999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

采用變分模態分解的微型燃氣輪機發電系統混合儲能功率分配策略

2023-10-29 10:07:18李月明丁澤民余又紅劉永葆
西安交通大學學報 2023年10期
關鍵詞:分配模態系統

李月明,丁澤民,余又紅,劉永葆

(海軍工程大學動力工程學院,430033,武漢)

目前,電磁發射裝置、軌道炮、大功率雷達和其他一些脈沖功率載荷在船舶上的應用日益廣泛[1]。當脈沖負載連接到船舶電力系統運行時,短時間內消耗大量的電能[2]。與陸用大型電網不同,船舶電力系統是一個慣量小、容量小的孤立電網。由于作為原動機的微型燃氣輪機的功率響應過程較慢,影響同步發電機的升壓能力,電力系統無法提供并維持脈沖負載[3]的功率需求。因此,一旦接入脈沖功率負載,船舶電力系統短時間內很難保持穩定。儲能系統被認為是緩解船舶電力系統功率波動的最有效的解決方案[4-6]。

飛輪儲能系統(flywheel energy storage system, FESS)和超級電容器儲能系統(supercapacitor energy storage system, SCES)具有低配置成本、高功率密度和良好的暫態調節性能等顯著優勢,是脈沖功率負載應用中最受歡迎的兩種能量儲能系統[7-8]。尤其是FESS,具有工作溫度范圍寬、瞬態響應及時、可靠性高、使用壽命長等特點[9],被廣泛應用于新能源發電系統和船舶動力系統[10-15]。但是,FESS的能量密度相對較低,待機損耗較高[16]。蓄電池具有儲能容量大、充放電功率小的特點??紤]到蓄電池與飛輪的互補特性,蓄電池通常與FESS一起組成混合儲能系統(hybrid energy storage system, HESS)來提高電力系統的性能。此類HESS通常用作可再生能源系統的調頻和負荷調節措施[17-18],也可以應用于船舶電力系統[19-20]。在船舶電力系統中,負載的功率變化比較明顯,電源輸出功率相對穩定。這與由采用光伏和風能發電組成的可再生能源系統的功率和負載特性有很大不同。船舶電力系統和可再生能源系統中HESS的總體控制策略也有較大差異。

關于應用FESS和蓄電池組成的HESS來緩解脈沖負載波動的研究,其對象集中在可再生能源領域的電力系統,而較少涉及船舶電力系統。對于船舶電力系統,HESS一般作為設備級儲能,脈沖負載連接在其末端,此時HESS僅為脈沖功率負載[14]供電。這種架構雖然可以避免脈沖功率負載對船舶電力系統的影響,但并不能充分發揮船舶電力系統的性能,HESS也不能平滑其他負載的波動,如推進負載的變化[16,19-20]。一般情況下,脈沖負載比推進載荷對電網的沖擊更大、要求的時間響應更快,所以本文主要研究脈沖負載的波動。

HESS補償微電網功率波動的基本思想是將不平衡的功率按照頻率高低進行分解[21],分解后的功率由各個儲能系統通過控制變流器來響應,共同調節直流母線電壓穩定[22]。常用的功率分配方法有濾波分解[23-24]、小波分解[25-26]、經驗模態分解[27-28]和變分模態分解[29-30]等。但是,濾波分解中的低通濾波器在濾波過程中容易產生一定的延遲,這會導致儲能系統功率的不合理分配。小波分解的結果對基函數的選擇有很強的依賴性[29]。經驗模態分解在遞歸分解過程中不能精確地將頻率相同的模態函數分離,分解后的各模態函數存在模態混疊現象。變分模態分解(variational mode decomposition, VMD)可以自適應地確定各模態的最佳中心頻率和帶寬,并可以完成固有模態函數(intrinsic mode function,IMF)的有效分離和信號的頻域劃分。Dragomiretskiy等[31]于2014年提出了VMD算法,該算法通過多次迭代尋優,確定各分量的中心頻率和帶寬,最后獲取分解分量,實現信號的準確分離,運算效率更高。VMD算法被廣泛應用于變壓器放電信號的提取[32]、風速監測[33]和可再生能源中混合儲能系統的功率分配[29-30,34]等領域。變分模態分解的關鍵是設定合適的模態數K和二次懲罰因子α。文獻 [29-30]分別通過粒子群算法和麻雀搜索算法優化VMD的參數,對風、光等可再生能源發電系統輸出的波動功率進行分解,根據分解信號的頻率特性,將各部分功率分別輸送到不同的儲能裝置。仿真結果表明,參數優化的VMD算法優于濾波分解和經驗模態分解(empirical mode decomposition, EMD)。文獻 [34]提出了一種基于自適應VMD的HESS以平滑光伏功率波動,該算法可以自適應地確定分解模態個數和并網模態數,將HESS的功率分配給鉛碳電池和超級電容器。為了驗證該算法的優越性,建立了HESS的經濟評價模型,結果表明,經過自適應VMD,不同天氣情況下的光伏功率波動得到了明顯的降低,與使用經驗模態分解相比,在最大天氣波動的條件下,HESS的生命周期年化成本也得到降低。

