焦國慧 徐紹鵬 苗晶晶 王玉姬 吳琨


摘要:心力衰竭(HF)是慢性、進展性疾病,是全球人口死亡的主要原因。HF的病理生理異常主要包括心臟結(jié)構(gòu)(心肌與瓣膜)異常、電生理活動紊亂、心肌收縮能力減弱等。除了藥物和心臟移植治療,進展期HF還可以使用介入治療,包括經(jīng)導(dǎo)管介入、機械循環(huán)輔助裝置等。本文總結(jié)了在全球已上市或被認證為創(chuàng)新或突破性設(shè)備稱號、用于進展期HF患者的器械研究現(xiàn)狀和發(fā)展趨勢,為醫(yī)療器械研發(fā)和監(jiān)管人員提供參考。HF器械治療方案呈現(xiàn)多樣化組合特點,基于個體化HF治療方案和器械設(shè)計的風險-獲益評估、醫(yī)療保險支付、上市后監(jiān)管體系以及保護高端技術(shù)的知識產(chǎn)權(quán)等方面進步和完善,會推動醫(yī)療器械技術(shù)和行業(yè)發(fā)展,讓患者更大獲益。
關(guān)鍵詞:心力衰竭;結(jié)構(gòu);電生理;介入;醫(yī)療器械
中圖分類號: R54;R65? 文獻標志碼: A? 文章編號:1000-503X(2023)05-0840-13
DOI:10.3881/j.issn.1000-503X.15395
Research Status and Trend of Devices for Treating Advanced Heart Failure
JIAO Guohui1,XU Shaopeng2,MIAO Jingjing1,WANG Yuji1,WU Kun1
1Center for Medical Device Evaluation,NMPA,Beijing 100081,China
2Department of Cardiac Disease,Tianjin Medical University General Hospital,Tianjin 300000,China
Corresponding author:WANG Yuji? Tel:010-86452982,E-mail:wangyj@cmde.org.cn
ABSTRACT:Heart failure (HF),a chronic progressive disease,is a global health problem and the leading cause of deaths in the global population.The pathophysiological abnormalities of HF mainly include abnormal cardiac structure (myocardium and valves),disturbance of electrophysiological activities,and weakened myocardial contractility.In addition to drug therapy and heart transplantation,interventional therapies can be employed for advanced-stage HF,including transcatheter interventions and mechanical circulatory assist devices.This article introduces the devices used for advanced HF that have been marketed or certified as innovative or breakthrough devices around the world and summarizes the research status and prospects the trend in this field.As diversified combinations of HF devices are used for the treatment of advanced HF,considerations regarding individualized HF therapy,risk-benefit evaluation on device design,medical insurance payment,post-market supervision system,and protection of intellectual property rights of high-end technology are needed,which will boost the development of the technology and industry and benefit the patients.
Key words:heart failure;structure;electrophysiology;intervention;medical device
Acta Acad Med Sin,2023,45(5):840-852
心力衰竭(heart failure,HF)是慢性、進展性疾病,盡管藥物治療方案不斷優(yōu)化,仍然成為全球人口死亡的主要原因[1]。HF以往定義為,由心臟結(jié)構(gòu)或功能性異常引起相關(guān)臨床癥狀,伴有心房鈉尿肽水平升高或肺循環(huán)以及全身的淤血癥狀。根據(jù)左心室射血分數(shù)(left ventricular ejection fraction,LVEF) 將HF分為:射血分數(shù)降低的HF(heart failure with reduced ejection fraction,HFrEF)即LVEF ≤40%,射血分數(shù)保留的HF(heart failure with preserved ejection fraction,HFpEF)即LVEF ≥50%,中等射血分數(shù)的HF即LVEF=40%~49%[2]。以往研究關(guān)注的HFrEF,藥物治療有一定效果,但HFpEF 的患病率一直在增加,且藥物治療效果欠佳。根據(jù)HF發(fā)生、發(fā)展過程,又分為風險期、前期、癥狀期和進展期[3-4]。HF快速進展時的病理生理異常主要包括:心臟結(jié)構(gòu)(心肌與瓣膜)異常,電生理活動紊亂,心肌收縮能力減弱。
近年來,HF的器械治療手段逐漸受到關(guān)注,特別是HF介入的治療方法,包括經(jīng)導(dǎo)管介入和機械循環(huán)輔助裝置(mechanical circulatory support,MCS)等[5]。目前研發(fā)的HF治療器械,主要通過降低左心房壓力(left atrial pressure,LAP)或肺毛細血管楔壓(pulmonary capillary wedge pressure,PCWP),改善心功能,達到治療效果[6]。目前新型的器械多用于進展期,這樣進展期HF的患者,除了可以接受藥物治療,還有越來越多的器械治療方案,且呈現(xiàn)多樣化組合特點,臨床醫(yī)生需要依據(jù)患者的疾病與合并癥情況,進行選擇。
