并接受實際的檢驗.這個建立數學模型的全過程就稱為數學建模.
眾所周知,數學建模競賽在大學里是一項比較普遍且重要的比賽,但中學數學建模尚處于萌芽階段.從2003年《普通高中數學課程標準(實驗)》將數學建模內容納入高中數學課程,并提出原則性的實施要求和建議,到《普通高中數學課程標準(2017版2020年修訂)》明確提出數學建模核心素養,并要求數學建模核心素養的全面實施,對數學建模的重視程度才真正上了一個臺階,近幾年高考試題中也屢有出現.但數學建模在整個中學數學教育中仍處于較為尷尬的地位,多數教師在數學教學中是將學生引入一個純數學的世界,沒有注重挖掘數學發生的實踐及實際生活背景,使數學的生活氣息略顯缺乏,數學變得枯燥和乏味,進而學生產生了厭煩和抵觸的情緒,這種被動的數學學習必定不會持久,且不會產生良好的效果.究竟怎樣才能使這種現狀有所改觀呢? 數學建模教學成為突破口,讓學生認識和探索數學本來的面目是一條可行之路.
1990年到2000年,數學界和學術界對21世紀的數學教育有很多深入的討論,其中也包括有關數學建模教育的研討.例如,早在1982年和1983年,復旦大學的俞文魚此教授和清華大學的蕭樹鐵教授就在各自學校開設了數學模型課,蕭樹鐵教授還組織過教師培訓班;1989年,我國大學生開始參加美國大學生數學建模競賽;1992年,我國開始舉辦一年一度的全國大學生數學建模競賽,中學數學建模教育也幾乎同時在一些大城市的重點中學開展.1993年,北京創建高中數學知識應用競賽,筆者幾乎每年都會帶領學生參加此項比賽.更有一些優秀中學教師設計、編寫有關數學建模課程的教案,并在所在學校講授,取得很好的效果.教育部基礎教育司和有關地區教育部門在國家自然科學基金會資助下會選派一些大學、中學教師參加國際數學教育大會(ICME)、國際數學建模教學會議(ICTMA)等國際數學教育會議,在這些會議上介紹我國大學和中學數學教育(包括數學建模教育)的成就和進展.
據有關調查顯示中學數學建模教學中存在以下幾點不足.
1)大多數教師沒有接觸過數學建模,僅部分年輕教師在大學時專門學習過數學建模,參加過數學建模比賽的教師更是少數.這也反映了中學數學建模教育在我國開展較晚,從而產生了師資短缺的情況.
2)大部分教師幾乎沒有參加過數學建模的教學培訓或專題教研,這反映了數學建模課程在教學上的地位還沒有受到足夠重視,這不利于數學建模課程教學設計的集思廣益,不利于形成標準化的教學目標.
3)教師們對數學建模在中學教學中的含義有不同的理解,大部分教師認為應用題是數學建模在教學內容上的表現形式,也是唯一的考查形式.因此,以往的數學教學中,教師僅對高考試題中出現的應用題進行專題教學.
4)新版數學教材中數學建模內容編排引起教師們比較高的關注,但這是否能促進在教學上對數學建模的重視,還得看高考“指揮棒”的要求,在提供數學建模教材的基礎上,還需要研究如何考查學生的數學建模能力.
5)數學建模課程在普通中學的開展很有限.絕大多數中學的教師主要是在講解知識點時聯系在生活中的案例來進行滲透,目的也是促進學生對知識點的理解和幫助學生理解相關應用題,其實這并非真正意義上的數學建模教學.
6)目前數學建模能力的評價方式只存在于少量的課堂點評,或考查數學應用題的答題情況,而應用題的題型又是相對固定的,數學建模能力作為應用數學的能力,是一種綜合的實踐能力.完善的數學建模的評價體系對數學建模活動的開展有非常重要的促進作用,如何在不增加學生學業負擔的情況下,優化數學建模能力的考查方式是促進師生重視數學建模的根本舉措,讓學生體會到數學不僅是用來鍛煉思維的,而且在日常生活中也是非常有用的.
數學建模課程設計的理論依據是建構主義理論.建構主義認為,知識不是通過教師傳授得到的,而是學習者在一定的情境(即社會文化背景)下,借助學習過程和其他人(包括教師和學習伙伴)的幫助,利用必要的學習資料而獲得的.在目前的中學數學教育改革中,建構主義理論為越來越多的教育工作者所認同,并逐步加以實施.在某一特定的環境下,讓學生通過抽象、簡化客觀現象的某一方面,并建立數學模型,進而討論數學問題,最終解決實際問題,這恰恰就是建構主義理論的精髓.
1)數學建模并不是新東西,現行教材中的一切概念、公式、定理都是數學模型,可以說數學課堂教學中可以隨時滲透建模思想.因此,只要教師深入鉆研教材,深刻挖掘問題產生及應用的背景,并進行歸納總結,就一定能找到建模的素材及規律.
2)數學作為升學考試的主科,在中學教育中有較高的地位,學生也極為重視,對課本基礎知識的掌握相對扎實,這就為把各種實際問題轉化為數學模型求解提供了強有力的知識保證.
3)建模是解決實際問題的過程.在這個過程中,要把實際問題的主要因素加以提煉、簡化、抽象,明確變量及參數,依據某種規律建立一種變量與參數間的數學關系即數學模型,然后對此問題進行求解,可借助各種輔助手段,并對解答結果加以解釋、驗證、實踐,若不合理,則對模型進一步改進,直到合理為止.其一般步驟如圖1所示.

圖1
1)對于高中生而言,特別是高一新生,培養學生的建模意識和數學建模的思想是數學建模教育的重要任務.
2)數學建模教學與常規數學知識教學的不同點在于,數學建模更強調的是建立模型的過程.要使學生快速有效地掌握建模概念,就要帶領學生經歷建模過程.由易到難,從簡單的例子入手,讓學生通過實際操作認識數學建模,掌握數學建模的步驟、概念,先經歷建模,再認識建模,然后學習建模.
3)在建模教學過程中,教師要把學生放在主體地位.打破傳統的數學教學課堂,教師在課堂教學中要注意引導,學生構建數學與實際情境的聯系,培養學生的閱讀理解能力、抽象思維能力、空間想象能力、表達能力等多方面的綜合素質,避免學生脫離所研究問題的本身.
要真正開展好中學數學建模教學,必須得到全社會的支持.筆者所在中學邀請了教育部數學課程標準修訂組成員、北京數學會數學普及委員會等部門的眾多專家對數學建模教學進行指導.此外,本校教育集團與北京師范大學數學建模教育中心合作成立了數學建模一體化創新人才培養項目,希望在中學數學建模教學中貢獻一點力量.
(完)