相比于可再生能源發電系統,燃氣輪機作為發電原動機的船舶直流微電網電源的輸出功率穩定,但是負載的突變會造成系統的功率供需不平衡,在利用HESS補償船舶直流微電網系統功率不平衡時,同樣面臨HESS系統功率分配問題。在公開的文獻中,VMD算法在船用燃氣輪機直流微電網混合儲能功率分配中應用還未見報道。本文根據VMD的算法特點,針對船用微型燃氣輪機發電系統負載波動的問題,運用算術優化算法(arithmetic optimization algorithm, AOA)[35]優化VMD參數,提出一種基于算術優化算法優化的變分模態分解(AOA-VMD)算法,并在此基礎上提出一種船用燃氣輪機微電網混合儲能功率分配策略。根據各儲能裝置的工作特性,實現HESS功率的初次劃分??紤]到儲能裝置的安全穩定運行,設置飛輪、蓄電池模糊控制器,對初次分配功率進行修正,實現功率的二次分配。通過仿真驗證了所提控制策略的有效性。

1 燃氣輪機發電系統建模

本文建立船用微型燃氣輪機發電系統整體模型,如圖1所示。該系統由微型燃氣輪機、帶有勵磁系統的三相同步發電機、二極管整流器、負載和混合儲能系統組成。船用微型燃氣輪機發電系統的電力由帶勵磁系統的同步發電機產生,可以滿足系統的電力需求。同步發電機由一個100 kW的微型燃氣輪機驅動,同時通過一個不受控的整流器(AC/DC)連接到直流母線?;旌蟽δ芟到y由蓄電池和飛輪儲能系統組成;負載主要由日用負載、推進負載和脈沖負載組成,混合儲能系統和負載經由變流器連接至直流母線。

1.1 微型燃氣輪機建模

微型燃氣輪機主要由壓氣機、燃燒室、渦輪機、轉子4部分組成。本文根據各部件的氣動熱力學參數計算過程,對其進行模塊化建模。

1.1.1 壓氣機

壓氣機的特征參數有折合流量Gcnp、壓比πc、折合轉速ncnp、效率ηc。已知其中兩個參數,通過在通用特性圖上插值的方法可得到另外兩個參數值。選定壓比πc和轉速n作為輸入量。壓氣機流量Gc、出口溫度Tcout和耗功Nc計算式[36]如下

(1)

(2)

Nc=hcout-hcin

(3)

式中:Tcin為壓氣機進口溫度,K;ka為空氣的比熱比;T1為壓氣機特性線測試進口溫度,K;Pcin為壓氣機進口壓力,Pa;P1為壓氣機特性線測試進口壓力,Pa;hcout為壓氣機實際出口熱焓值,kJ/kg;hcin為壓氣機實際進口熱焓值,kJ/kg。

1.1.2 渦輪機

渦輪機的效率ηt、折合流量Gtnp、膨脹比πt、折合轉速ntnp的計算方法與壓氣機的計算方法相似,都是通過在特性圖上取插值的方法得到。渦輪機出口溫度Ttout和輸出功Nt計算式[37]如下

(4)

Nt=htin-htout

(5)

式中:Ttin為渦輪機進口溫度,K;kb為燃氣的比熱比;ηt為渦輪機效率;htout為渦輪機實際出口熱焓值,kJ/kg;htin為渦輪機實際進口熱焓值,kJ/kg。

1.1.3 燃燒室

燃燒室進出口壓力關系可以表示為

pbout=pbinσ

(6)

式中:pbin和pbout分別為燃燒室進出口壓力,Pa;σ為燃燒室進出口壓力損失系數。

燃燒室出口溫度T3可由能量守恒方程[37]求得

(7)