本文總結(jié)基于HF患者心臟結(jié)構(gòu)、電生理功能、心肌收縮能力、自主神經(jīng)系統(tǒng)功能進行干預(yù)和調(diào)節(jié)的器械,以及MCS和HF的遠程監(jiān)控器械的特點,為研發(fā)和監(jiān)管人員提供參考。
進展期HF治療器械的研究現(xiàn)狀
心臟結(jié)構(gòu)性干預(yù)? 心房分流器械是通過建立從左心房到其他心室或結(jié)構(gòu)的分流通道來降低LAP,可短期內(nèi)緩解癥狀[7]。心房分流器械主要包括心房分流裝置、心房血流調(diào)節(jié)器、心房至冠狀竇分流器等[8]。
Corvia房間隔分流器 (Corvia Medical,美國)已經(jīng)獲得歐盟(Conformite Europeenne,CE)認證,且于2019年,獲得美國食品藥品監(jiān)督管理局(Food and Drug Administration,F(xiàn)DA)突破性設(shè)備稱號[7]。Corvia房間隔分流器在降低HF患者左房壓升高的試驗中,可用于HFpEF 患者,植入后觀察到患者PCWP下降,心功能有良好改善。2022年2月公布的降低HF患者左房壓升高的試驗Ⅱ研究結(jié)果顯示,Corvia房間隔分流器雖然沒有降低射血分數(shù)≥40%患者中HF事件的總體發(fā)生率,也沒有改善HF患者的健康狀況,但事后的亞組分析提示了肺血管阻力正常的人群可能從治療中獲益[8-9]。
同樣獲得了CE認證以及FDA授予的突破性設(shè)備稱號的V-Wave Ventura Shunt房間隔分流器(V-Wave,以色列),是沙漏型自膨式鎳鈦合金支架,左房面為聚四氟乙烯,右房面是三葉狀豬心包瓣膜,可以減少右向左的分流和矛盾栓塞,形成單向左向右的血流。在研究試驗的早期,大多數(shù)病例的紐約心功能分級(New York Heart Association,NYHA)、生存質(zhì)量、PCWP等都有良好改善的變化,但在長期隨訪中,發(fā)現(xiàn)近半數(shù)病例中,裝置的作用逐漸消失,長期效果需要進一步論證[10]。
處于臨床研究階段的國產(chǎn)心房分流器(D-shant,唯柯醫(yī)療)從裝置的可回收性、支撐性能和防止分流孔閉塞方面進行設(shè)計改進,提高此類器械的臨床可用性,術(shù)后短期效果達到設(shè)計要求,但長期效果需要進一步隨訪。目前,尚處于臨床研究中的 NoYATM射頻心房間分流系統(tǒng)(杭州諾生醫(yī)療)、FreeFlow(上海傲流醫(yī)療)等,將可降解、無植入的設(shè)計理念融入產(chǎn)品研發(fā)中,通過對HF患者肺循環(huán)血流動力學(xué)的影響,改善HF患者的健康狀況。可降解、無植入是未來這類器械新的發(fā)展方向。
Occlutech心房血流調(diào)節(jié)器(Occlutech,土耳其)為雙盤編制網(wǎng)狀結(jié)構(gòu),中空允許雙向血流通過,經(jīng)股靜脈入路植入。已有研究將此器械用于嚴重肺動脈高壓患者,觀察到短期的癥狀改善[11]。首個臨床試驗選擇的人群是HFrEF或HFpEF、伴有PCWP≥15 mmHg的患者,植入Occlutech心房血流調(diào)節(jié)器后隨訪1年,患者臨床癥狀明顯改善,但要注意其中有11%患者因為HF惡化住院治療,6%患者死亡[12]。
心臟電生理干預(yù)? HF患者心律失常的發(fā)生率高,當藥物治療效果不佳時,采用植入型心律轉(zhuǎn)復(fù)除顫器和心臟再同步化治療除顫器(cardiac resynchronization therapy defibrillator,CRT-D)控制心率,可以改善左心室功能[13]。生理性起搏和多參數(shù)遠程監(jiān)控是此領(lǐng)域發(fā)展的熱點方向。希氏束起搏可以用于CRT-D適應(yīng)證的患者,經(jīng)導(dǎo)管消融的手段也對HFrEF患者有益,減少HF相關(guān)不良事件的發(fā)生[14]。為了降低猝死的風險,可穿戴式的心律轉(zhuǎn)復(fù)-除顫系統(tǒng)作為橋接到心功能恢復(fù)或外科干預(yù)治療的選擇[15],房顫合并HF患者可以采用CRT-DX (BIOTRONIK,美國)系統(tǒng)進行治療,在觀察到短期有效性基礎(chǔ)上,需要進一步隨訪患者的長期結(jié)局[16]。左心房起搏(冠狀竇起搏)最早用于房性心動過速治療,后用于HFpEF 患者在左心房功能下降后,出現(xiàn)心房電生理不同步狀況下的治療,小樣本研究顯示,治療后患者6 min步行距離可以改善,但長期效果的維持尚不能確定[17]。
傳統(tǒng)的心臟電生理設(shè)備通過靜脈系統(tǒng)植入,利用導(dǎo)線連接皮下的電池和設(shè)備,近年來無導(dǎo)線起搏技術(shù)逐漸受到臨床關(guān)注。WiSE-CRT 系統(tǒng)(EBR Systems,美國)為無導(dǎo)線左心室心內(nèi)膜起搏系統(tǒng),利用超聲能量改善HF的癥狀,促進左心室逆重構(gòu)[18]。近期FDA批準的無導(dǎo)線起搏器不僅可以感知和起搏左心室,而且同時能感知心房和心室,這樣就可采用體內(nèi)通信技術(shù)促進左右心室同步化,更好改善HF的癥狀,因此,無導(dǎo)線、左右心室同步化的設(shè)備是未來研究方向[19]。
心肌收縮能力調(diào)節(jié)? 心臟收縮力調(diào)節(jié)治療(cardiac contractility modulation,CCM)系統(tǒng)(Impulse Dynamics,德國)是在絕對不應(yīng)期,采用高電壓長時間(7.5 V,20 ms),刺激右室間隔,通過增加心肌細胞鈣誘導(dǎo)鈣釋放機制,增加心肌收縮力,降低心室容積,可用于不適合CRT-D的患者[20],特別適用于HFrEF、射血分數(shù)處于25%~45%、呈竇性心律、QRS間期正常或輕度升高的患者。在歐洲和美國開展的3項隨機對照試驗結(jié)果顯示,LVEF在35%~45%水平的患者獲益更為明顯,HFpEF 患者也通過改變心室重構(gòu)獲得了良好治療效果[21]。
未來CCM技術(shù)升級方向,主要包括了強電池續(xù)航能力、小體積、靈敏電極和不易損傷心肌等。臨床研究應(yīng)進一步確定:植入CCM的最佳時機,CCM植入降低死亡率、并發(fā)癥的發(fā)生率以及相關(guān)住院率和住院時間的數(shù)據(jù),HF患者可以從CCM中獲益的術(shù)前預(yù)期最低左心室殘余功能要求,改善生活質(zhì)量程度的影響等[22]。