式中:Ga和Gf分別為空氣和燃料的流量,kg/h;Jf為燃料的熱值,J/kg;ηb為燃燒效率;cp,a和cp,f分別為空氣和燃料的比等壓熱容;T2a和T2f分別為燃燒室空氣和燃料的進口溫度,K。

1.1.4 轉子

轉子是將壓氣機和渦輪機以及負載連接起來的裝置,渦輪機輸出的功率用來帶動壓氣機轉動以及帶動發電機運行,根據動量矩定律可以獲得轉子的數學模型[38]

(8)

式中:J為轉子的轉動慣量,kg·m2;n為轉子轉速,r/min;PG為發電機功率,W。

1.2 同步發電機建模

同步發電機在dq0坐標系下的電壓、磁鏈和轉矩方程[39-40]分別為

(9)

(10)

Te=ψdid-ψqiq

(11)

式中:ud、uq為機端電壓d、q軸的分量,V;id、iq為負載電流d、q軸的分量,A;if為勵磁電流,A;uf為勵磁繞組電壓,V;rf為勵磁繞組電阻,Ω;iD、iQ為d、q軸阻尼繞組電流,A;uD、uQ為d、q軸阻尼繞組電壓,uD=0,uQ=0;Xd、Xq為d、q軸同步電抗,Ω;Xad、Xaq為d、q軸電樞反應電抗,Ω;XD、XQ為d、q軸阻尼繞組電抗,Ω;ψd、ψq為d、q軸磁鏈,Wb;ψf為勵磁繞組磁鏈,Wb;ψD、ψQ為d、q軸阻尼繞組磁鏈,Wb。

1.3 混合儲能系統建模

HESS由蓄電池和FESS組成。將蓄電池的荷電狀態SB和飛輪的當前轉速ω定義為狀態變量??刂谱兞繛樾铍姵氐碾娏鱅B和飛輪轉矩TF。HESS模型描述[17]如下

(12)

(13)

式中:QB為蓄電池最大容量,A·h;b和JF分別為飛輪的阻力系數和轉動慣量。蓄電池和飛輪的輸出功率如下

PB=IBVOC

(14)

PF=ωTF

(15)

式中:VOC為蓄電池開路電壓,V。

1.4 脈沖負載建模

圖2 單個脈沖負載等效結構Fig.2 Equivalent structure of a single pulse load

當脈沖負載接入時,其電阻很小,相當于短路狀態。當脈沖負載不工作時,其電阻很高,相當于開路狀態[41]。因此,脈沖負載可以用開關函數和可變電阻的形式來描述[42-43]。單個脈沖負載的等效結構如圖2所示。圖中:iPPL為流過脈沖負載的電流;RPPL為可變電阻,可用于設置脈沖負載的峰值功率Pm;D為開關管VT的占空比,代表脈沖功率在一個周期內的開啟時間。

2 基于參數優化的變分模態分解原理

2.1 變分模態分解

為了發揮各儲能元件的運行特性,通過VMD算法對微型燃氣輪機發電系統脈沖負載功率波動信號進行分解。該算法是一種完全非遞歸信號處理方法,可以將時間序列數據分解為一系列具有特定帶寬的IMF,每個IMF圍繞確定的中心頻率和帶寬形成,并且帶寬的總和值最小化[31,44]。在VMD算法中,每種模式帶寬uk的導出過程[31]如下。

應用Hilbert對每種模式的功率波動時間序列數據進行分解,得到每個本征模態函數的解析信號,并得到其單邊頻譜A

A=[δ(t)+j/πt]*uk(t)

(16)

式中:*為卷積運算符;uk為VMD分解得到的第k個IMF分量。

通過加入指數算子e-jωkt,將每個本征模態函數的頻譜調制到相應的基頻帶B,表示為

B=[(δ(t)+j/πt)*uk(t)]e-jωkt

(17)

式中:ωk為第k個IMF分量的中心頻率。計算解調信號梯度的平均范數,估計出各本征模態函數的帶寬。

帶寬估計后,假定原始信號x(t)分解為K個IMF分量,保證分解序列為具有中心頻率的有限帶寬的模態分量。同時,各模態的估計帶寬之和最小,約束條件為所有模態之和與原始信號相等,對應的約束變分問題為

(18)

式中:δ(t)為狄拉克分布函數。

為求取約束變分問題的最優解,引入二次懲罰因子α和拉格朗日乘法算子λ,將約束變分問題轉變為無約束變分問題

L(uk,ωk,λ)=

(19)

采用乘法器的交替方向法來求解上述問題,在迭代計算中不斷更新優化uk和ωk。對于所有ω′≥0,解表示為

(20)

(21)

重復上述步驟,直到滿足迭代停止條件

(22)

2.2 算術優化算法優化VMD參數

由VMD算法原理可知,在對信號分解時需預設分解模態數K和二次懲罰因子α。K和α的選取不當會導致VMD分解后的信號與原始信號出現偏差。因此,選擇合適的K和α是正確采用VMD算法分解功率波動信號的關鍵。在已有的研究中,粒子群算法和麻雀搜索算法被用于優化VMD的參數[29-30],但是其計算時長較長。Abualigah等[35]于2021年提出了AOA算法,是一種根據算術操作符的分布特性實現全局尋優的元啟發式優化算法。該算法具有收斂速度快、精度高等特點。文獻 [35]通過不同的場景對AOA的性能、收斂行為和計算復雜度進行了評估。實驗結果表明,與包括粒子群算法和麻雀搜索算法在內的其他11種典型優化算法相比,該算法在解決具有挑戰性的優化問題方面具有很好的效果。本文將AOA應用于VMD中,依據功率波動信號的特點自適應地調整VMD的參數K和α,避免了其選取不當而導致信號出現偏差的問題。

AOA優化算法分為3個階段:初始化階段、探索階段和開發階段。具體實現原理[35]如下。

(1)在初始化階段,AOA隨機生成一組候選解,每次迭代中的最佳候選解被視為獲得的最佳解或迄今為止的近似最優解。

AOA通過數學優化器加速函數選擇搜索階段。r1代表0~1之間的隨機數,F(t)代表第t次迭代時的加速函數值。當r1>F時,AOA 進行全局探索;當r1

F(t)=Min+t(Max-Min)/T

(23)

式中:Min與Max分別是加速函數的最小值和最大值,其值分別為 0.2 和 1;T是最大迭代數。

(2)在探索階段,AOA通過乘法運算與除法運算實現全局搜索。r2代表0~1之間的隨機數,H(t)代表第t次迭代時的數學優化器概率。當r2<0.5時,執行除法搜索策略;當r2≥0.5時,執行乘法搜索策略。位置更新公式如下

X(t+1)=

(24)

式中:μ是調整探索過程的控制參數,設為0.499;ε為一個極小值;LA和LB分別表示給定搜索空間的上邊界和下邊界。數學優化器概率計算公式如下

(25)

式中:α′是敏感參數,定義了迭代過程中的局部開發精度,α′越大,則迭代次數對H(t)的影響越大,此處取值為5。

(3)在開發階段,AOA利用加法運算與減法運算實現局部開發,位置更新公式如下

X(t+1)=

(26)

式中:r3代表0~1之間的隨機數。

3 微型燃氣輪機發電系統混合儲能功率分配策略

燃氣輪機的燃燒機理導致輸出機械功率變化緩慢,這種緩慢的響應特性不能滿足脈沖負載功率快速變化的要求。為了保證船用微型燃氣輪機發電系統持續穩定提供電能,減少脈沖負載對微型燃氣輪機的影響。本文利用HESS主動提供微燃機發電系統脈沖負載的功率需求,在穩態運行的模式下,燃氣輪機為系統提供能量。當脈沖負載接入時,優先由HESS提供能連,只有當HESS提供的功率無法滿足需求時,微燃機才額外為脈沖負載提供能量。脈沖負載的功率由HESS補償,通過設置HESS的分配策略,將HESS所需補償的功率進行合理的分配?;旌蟽δ芟到y需要補償的功率為

PHESS=PPPL

(27)

式中:PPPL為脈沖負載的功率。

3.1 混合儲能功率的初級分配

本文將脈沖負載的功率作為VMD算法的輸入量,經AOA-VMD算法自適應地將脈沖負載的功率分解為一系列頻率由低到高的IMF,然后對各IMF進行Hilbert變換,觀察各IMF在邊際頻譜域上的信號特征,利用各模態混疊現象嚴重程度來確定高低頻分量界限??紤]到混合儲能系統中各儲能元件的特性,將低頻分量分配給蓄電池、高頻分量分配給飛輪儲能系統。各儲能裝置功率的計算公式如下