心臟微電流C-MIC(Berlin Heals,瑞士)治療裝置通過位于左心室心外膜和右心室的導(dǎo)線,連接至皮下囊袋中的微電流發(fā)生器改善心肌收縮力。首次在HFrEF患者中植入并觀察30 d,無不良事件發(fā)生[23]。進一步發(fā)展而來的膈肌刺激治療,通過腹腔鏡植入VisONE系統(tǒng)(2020年獲得FDA突破性設(shè)備稱號),伴隨心動周期同步發(fā)送刺激脈沖,改變胸腔內(nèi)壓力。小樣本研究顯示該器械可以改善心輸出量、LVEF和6 min步行距離,降低心率,有良好的治療效果[24]。
自主神經(jīng)系統(tǒng)功能調(diào)節(jié)? HF患者交感神經(jīng)過度活化,且壓力感受器-心率反射弧的敏感性下降,基于器械治療的交感神經(jīng)功能調(diào)控可能成為新的治療手段[25]。壓力感受器刺激治療儀(baroreflex activation therapy,BAT)通過電信號刺激頸動脈壓力感受器,降低交感神經(jīng)系統(tǒng)興奮性[26-27]。2019年FDA批準BAT上市,用于NYHA Ⅲ級、不適合CRT-D治療的患者,效果明顯,但還需要積累長期療效數(shù)據(jù)[28]。
另一方面,刺激迷走神經(jīng)可拮抗交感神經(jīng)興奮對心血管系統(tǒng)的不良影響,ANTHEM-HF (Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Heart Failure)研究顯示在NYHA Ⅱ級或Ⅲ級的患者頸部,植入 Cyberonics VNS(Cyberonics,美國)系統(tǒng),觀察到LVEF、NYHA分級、6 min步行距離等指標的改善[29]。目前該類器械還在HFrEF和HFpEF兩類患者中開展臨床試驗,短期效果明顯,長期效果還有待觀察[30]。
機械循環(huán)輔助裝置MCS? 主要包括:(1)經(jīng)皮機械循環(huán)輔助泵;(2)心室/心房輔助裝置;(3) 雙心室支持/全人工心臟。
經(jīng)皮機械循環(huán)輔助泵:臨時經(jīng)皮機械循環(huán)輔助技術(shù)采用軸流旋轉(zhuǎn)式血泵,可經(jīng)介入導(dǎo)管植入人體,降低心臟前負荷,此技術(shù)的發(fā)展主要有3個方向:(1)左心房到股動脈旁路泵(TandemHeart,英國);(2)體內(nèi)經(jīng)瓣膜軸流泵(Abiomed Inc.,美國);(3)靜脈-動脈體外膜肺氧合(extracorporeal membrane oxygenation,ECMO)[31]。軸流泵以Impella為代表,系列產(chǎn)品包含已經(jīng)過的FDA、CE批準用于臨床左心輔助的2.5、CP、5.0、5.5、LD型號和右心輔助的RP型號[32],其植入的位置主要在跨主動脈瓣,改善患者血流動力學(xué)以及心臟的泵血功能[33]。Impella 可以和靜脈-動脈 ECMO聯(lián)合使用,利于早期撤除ECMO[34]。主動脈瓣會面臨不同的心內(nèi)壓力梯度和心功能,以及全身血流阻力,除了器械移位會導(dǎo)致不能有效進行心室壓力卸載,跨瓣泵本身會帶來溶血、心律失常、空吸,血栓形成和主動脈瓣關(guān)閉不全等問題,目前研發(fā)的其他介入式血泵可通過固定設(shè)計或可擴展設(shè)計的管路,包括采用跨瓣膜組件、體內(nèi)驅(qū)動裝置或外部電源,優(yōu)化泵入口和出口、前端和心內(nèi)膜接觸部位設(shè)計,獲得性能的提升。為了進一步避免跨主動脈瓣設(shè)計帶來的并發(fā)癥,主動脈內(nèi)置泵技術(shù)也是新的研發(fā)熱點[35]。
心室/心房輔助裝置:當患者心功能不全,預(yù)期需要較長時間才能恢復(fù),常需要橋接到進一步治療的策略,包括橋接到康復(fù)、橋接到臨床決策以及橋接到移植。介入式心室輔助裝置(ventricular assist devices,VAD)適用的情景從橋接到移植逐步演變?yōu)殚L期植入的替代性治療。VAD設(shè)備包括體外心室輔助裝置,植入心室輔助裝置以及雙心室輔助/全人工心臟。隨著左心室輔助裝置(left ventricular assist device,LVAD)應(yīng)用的不斷增多,ECMO橋接的終點可以為VAD或心臟移植。從機械輔助循環(huán)支持的機構(gòu)登記隊列和美國器官共享聯(lián)合網(wǎng)絡(luò)中收集的906例使用ECMO橋接的患者中,橋接到VAD的比例為64.8%,而橋接到心臟移植的比例為35.2%[36]。
LVAD經(jīng)歷了第一代搏動泵,到第二代軸承式泵,第三代離心式連續(xù)血流泵(LVAD成為長期植入MCS的主流技術(shù)),包括采用磁流體懸浮軸承的HeartWare(美敦力,美國)、全磁懸浮式的HeartMate 3 (雅培,美國)[37],Levacor VAD (WorldHeart)、DuraHeart (Terumo Heart Corp)和EVAHEART (EVI)等。第三代離心泵通過磁懸浮的方式,減少泵頭的摩擦力,轉(zhuǎn)速的波動模擬了脈搏變化的情況,減少卒中事件的發(fā)生,成為了HF治療的新選擇[38-42]。特別是MOMENTUM 3(Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3)研究,從生存率、卒中風險和二次手術(shù)3個方面證實HeartMate 3優(yōu)于HeartMate Ⅱ,進一步在后續(xù)隨訪中證實了接受HeartMate 3 植入的患者5年生存率更優(yōu)[42]。同代采用液力懸浮技術(shù)的產(chǎn)品EVAHEART[43]2010年在日本獲批,用于橋接到心臟移植治療,于2019年在我國上市。我國目前獲批上市的國產(chǎn)LVAD包括CH-VAD(蘇州同心醫(yī)療)和HeartCon(航天泰心科技),推動了國產(chǎn)化替代的進程。
在過去的50年間,LVAD植入后患者生存率和生存質(zhì)量已有明顯提高,但術(shù)后的并發(fā)癥,包括感染、出血、神經(jīng)功能異常和右側(cè)HF的發(fā)生率仍較高。對于存在移植禁忌證而機械輔助循環(huán)支持的機構(gòu)登記隊列分級輕的患者,早期LVAD植入可能有助于改善其預(yù)后[44]。LVAD植入后發(fā)生導(dǎo)線相關(guān)感染和右側(cè)HF的問題,目前還沒有完善的解決方案,為了減少導(dǎo)線相關(guān)感染,未來可在LVAD設(shè)備上使用無導(dǎo)線電源傳輸系統(tǒng)[45]。LVAD植入后右側(cè)HF的發(fā)生與患者死亡和并發(fā)癥發(fā)生有密切的關(guān)系,肺動脈壓力指數(shù)、右心室游離壁縱向應(yīng)變和N端腦鈉肽前體為重要的預(yù)測因子[46]。植入LVAD同時進行右心室機械輔助循環(huán)支持(right ventricular assist device,RVAD)可以降低患者右側(cè)HF相關(guān)的死亡率,提高1年生存率[47]。如果合并嚴重的右心室功能衰竭,可以采用的RVAD包括Centri-Mag (Abbott,美國)、Tandem ProTek (LivaNova PLC,英國)、Impella RP (Abiomed Inc.,美國)等。對于同時患有左側(cè)HF和右側(cè)HF的患者,是LVAD聯(lián)合臨時RVAD,還是同時雙心室/全心支持,需要開展進一步的臨床研究[48-49]。Rame等[50]研究表明,如果患者術(shù)后3個月沒有發(fā)生右側(cè)HF,以后發(fā)生的概率也很低,而且12個月的死亡率、卒中發(fā)生率,胃腸道出血和再入院率都相對較低。LVAD與其他治療設(shè)備聯(lián)合使用的經(jīng)驗也逐漸被報道,例如聯(lián)合使用CytoSorb清除炎癥因子,改善患者的免疫狀態(tài)[51]。