(28)

式中:N為高、低頻分量的界限;PB(t)和PF(t)分別為對應的蓄電池和飛輪的初始功率參考值。

3.2 混合儲能系統功率的二次分配

運用VMD算法實現了HESS功率的初級分配,但初級分配沒有考慮電池的荷電狀態和飛輪的轉速,在投入過程中如果造成過充過放,不僅會嚴重影響儲能裝置的性能和壽命,也會影響下一次脈沖負載接入時系統能量的補償。在混合儲能功率分配過程中,模糊控制器具有改善儲能系統的充放電功率的特點[45-46]。因此,本文設計了兩個模糊控制器,如圖3所示。

圖3 本文設計的兩個模糊控制結構Fig.3 Fuzzy control structure

設置相應的模糊控制規則,對蓄電池和飛輪儲能系統充放電功率進行修正,實現HESS功率的二次分配,修正后的充放電功率為

(29)

飛輪儲能模糊控制器的輸入為PF(t)和ω,輸出為修正系數k1,輸入輸出選用梯形和三角形隸屬度函數,ω的論域為 [0, 1],模糊子集為{VS, S, M, B, VB},表示{很低,低,中,高,很高}。PF(t)的論域為 [-1, 1],模糊子集為{D, C},表示飛輪放電或充電。k1的論域為 [-1, 1],模糊子集為{NB, NS, ZO, PS, PB},表示{負大,負小,零,正小,正大}。對應的飛輪儲能模糊控制器規則如表1所示。

表1 飛輪儲能模糊控制規則

蓄電池模糊控制器的輸入為功率PB(t)和荷電狀態SB,輸出為修正系數k2,輸入輸出選用梯形和三角形隸屬度函數,SB的論域為 [0, 1],模糊子集為{VS, S, M, B, VB},表示{很低,低,中,高,很高}。PB(t)的論域為 [-1, 1],模糊子集為{D, C},表示蓄電池放電或充電。k2的論域為 [-1, 1],模糊子集為{NB, NS, ZO, PS, PB},表示{負大,負小,零,正小,正大}。對應的蓄電池模糊控制器規則如表2所示。

表2 蓄電池模糊控制規則

4 仿真案例

為驗證所提控制策略的有效性,對如圖1所示的船舶微型燃氣輪機直流電力系統進行仿真分析。直流母線電壓參考值為513 V。蓄電池的類型為鋰電池,標稱電壓為400 V,額定容量為100 A·h,初始荷電狀態為50%。FESS的最大充放電功率為60 kW,最大轉速為1 200 rad/s。蓄電池和飛輪的上、下限邊界分別為SB,min=30%、SB,max=90%、ωmin=30%和ωmax=80%。脈沖負載的峰值功率為40 kW,周期為3 s,占空比為60%。初始狀態下,電網中連接10 kW日用負載,2.7 s時接入一個脈沖負載,3 s時加入10 kW的日用負載,3.5 s時接入另一個脈沖負載,這兩個脈沖負載的功率都為40 kW??紤]HESS時,在1 s時給飛輪儲能系統充電,2 s時飛輪儲能系統充電結束,達到額定轉速。

考慮HESS時,脈沖負載的功率需求由HESS主動提供,微型燃氣輪機作為備用功率源,在HESS無法提供足夠的功率時,微型燃氣輪機提供不足的功率。同時,微型燃氣輪機也承擔日用負載的功率需求。對于利用HESS來滿足脈沖負載的功率需求:首先,采用參數優化的VMD算法對脈沖負載的功率進行分解,得到各儲能裝置的初次分配功率;然后,經由各儲能裝置的模糊控制器,對初次分配功率進行修正,得到各儲能裝置的二次分配功率,即各儲能裝置需要提供的功率。采用AOA算法迭代計算可得VMD中最優參數組合 [K,α]= [4, 3 140]。

為了進一步驗證本文所提參數優化VMD算法的優勢,分別采用VMD和EMD算法對脈沖負載的功率PPPL進行分解,將對分解后的結果進行Hilbert變換,并對比分解后的IMF頻譜特性。圖4(a)為脈沖負載功率經參數優化VMD算法分解得到的結果,對其進行Hilbert變換,得到的各IMF頻譜如圖4(b)所示。

觀察圖4(b)可以看出,IMF1和IMF2間模態混疊現象較為輕微,IMF2~IMF4混疊較明顯。因此,選擇IMF1分解信號作為蓄電池需要平抑的初級功率,選擇IMF2~IMF4分解信號作為FESS需要平抑的初級功率。然后,經模糊控制器對初級功率進行修正,得到電池和FESS各自需承擔的功率,實現對HESS功率的合理分配。

(a)分解結果

(b)各IMF頻譜

圖5(a)為脈沖負載功率經EMD算法分解的結果,圖5(b)為分解結果經Hilbert變換后得到的各IMF頻譜。從圖5(a)中可以看出,PPPL經EMD分解為3個IMF,這3個IMF在整個仿真期間都有所波動。從圖4(a)可以看出,PPPL經VMD分解為4個IMF,這4個IMF只有在脈沖負載功率波動時才會產生相應的信號,相比于EMD分解,參數優化的VMD分解更加精確。從圖5(b)可以看出,經EMD分解后不同頻率成分混疊嚴重,高低頻分量不易區分。從圖4(b)中可以看出,經VMD分解后不同IMF的頻率較易區分,分布較為規律。因此,相對于EMD,參數優化的VMD能更準確地通過區分高低頻量的方式完成對HESS功率的合理分配。

(a)分解結果

(b)各IMF頻譜

在接入或不接入HESS的情況下,脈沖負載造成的直流母線電壓(Udc)波動和微燃機轉速(n′,標幺值)波動分別如圖6(a)和6(b)所示。從圖6(a)可以看出,不接入HESS時,在2.7 s和3.5 s分別連接峰值功率為40 kW的脈沖功率負載,Udc瞬間由513 V跌落至478 V,跌落幅度為6.8%,給系統帶來較大擾動。接入HESS時,脈沖負載的功率需求主要由HESS補償,因此其對直流母線電壓的影響很小。在FESS充電結束,即2 s時,直流母線電壓由510 V上升至534 V,上升了4.7%,該擾動小于接入40 kW脈沖負載所帶來的擾動。從圖6(b)可以看出,不接入HESS時,2.7 s連接脈沖負載,微燃機的轉速變化率為0.036%。接入HESS時,2 s飛輪儲能系統充電完成,微燃機轉速變化率為0.04%。《GB/T 13030—2009 船舶電力推進系統技術條件》對船舶電網供電系統要求,轉速波動率應控制在±0.5%[47]。因此,兩種情況下同步發電機的轉速都在穩定運行的范圍內。由圖6可以看出,不接入HESS,脈沖負載對系統產生周期性的沖擊,影響直流母線電壓和微燃機轉速的穩定運行。接入HESS,脈沖負載產生的沖擊由HESS平抑,轉速變化率最大為0.02%,母線電壓波動量最大為3 V。由此可以看出,接入HESS后,脈沖負載幾乎不會對直流母線電壓和微燃機轉速產生影響。這進一步體現了本文設計的儲能裝置控制策略的有效性。

(a)Udc變化特性

(b)n′變化特性

為了驗證采用本文AOA-VMD算法對船用燃氣輪機直流微電網混合儲能中飛輪儲能和蓄電池功率分配的控制效果,分別運用濾波器、VMD和AOA-VMD對脈沖負載的功率進行分解,得到FESS和蓄電池的初級分配功率,然后經相同的并聯模糊控制器調節,得到FESS和蓄電池的二次分配功率。3種混合儲能功率分配策略下,直流母線電壓Udc和微燃機轉速變化率n′的波動如圖7所示。

(a)Udc變化特性

(b)n′變化特性

由圖7可以看出,在3.5 s接入一個峰值功率為40 kW的脈沖功率負載,采用AOA-VMD算法分解脈沖功率負載所造成的Udc和n′波動最小,其中母線電壓Udc由513 V跌落至511 V,跌落幅度為0.4%,轉速變化率n′跌幅為0.008%。4.5 s時突卸峰值功率為40 kW的脈沖功率負載,同樣地采用AOA-VMD算法所造成的Udc和n′波動最小,采用未優化的VMD算法的波動次之,而采用傳統的濾波器方法分解脈沖功率負載所造成的波動最大,ΔUdc和Δn′具體的變化情況如表3所示。對比采用濾波器和未經優化VMD的算法,采用AOA-VMD算法分解脈沖負載的功率波動信號,投入峰值功率為40 kW的脈沖功率負載時,直流母線電壓波動量ΔUdc分別減小3 V和2.4 V,對應的微燃機轉速波動率Δn′分別減小0.012%和0.014%。切除上述負載時,ΔUdc分別減小2.7 V和0.6 V,Δn′分別減小0.018%和0.012%。由以上分析可知,針對船用燃氣輪機直流微電網混合儲能中飛輪儲能和蓄電池的功率分配,AOA-VMD的控制效果優于濾波器方法和未經優化的VMD算法。經參數優化的變分模態分解算法的應用有效地提高了系統的穩定性。