目前處于研發(fā)階段的LVAD第四代和第五代產(chǎn)品,進一步簡化手術(shù)流程、縮短植入手術(shù)時間,具有設(shè)備小型化和植入路徑的微創(chuàng)化,延長電池壽命,減少并發(fā)癥的發(fā)生等特點,還有一些新的設(shè)計思路,包括無瓣搏動泵、無導(dǎo)線泵和心房輔助泵等,可在未來實現(xiàn)真正的搏動性血流模式、生理性的心房-心室-主動脈的血流模式,從而促進心室功能恢復(fù)[37,52]。
VAD技術(shù)的升級方向:(1)通過VAD平臺的實時波形分析和日志記錄,讓醫(yī)生了解泵和心血管系統(tǒng)相互作用,持續(xù)監(jiān)測MCS平臺的性能以及時評估患者狀態(tài),成為重要的技術(shù)升級方向;(2)隨著人們對于患者-泵的相互作用不斷深入了解,正在研發(fā)自適應(yīng)泵速的LVAD[53],基于實時的深卷積神經(jīng)網(wǎng)絡(luò)算法對LVAD血流估計心臟前負荷,通過無模型自適應(yīng)控制系統(tǒng),采用無傳感器的方式調(diào)節(jié)泵速[54];(3)降低器械相關(guān)的剪切力,采用更高生物相容性的材料,增加泵的搏動性,以及更優(yōu)化的抗凝方案[55];(4)采用物理氣相沉積和等離子體增強化學(xué)氣相沉積作為涂層技術(shù),聯(lián)合氫化四面體非晶碳或氫化非晶碳用于鈦基底結(jié)構(gòu),不斷改進心室輔助裝置中的瓣膜結(jié)構(gòu)和材料[56];(5)利用帶有磁致旋光性的心臟膜片結(jié)構(gòu)結(jié)合磁驅(qū)動系統(tǒng),貼合至心外膜,組成不與血液接觸的VAD,避免了VAD接觸血液帶來的并發(fā)癥[57]。
雙心室支持/全人工心臟:對于需要雙心室支持的患者,可以采用全人工心臟(SyncardiaTAH,美國)或體外雙心室支持(EXCOR,德國)。Syncardia TAH被FDA批準用于可接受心臟移植的患者,EXCOR 系統(tǒng)適用的范圍更廣,可用于兒童患者[44]。EXCOR心室輔助裝置于2011年在美國以人道主義豁免的形式首次臨床應(yīng)用,2017被FDA批準上市,上市后研究發(fā)現(xiàn),全球40余家兒童心臟中心的植入數(shù)據(jù)和2007~2014年建立的EXCOR植入患者隊列的歷史數(shù)據(jù)相比,前者植入后180 d內(nèi)進行心臟移植病例、撤除設(shè)備或帶設(shè)備生存率更高,且卒中、出血以及泵更換的發(fā)生率更低[58]。目前雙心室支持/全人工心臟適用的患者還僅局限于橋接到心臟移植治療,也有研究正在探索TAH作為終點治療的可能性。
CARMAT TAH(法國)器械的設(shè)計融合了心臟外科醫(yī)生、愛德華心臟瓣膜公司和空客公司三方的技術(shù)理念,具有雙心室和4個瓣膜,采用電動液壓驅(qū)動的搏動血流模式和內(nèi)置壓力傳感器,通過感知心臟搏出量和心率,利用自調(diào)節(jié)血流動力學(xué)適應(yīng)性算法調(diào)節(jié)泵輸出量,維持左右心室的輸出量平衡,可提供適應(yīng)患者活動情況的搏動性血流[59]。CARMAT TAH器械于2020年獲得CE認證,2021年獲得FDA批準上市,用于6個月內(nèi)接受心臟移植的橋接治療,植入后6個月的生存率為70%[60-61]。該器械面臨的風險在于,如果設(shè)備失效,患者就只能依賴自身心臟功能,會發(fā)生致命的后果,也是上市前評價其安全性的主要關(guān)注點[62]。
還在研發(fā)中的器械包括:BiVACOR(美國)、Rein Heart TAH (德國)、CCF TAH (美國)、Oregon Heart TAH (美國)、Helical Flow TAH (日本)等。全人工心臟的長期能源消耗問題需要從電池技術(shù)上解決。Lynntech Inc.(美國)在美國國家心肺血液研究所(NHLBI)的資助下,在高能量密度、低重量、可用于植入器械的電池技術(shù)方面取得突破,擬進一步開展研究,以將該技術(shù)用于全人工心臟[63]。AbioCor TAH (美國)和LionHeart LVAD (美國)通過線圈傳遞能量,能量傳輸效率明顯升高,但目前這種經(jīng)皮能量傳輸系統(tǒng)技術(shù)的能量傳輸效率有限,加之本身的能源消耗,影響能量有效利用,尚需進一步改進[64]。
HF的遠程監(jiān)控? HF作為一種慢性疾病,其長期管理可以利用遠程醫(yī)療和可穿戴設(shè)備技術(shù),整合起搏器、除顫器等數(shù)據(jù),通過新的算法快速識別異常,從而對患者進行干預(yù)的新模式來實現(xiàn)[65]。可穿戴心率轉(zhuǎn)復(fù)除顫設(shè)備不僅可以監(jiān)測心律失常事件的發(fā)生,還可以提供連續(xù)性的HF遠程監(jiān)測[66]。檢測肺動脈壓力和左房壓力的變化,可在臨床癥狀出現(xiàn)前發(fā)現(xiàn)異常,依據(jù)血流動力學(xué)特征來指導(dǎo)制訂HF治療方案,例如已獲得FDA批準的CardioMEMS(美國)器械為無線肺動脈壓力監(jiān)測系統(tǒng),用于監(jiān)測癥狀性HF[67],可以降低住院率,改善患者生存質(zhì)量[68];也可用于監(jiān)測LVAD患者術(shù)后狀況,由于伴有肺動脈壓力升高的患者出現(xiàn)心臟或腎臟并發(fā)癥率更高,該設(shè)備有助于早期干預(yù),減少住院率[69]。這類器械的使用還未能達到理想的程度,可植入的血流動力學(xué)檢測設(shè)備未來的研發(fā)方向是小型以及微型化,控制成本,減少患者依從性的要求,提升數(shù)據(jù)管理和解讀能力。
還有一些器械,尚處于臨床前研究或小樣本臨床研究階段,其創(chuàng)新性的設(shè)計和臨床應(yīng)用的前景值得期待,我們也作一歸納(表1),供讀者參考。HF治療器械技術(shù)的快速迭代,使得在同種心臟移植、心室輔助裝置之后,為HF患者的治療又打開了一扇大門,在未來可能會改變橋接治療的策略和器官分配的原則。
未來發(fā)展趨勢的思考