圖8給出了發電機、負載、電池和飛輪功率變化特性。由圖8(a)可以看出,與負載投切時的快速功率變化相比,發電機的功率變化相對緩慢,不能及時響應脈沖負載功率需求。

表3 不同功率分配策略下Udc和n′的波動特性

(a)發電機和負載的功率變化特性

(b)電池和飛輪的功率變化特性

從圖8(a)可以看出,在2.7 s接入脈沖負載時,微型燃氣輪機的輸出功率基本不變。此時,脈沖負載的功率需求由FESS和電池共同提供,如圖8(b)所示。從圖8(b)可以看出,飛輪在2.7 s放電之前會預充一部分能量,預充電時間約為0.2 s,保證飛輪轉速不會跌落過低,飛輪預充電所需的功率由電池提供,避免飛輪充電對直流母線電壓和微型燃氣輪機的穩定運行造成影響。在3 s接入10 kW的日用負載時,微型燃氣輪機動作提供這部分功率需求,如圖8(a)所示。飛輪在3.5 s接入脈沖負載之前會預充一部分能量,這部分能量由蓄電池提供,預充電時間大約0.2 s,最大充電功率為20 kW。在3.5 s接入另一個峰值功率為40 kW的脈沖負載時,FESS由充電狀態瞬間轉變為放電狀態,為系統提供20 kW的瞬態功率,此時蓄電池向系統提供的總功率為45 kW,燃氣輪機提供的功率為35 kW。

在3.5~4.5 s之間,兩個脈沖功率負載處于疊加狀態,而HESS可提供的功率有限,無法滿足兩個脈沖負載疊加所需的功率。因此,脈沖負載需求的功率與HESS提供的功率的差值由微型燃氣輪機提供。在4 s時燃氣輪機輸出功率達到最大,為51 kW,如圖8(a)所示。此時功率波動恢復平穩,但功率需求較大。由于FESS被用來補償瞬態功率波動,因此在4 s時FESS處于待機狀態,無功率輸出。蓄電池用于補償系統長時間的功率需求,因此在4 s時蓄電池處于最大功率放電狀態,功率輸出為49 kW,如圖8(b)所示。在4.5 s突卸脈沖功率負載之前,飛輪儲能會釋放一部分能量,釋放的能量提供給脈沖負載,減少了微型燃氣輪機和蓄電池的功率輸出,同時可以避免飛輪轉速在突卸脈沖負載后上升過大。在4.5 s突卸其中一個峰值功率為40 kW的脈沖負載時,飛輪瞬間由放電狀態轉變為充電狀態,最大充電功率為20 kW,此時蓄電池和微型燃氣輪機向系統提供的功率分別為44 kW和36 kW。

在4.5~5 s之間,FESS逐漸恢復到待機狀態。此時,微型燃氣輪機與蓄電池提供給系統的功率逐漸減小,直至減小到維持一個脈沖負載的功率需求。由以上分析可知,采用本文所提出的能量分配和儲能協調控制策略,微型燃氣輪機與HESS具有良好的配合能力,保證了在多樣化負載脈沖負載條件下發電燃機、電網、混合儲能裝置之間的協同運行。

5 結 論

本文將參數優化的VMD算法應用到考慮蓄電池和飛輪組成的混合儲能系統的船舶微燃機直流微電網中。在不接入HESS時,微型燃氣輪機提供系統的能量需求。接入HESS時,脈沖負載的功率需求主要由HESS提供,微型燃氣輪機的功率需求與HESS提供的功率的差值由微型燃氣輪機提供。運用經算術優化算法優化的VMD算法實現對混合儲能功率的初級分配。同時,為了保證儲能裝置運行在安全穩定的范圍內,實時監測飛輪轉速和蓄電池的荷電狀態,采用兩個并聯的模糊控制器,實現了儲能裝置的二次功率分配。對所提出的控制策略進行了仿真分析,結果表明。