在過去的10年間,越來越多的HF治療器械通過美國FDA突破性設(shè)備認定的方式,最終獲準上市。在我國,通過創(chuàng)新醫(yī)療器械特別審查程序的HF治療器械數(shù)量,也逐年增加,從而加速器械研發(fā)進程,建立了基于器械的HF治療體系。隨著臨床治療理念和監(jiān)管環(huán)境的變化,理念創(chuàng)新和技術(shù)整合不斷深入,基于器械的HF治療已經(jīng)成為除了心臟移植以外,最重要的外科治療手段。HF治療器械的臨床研究終點、醫(yī)療保險的支付、上市后監(jiān)管和知識產(chǎn)權(quán)保護,都有其獨特的要求和特點,值得深入研究。
基于個體化HF治療方案和器械設(shè)計的風險-獲益評估? 由于疾病個體的差異性,每種器械的設(shè)計理念都帶有其對于HF病理生理機制某一方面的深刻理解,還未能有一種技術(shù)可以完全替代心臟移植作為終末治療的選擇,因此在設(shè)置上市前臨床研究終點時,從風險-獲益評估的角度出發(fā),需要考慮到產(chǎn)品設(shè)計的局限性,及其對評價終點的影響[70]。以疾病相關(guān)的死亡和HF相關(guān)住院為終點的研究,需要較長時間的隨訪和較大的樣本量,會導(dǎo)致產(chǎn)品上市批準時間長、投資大、風險高。近年來,HF的臨床研究越來越多的考慮以患者為中心的結(jié)局指標,包括生理、心理、社會功能和HF的癥狀。例如FDA允許基于安全性評價,以患者結(jié)局,例如功能性指標、生存質(zhì)量,或生物標記物等作為替代,評價產(chǎn)品有效性,加快上市前審批過程[71]。
醫(yī)療保險支付支持創(chuàng)新器械的臨床證據(jù)積累? HF患者群體已經(jīng)成為美國醫(yī)療保險支付中的主要群體之一,在目前美國的醫(yī)療實踐中,已經(jīng)建立了HF協(xié)同研究團隊等研究組織,將患者、臨床醫(yī)生和研究人員、企業(yè)界、監(jiān)管方、支付方連結(jié)在一起,探討如何加速HF治療器械研發(fā)和上市[72]。FDA通常需要強支持性證據(jù)才能接受某個治療終點作為批準的依據(jù),但醫(yī)療保險服務(wù)部門鼓勵醫(yī)生采用遠程監(jiān)測的方式獲得患者使用器械治療后的身體機能數(shù)據(jù)以及生物學(xué)終點,來進一步評價有效性,從保險費用報銷的角度給予支持[73]。從創(chuàng)新技術(shù)的角度出發(fā),美國醫(yī)療保險覆蓋計劃旨在連接FDA和醫(yī)療保險服務(wù)部門,支持臨床醫(yī)生使用批準上市的創(chuàng)新醫(yī)療器械產(chǎn)品,進一步鼓勵創(chuàng)新和投資,對被FDA認定為突破性設(shè)備和獲得上市許可的器械,給予一定期限的醫(yī)保支付。美國老年和殘障健康保險計劃也通過給予創(chuàng)新器械上市后一定期限內(nèi)的醫(yī)保支付,鼓勵臨床應(yīng)用,企業(yè)也可以收集更多的臨床證據(jù),支持后續(xù)醫(yī)保支付期限的延續(xù)[74]。我國正在推進醫(yī)保支付方式改革,加快推進對創(chuàng)新醫(yī)療器械的醫(yī)保支付進程,HF的治療器械種類繁多,未來也可以建立相關(guān)的研究型組織,為政府部門的醫(yī)保決策提供直接的臨床證據(jù)支持。
上市后監(jiān)管體系促進真實世界數(shù)據(jù)來源的臨床證據(jù)? HF治療的臨床試驗中,患者的結(jié)局往往與真實世界中的結(jié)果不同,是由于臨床試驗設(shè)置了嚴格的納入和排除指標。由于伴隨終末期腎病、血小板減少、呼吸衰竭、使用ECMO支持而被排除在臨床試驗之外的患者,自然死亡率也沒有在真實世界數(shù)據(jù)中表現(xiàn)出明顯的差異,因此,在器械的上市后研究中,應(yīng)該進一步評估患者獲益的可能性[75]。FDA、學(xué)會以及研發(fā)機構(gòu)建立了諸多的器械應(yīng)用登記隊列,旨在收集所有使用器械的患者數(shù)據(jù),特別是針對特殊群體,例如老年患者、兒童等,通過新型心臟治療方案改善預(yù)后網(wǎng)絡(luò),收集諸如LVAD等使用經(jīng)驗,改善兒童以及成人慢性HF患者的治療結(jié)局[76]。這些數(shù)據(jù)不僅有助于監(jiān)管方深入評價器械的治療效果,也為研發(fā)方對于器械的改進、研發(fā)新的器械,提供重要的參考數(shù)據(jù)。隨著越來越多的HF治療器械在全球上市,我國一些納入研究的患者數(shù)據(jù)也將進入隊列當中,為了形成針對中國人群的臨床使用經(jīng)驗,僅完成首例植入或小樣本的試驗還遠遠不夠,我們也應(yīng)當參與到全球的臨床和監(jiān)管研究體系中,促進開放、平等的數(shù)據(jù)治理體系建立。
圍繞技術(shù)原始創(chuàng)新,保護高端技術(shù)的知識產(chǎn)權(quán)? 未來HF器械治療技術(shù)的創(chuàng)新方向主要采用無外部導(dǎo)線設(shè)計、生物相容性好的血液接觸材料,降低對抗凝藥物的需求,適應(yīng)患者生理需求的智能泵等[77]。原始創(chuàng)新技術(shù)的知識產(chǎn)權(quán)保護是保障后續(xù)研發(fā)升級、產(chǎn)品上市及全球化應(yīng)用的重要保障[78]。以HF治療器械為代表的高端制造產(chǎn)品,由于臨床研究時間較長,成本較高,只有建立全方位的知識產(chǎn)權(quán)保護體系,構(gòu)建市場導(dǎo)向的科技成果轉(zhuǎn)移和轉(zhuǎn)化機制,設(shè)立知識產(chǎn)權(quán)交易服務(wù)平臺,推動證券化交易,才能獲取更大的發(fā)展空間。
結(jié)論
雖然心臟移植可以改善HF患者的預(yù)后,但等待移植的患者名單越來越長,大量的臨床需求難以滿足。隨著長期可植入的MCS技術(shù)進步,藥物治療效果不好且暫不適合接受心臟移植的患者,獲得了生存希望[79]。HF器械治療技術(shù)的未來發(fā)展,將不斷針對HF相關(guān)的病理生理靶點,在全球醫(yī)工合作的背景下快速的更新迭代,在HF這一結(jié)構(gòu)心臟病“最后的戰(zhàn)場”上,進行激烈的競爭,不斷接受臨床應(yīng)用的挑戰(zhàn)。
參考文獻
[1]Bozkurt B,Coats AJ,Tsutsui H.Universal definition and classification of heart failure:a report of the Heart Failure Society of America,Heart Failure Association of the European Society of Cardiology,Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure[J].J Card Fail,2021:S1071-9164(21)00050-6.DOI:10.1016/j.cardfail.2021.01.022.