(1)HESS的應用可有效改善系統對大功率脈沖負載的響應能力。接入船舶微型燃氣輪機發電系統時,HESS主動提供脈沖負載所需的功率,當HESS無法提供足夠功率時,由微型燃氣輪機提供剩余的功率需求。考慮混合儲能后,脈沖負載投切所造成的直流母線電壓最大波動減小6.4%,對應的微燃機轉速最大變化率減小0.02%。

(2)經參數優化的變分模態分解算法的應用有效地提高了系統的穩定性。對比采用傳統濾波器和未經優化VMD的算法,采用AOA-VMD算法分解脈沖負載的功率波動信號,投入峰值功率為40 kW的脈沖功率負載時,直流母線電壓波動量分別減小3 V和2.4 V,對應的微燃機轉速波動率分別減小0.012%和0.014%。切除上述負載時,電壓分別減小2.7 V和0.6 V,轉速波動率分別減小0.018%和0.012%。

猜你喜歡
分配模態系統
Smartflower POP 一體式光伏系統
工業設計(2022年8期)2022-09-09 07:43:20
WJ-700無人機系統
ZC系列無人機遙感系統
北京測繪(2020年12期)2020-12-29 01:33:58
應答器THR和TFFR分配及SIL等級探討
遺產的分配
一種分配十分不均的財富
績效考核分配的實踐與思考
連通與提升系統的最后一塊拼圖 Audiolab 傲立 M-DAC mini
國內多模態教學研究回顧與展望
基于HHT和Prony算法的電力系統低頻振蕩模態識別
主站蜘蛛池模板: 伊人天堂网| 日本三级精品| 高潮毛片无遮挡高清视频播放| 国产第一页屁屁影院| www.99在线观看| 久久国产精品麻豆系列| 亚洲大学生视频在线播放| 狠狠色噜噜狠狠狠狠色综合久| 亚洲第一极品精品无码| www.99在线观看| 强奷白丝美女在线观看| 91偷拍一区| 在线免费不卡视频| 波多野衣结在线精品二区| 亚洲午夜天堂| 欧美在线天堂| 国产在线精品99一区不卡| 欧美v在线| 天天干伊人| 国产99在线观看| 国产乱码精品一区二区三区中文 | 五月婷婷激情四射| 老司机午夜精品视频你懂的| 亚洲欧美日韩中文字幕在线| 在线a视频免费观看| 亚洲色图欧美| 丝袜久久剧情精品国产| 午夜不卡视频| 又黄又爽视频好爽视频| 亚洲AV一二三区无码AV蜜桃| 九九热精品视频在线| 自偷自拍三级全三级视频| 国产福利在线观看精品| 国产精品亚洲五月天高清| 午夜福利网址| 亚洲大尺度在线| 青青草原国产一区二区| 欧美一区二区三区香蕉视| 亚洲三级成人| 亚洲精品无码不卡在线播放| 久久青青草原亚洲av无码| 国产波多野结衣中文在线播放| 亚洲成A人V欧美综合天堂| 中文字幕亚洲乱码熟女1区2区| 久久永久视频| 亚洲女同欧美在线| 欧美一区二区三区国产精品| 999福利激情视频| 三级国产在线观看| 亚洲日韩精品无码专区97| 国产大全韩国亚洲一区二区三区| 午夜国产大片免费观看| www.91中文字幕| 婷婷丁香在线观看| 亚洲一级毛片免费看| 国产青榴视频| 国产精品亚洲一区二区三区z | 免费在线一区| 在线日韩一区二区| 亚洲 欧美 日韩综合一区| 国产一级在线播放| 免费看一级毛片波多结衣| 欧美福利在线| 91啪在线| 亚洲人妖在线| 欧美自慰一级看片免费| 5388国产亚洲欧美在线观看| a毛片免费在线观看| 一级高清毛片免费a级高清毛片| 国产丝袜一区二区三区视频免下载| 国内精品自在自线视频香蕉 | 无码专区国产精品一区| 五月婷婷精品| 日本亚洲成高清一区二区三区| 强奷白丝美女在线观看 | 在线欧美一区| 婷婷中文在线| 99这里精品| 夜色爽爽影院18禁妓女影院| 欧美在线国产| 国产黄视频网站| 四虎精品国产永久在线观看|