[2]Bauersachs J,de Boer RA,Lindenfeld J,et al.The year in cardiovascular medicine 2021:heart failure and cardiomyopathies[J].Eur Heart J,2022,43 (5):367-376.DOI:10.1093/eurheartj/ehab887.
[3]蒙延海,張燕搏,劉平,等.《2022 AHA/ACC/HFSA心力衰竭管理指南》解讀:心力衰竭新理念和心外科關(guān)注點[J].中國胸心血管外科臨床雜志,2022,29(6):676-683.DOI:10.7507/1007-4848.202204031.
[4]Heidenreich PA,Bozkurt B,Aguilar D,et al.2022 AHA/ACC/HFSA guideline for the management of heart failure:a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J].J Am Coll Cardiol,2022,79(17):1757-1780.DOI:10.1016/j.jacc.2021.12.011.
[5]Saku K,Yokota S,Nishikawa T,et al.Interventional heart failure therapy:a new concept fighting against heart failure[J].J Cardiol,2021,80(2):101-109.DOI:10.1016/j.jjcc.2021.11.018.
[6]Miyagi C,Miyamoto T,Karimov JH,et al.Device-based treatment options for heart failure with preserved ejection fraction[J].Heart Fail Rev,2021,26(4):749-762.DOI:10.1007/s10741-020-10067-5.
[7]Griffin JM,Borlaug BA,Komtebedde J,et al.Impact of interatrial shunts on invasive hemodynamics and exercise tolerance in patients with heart failure[J].J Am Heart Assoc,2020,9(17):e016760.DOI:10.1161/JAHA.120.016760.
[8]Nanayakkara S,Kaye DM.Device therapy with interatrial shunt devices for heart failure with preserved ejection fraction[J].Heart Fail Rev,2023,28(2):281-286.DOI:10.1007/s10741-022-10236-8.
[9]Shah SJ,Borlaug BA,Chung ES,et al.Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II):a randomised,multicentre,blinded,sham-controlled trial[J].Lancet,2022,399(10330):1130-1140.DOI:10.1016/S0140-6736(22)00016-2.
[10]Rodes-Cabau J,Bernier M,Amat-Santos IJ,et al.Interatrial shunting for heart failure:early and late results from the first-in-human experience with the V-Wave system[J].JACC Cardiovasc Interv,2018,11(22):2300-2310.DOI:10.1016/j.jcin.2018.07.001.
[11]Rajeshkumar R,Pavithran S,Sivakumar K,et al.Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension[J].Catheter Cardiovasc Interv,2017,90(7):1145-1153.DOI:10.1002/ccd.27233.
[12]Paitazoglou C,Bergmann MW,Ozdemir R,et al.One-year results of the first-in-man study investigating the atrial flow regulator for left atrial shunting in symptomatic heart failure patients:the PRELIEVE study[J].Eur J Heart Fail,2021,23(5):800-810.DOI:10.1002/ejhf.2119.
[13]Sohrabi C,Ahsan S,Briasoulis A,et al.Contemporary management of heart failure patients with reduced ejection fraction:the role of implantable devices and catheter ablation[J].Rev Cardiovasc Med,2021,22(2):415-428.DOI:10.31083/j.rcm2202047.
[14]Mastoris I,Spall H,Sheldon SH,et al.Emerging implantable-device technology for patients at the intersection of electrophysiology and heart failure interdisciplinary care[J].J Card Fail,2022,28(6):991-1015.DOI:10.1016/j.cardfail.2021.11.006.
[15]Blockhaus C,List S,Waibler HP,et al.Wearable cardioverter-defibrillator used as a telemonitoring system in a real-life heart failure unit setting[J].J Clin Med,2021,10(22):5435.DOI:10.3390/jcm10225435.
[16]Hsu JC,Hesselson AB,Liang JJ,et al.Atrial fibrillation associated with heart failure treated by a 2-lead CRT-DX system (BIO-AffectDX):study design and clinical protocol[J].Heart Rhythm O2,2021,2(6Part A):642-650.DOI:10.1016/j.hroo.2021.10.001.
[17]Laurent G,Eicher JC,Mathe A,et al.Permanent left atrial pacing therapy may improve symptoms in heart failure patients with preserved ejection fraction and atrial dyssynchrony:a pilot study prior to a national clinical research programme[J].Eur J Heart Fail,2013,15(1):85-93.DOI:10.1093/eurjh f/hfs150.
[18]Okabe T,Hummel JD,Bank AJ,et al.Leadless left ventricular stimulation with WiSE-CRT system-initial experience and results from phase I of SOLVE-CRT Study (nonrandomized,roll-in phase)[J].Heart Rhythm,2022,19(1):22-29.DOI:10.1016/j.hrthm.2021.06.1195.
[19]Rav Acha M,Soifer E,Hasin T.Cardiac implantable electronic miniaturized and micro devices[J].Micromachines (Basel),2020,11(10):902.DOI:10.3390/mi11100902.
[20]Giallauria F,Cuomo G,Parlato A,et al.A comprehensive individual patient data meta-analysis of the effects of cardiac contractility modulation on functional capacity and heart failure-related quality of life[J].ESC Heart Fail,2020,7(5):2922-2932.DOI:10.1002/ehf2.12902.
[21]Abraham WT,Kuck KH,Goldsmith RL,et al.A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation[J].JACC Heart Fail,2018,6(10):874-883.DOI:10.1016/j.jchf.2018.04.010.
[22]Chera HH,Al-Sadawi M,Michelakis N,et al.Optimizer smart system for the treatment of chronic heart failure:overview of its safety and efficacy[J].Expert Rev Med Devices,2021,18(6):505-512.DOI:10.1080/17434440.2021.1923478.
[23]Schmitto JD,Napp LC,Mariani S,et al.First-in-man implantation of a cardiac microcurrent device for chronic systolic heart failure[J].ASAIO J,2022,68(7):e121-e123.DOI:10.1097/MAT.0000000000001537.
[24]Zuber M,Young R,Shaburishvili T,et al.First in human VisONE heart failure study:asymptomatic diaphragmatic stimulation for chronic heart failure:one month results[J].J Card Fail,2019,25(8):S170.DOI:10.1016/j.cardfail.2019.07.517.
[25]Li L,Hu Z,Xiong Y,et al.Device-based sympathetic nerve regulation for cardiovascular diseases[J].Front Cardiovasc Med,2021,8:803984.DOI:10.3389/fcvm.2021.803984.
[26]Rosalia L,Ozturk C,Shoar S,et al.Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction[J].JACC Basic Transl Sci,2021,6(9-10):772-795.DOI:10.1016/j.jacbts.2021.06.002.
[27]Sharif ZI,Galand V,Hucker WJ,et al.Evolving cardiac electrical therapies for advanced heart failure patients[J].Circ Arrhythm Electrophysiol,2021,14(4):e009668.DOI:10.1161/CIRCEP.120.009668.
[28]Zile MR,Lindenfeld J,Weaver FA,et al.Baroreflex activation therapy in patients with heart failure with reduced ejection fraction[J].J Am Coll Cardiol,2020,76(1):1-13.DOI:10.1016/j.jacc.2020.05.015.
[29]Premchand RK,Sharma K,Mittal S,et al.Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure:results of the ANTHEM-HF trial[J].J Card Fail,2014,20(11):808-816.DOI:10.1016/j.cardfail.2014.08.009.
[30]Gold MR,Van Veldhuisen DJ,Hauptman PJ,et al.Vagus nerve stimulation for the treatment of heart failure:the INOVATE-HF trial[J].J Am Coll Cardiol,2016,68(2):149-158.DOI:10.1016/j.jacc.2016.03.525.
[31]Nathan S,Grinstein J.Future devices for percutaneous mechanical circulatory support[J].Interv Cardiol Clin,2021,10(2S):e1-e12.DOI:10.1016/j.iccl.2021.04.003.
[32]Bernhardt AM,Potapov E,Schibilsky D,et al.First in man evaluation of a novel circulatory support device:early experience with the Impella 5.5 after CE mark approval in Germany[J].J Heart Lung Transplant,2021,40(8):850-855.DOI:10.1016/j.healun.2021.04.001.
[33]Ferrari MW,Schulze PC,Kretzschmar D.Acute right heart failure:future perspective with the PERKAT RV pulsatile right ventricular support device[J].Ther Adv Cardiovasc Dis,2020,14:1753944719895902.DOI:10.1177/1753944719895902.
[34]Sugimura Y,Katahira S,Immohr MB,et al.Initial experience covering 50 consecutive cases of large Impella implantation at a single heart centre[J].ESC Heart Fail,2021,8(6):5168-5177.DOI:10.1002/ehf2.13594.
[35]Vora AN,Schuyler JW,DeVore AD,et al.First-in-human experience with Aortix intraaortic pump[J].Catheter Cardiovasc Interv,2019,93(3):428-433.DOI:10.1002/ccd.27857.
[36]DeFilippis EM,Clerkin K,Truby LK,et al.ECMO as a bridge to left ventricular assist device or heart transplantation[J].JACC Heart Fail,2021,9(4):281-289.DOI:10.1016/j.jchf.2020.12.012.
[37]Tops LF,Coats AJS,Gal TB.The ever-changing field of mechanical circulatory support:new challenges at the advent of the‘single device era[J].Eur J Heart Fail,2021,23(9):1428-1431.DOI:10.1002/ejhf.2314.
[38]Rose EA,Gelijns AC,Moskowitz AJ,et al.Long-term use of a left ventricular assist device for end-stage heart failure[J].N Engl J Med,2001,345(20):1435-1443.DOI:10.1056/NEJMoa012175.
[39]Rogers JG,Pagani FD,Tatooles AJ,et al.Intrapericardial left ventricular assist device for advanced heart failure[J].N Engl J Med,2017,376(5):451-460.DOI:10.1056/NEJMoa1602954.
[40]Alam A.Effect of near monopoly in the left ventricular assist device market[J].Am J Cardiol,2022,163:134-135.DOI:10.1016/j.amjcard.2021.09.033.
[41]Heatley G,Sood P,Goldstein D,et al.Clinical trial design and rationale of the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with heartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol[J].J Heart Lung Transplant,2016,35(4):528-536.DOI:10.1016/j.healun.2016.01.021.
[42]Mehra MR,Goldstein DJ,Cleveland JC,et al.Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial[J].JAMA,2022,328(12):1233-1242.DOI:10.1001/jama.2022.16197.
[43]Saito S,Yamazaki K,Nishinaka T,et al.Post-approval study of a highly pulsed,low-shear-rate,continuous-flow,left ventricular assist device,EVAHEART:a Japanese multicenter study using J-MACS[J].J Heart Lung Transplant,2014,33(6):599-608.DOI:10.1016/j.healun.2014.02.015.
[44]Guidetti F,Arrigo M,F(xiàn)rank M,et al.Treatment of advanced heart failure-focus on transplantation and durable mechanical circulatory support:what does the future hold[J].Heart Fail Clin,2021,17(4):697-708.DOI:10.1016/j.hfc.2021.05.013.
[45]Shah KB,Starling RC,Rogers JG,et al.Left ventricular assist devices versus medical management in ambulatory heart failure patients:an analysis of INTERMACS Profiles 4 and 5 to 7 from the ROADMAP study[J].J Heart Lung Transplant,2018,37(6):706-714.DOI:10.1016/j.healun.2017.12.003.
[46]Stricagnoli M,Sciaccaluga C,Mandoli GE,et al.Clinical,echocardiographic and hemodynamic predictors of right heart failure after LVAD placement[J].Int J Cardiovasc Imaging,2022,38(3):561-570.DOI:10.1007/s10554-021-02433-7.
[47]Kumar S,Derbala MH,Nguyen DT,et al.A multi-institutional retrospective analysis on impact of RV acute mechanical support timing after LVAD implantation on 1-year mortality and predictors of RV acute mechanical support weaning[J].J Heart Lung Transplant,2022,41(2):244-254.DOI:10.1016/j.healun.2021.10.005.
[48]Glynn J,Song H,Hull B,et al.The OregonHeart total artificial heart:design and performance on a mock circulatory loop[J].Artif Organs,2017,41 (10):904-910.DOI:10.1111/aor.12959.
[49]Pelletier B,Spiliopoulos S,F(xiàn)inocchiaro T,et al.System overview of the fully implantable destination therapy-ReinHeart-total artificial heart[J].Eur J Cardiothorac Surg,2015,47(1):80-86.DOI:10.1093/ejcts/ezu321.
[50]Rame JE,Pagani FD,Kiernan MS,et al.Evolution of late right heart failure with left ventricular assist devices and association with outcomes[J].J Am Coll Cardiol,2021,78(23):2294-2308.DOI:10.1016/j.jacc.2021.09.1362.
[51]Zhigalov K,Eynde JVD,Zubarevich A,et al.Initial experience with CytoSorb therapy in patients receiving left ventricular assist devices[J].Artif Organs,2022,46(1):95-105.DOI:10.1111/aor.14099.
[52]Zandstra TE,Palmen M,Hazekamp MG,et al.Ventricular assist device implantation in patients with a failing systemic right ventricle:a call to expand current practice[J].Neth Heart J,2019,27(12):590-593.DOI:10.1007/s12471-019-01314-y.
[53]Cornwell WK,3rd,Stohr EJ,McDonnell BJ,et al.The future of mechanical circulatory support[J].Circ Heart Fail,2021,14(8):e008861.DOI:10.1161/CIRCHEARTFAILURE.121.008861.
[54]Fetanat M,Stevens M,Hayward C,et al.A sensorless control system for an implantable heart pump using a real-time deep convolutional neural network [J].IEEE Trans Biomed Eng,2021,68(10):3029-3038.DOI:10.1109/TBME.2021.3061405.
[55]Stevenson LW,Hoffman JRH,Menachem JN.The other ventricle with left ventricular assist devices[J].J Am Coll Cardiol,2021,78(23):2309-2311.DOI:10.1016/j.jacc.2021.09.1364.
[56]Major R,Gawlikowski M,Plutecka H,et al.Biocompatibility testing of composite biomaterial designed for a new petal valve construction for pulsatile ventricular assist device[J].J Mater Sci Mater Med,2021,32(9):118.DOI:10.1007/s10856-021-06576-w.
[57]Gu H,Bertrand T,Boehler Q,et al.Magnetically active cardiac patches as an untethered,non-blood contacting ventricular assist device[J].Adv Sci (Weinh),2020,8(1):2000726.DOI:10.1002/advs.202000726.
[58]Zafar F,Conway J,Bleiweis MS,et al.Berlin heart EXCOR and ACTION post-approval surveillance study report[J].J Heart Lung Transplant,2021,40(4):251-259.DOI:10.1016/j.healun.2021.01.010.
[59]Netuka I,Pya Y,Poitier B,et al.First clinical experience with the pressure sensor-based autoregulation of blood flow in an artificial heart[J].ASAIO J,2021,67(10):1100-1108.DOI:10.1097/MAT.0000000000001485.
[60]Arabia FA,Cantor RS,Koehl DA,et al.Interagency registry for mechanically assisted circulatory support report on the total artificial heart[J].J Heart Lung Transplant,2018,37(11):1304-1312.DOI:10.1016/j.healun.2018.04.004.
[61]Netuka I,Pya Y,Bekbossynova M,et al.Initial bridge to transplant experience with a bioprosthetic autoregulated artificial heart[J].J Heart Lung Transplant,2020,39(12):1491-1493.DOI:10.1016/j.healun.2020.07.004.
[62]Han JJ.Aeson-The Carmat total artificial heart is approved for enrollment in the United States[J].Artif Organs,2021,45(5):445-446.DOI:10.1111/aor.13959.
[63]Komlo CM,Throckmorton AL,Tchantchaleishvili V.On the path to permanent artificial heart technology:greater energy independence is paramount[J].Artif Organs,2021,45(4):332-335.DOI:10.1111/aor.13907.
[64]Au SLC,McCormick D,Lever N,et al.Thermal evaluation of a hermetic transcutaneous energy transfer system to power mechanical circulatory support devices in destination therapy[J].Artif Organs,2020,44(9):955-967.DOI:10.1111/aor.13679.
[65]Bekfani T,F(xiàn)udim M,Cleland JGF,et al.A current and future outlook on upcoming technologies in remote monitoring of patients with heart failure[J].Eur J Heart Fail,2021,23(1):175-185.DOI:10.1002/ejhf.2033.
[66]Hillmann HAK,Hohmann S,Mueller-Leisse J,et al.Feasibility and first results of heart failure monitoring using the wearable cardioverter-defibrillator in newly diagnosed heart failure with reduced ejection fraction[J].Sensors (Basel),2021,21(23):7798.DOI:10.3390/s21237798.
[67]Alcaraz A,Rojas-Roque C,Prina D,et al.Improving the monitoring of chronic heart failure in Argentina:is the implantable pulmonary artery pressure with CardioMEMS heart failure system cost-effective[J].Cost Eff Resour Alloc,2021,19(1):40.DOI:10.1186/s12962-021-00295-3.
[68]Ijaz SH,Shah SP,Majithia A.Implantable devices for heart failure monitoring[J].Prog Cardiovasc Dis,2021,69:47-53.DOI:10.1016/j.pcad.2021.11.011.
[69]Veenis JF,Radhoe SP,van Mieghem NM,et al.Safety and feasibility of hemodynamic pulmonary artery pressure monitoring using the CardioMEMS device in LVAD management[J].J Card Surg,2021,36(9):3271-3280.DOI:10.1111/jocs.15767.
[70]Reed SD,Yang JC,Rickert T,et al.Quantifying benefit-risk preferences for heart failure devices:a stated-preference study[J].Circ Heart Fail,2022,15(1):e008797.DOI:10.1161/CIRCHEARTFAILURE.121.008797.
[71]Zile MR,Abraham WT,Lindenfeld J,et al.First granted example of novel FDA trial design under Expedited Access Pathway for premarket approval:BeAT-HF[J].Am Heart J,2018,204:139-150.DOI:10.1016/j.ahj.2018.07.011.
[72]Zeitler EP,OConnor CM,Abraham W,et al.How is medical device innovation currently supported in the U.S.?:from the heart failure collaboratory[J].JACC Heart Fail,2021,9(11):855-857.DOI:10.1016/j.jchf.2021.09.005.
[73]Kelly JP,Sharma A.Accelerating the use of wearable devices in heart failure[J].JACC Heart Fail,2021,9(11):836-838.DOI:10.1016/j.jchf.2021.07.002.
[74]Johnston JL,Dhruva SS,Ross JS,et al.Early experience with the FDAs breakthrough devices program[J].Nat Biotechnol,2020,38(8):933-938.DOI:10.1038/s41587-020-0636-7.
[75]Mezzacappa C,Ravindra NG,Caraballo C,et al.Clinical implications of differences between real world and clinical trial usage of left ventricular assist devices for end stage heart failure[J].PLoS One,2020,15(12):e0242928.DOI:10.1371/journal.pone.0242928.
[76]Perry T,Lorts A,Morales DLS,et al.Chronic ventricular assist device support in adult congenital heart disease patients:A childrens hospital perspective[J].ASAIO J,2021,67(12):e216-e220.DOI:10.1097/MAT.0000000000001595.
[77]Mehra MR,Gustafsson F.Left ventricular assist devices at the crossroad of innovation in advanced heart failure[J].J Card Fail,2021,27(11):1291-1294.DOI:10.1016/j.cardfail.2021.06.003.
[78]唐家龍.新階段我國生物醫(yī)藥產(chǎn)業(yè)的發(fā)展態(tài)勢與對策建議[J].科技與金融,2021,2021(5):3-10.DOI:10.3969/j.issn.2096-4935.2021.05.002.
[79]Petersen E.Development of mechanical circulatory support devices:55 years and counting[J].AACN Adv Crit Care,2021,32(4):424-433.DOI:10.4037/aacnacc2021811.
[80]Gooley RP,Meredith IT.The Accucinch transcatheter direct mitral valve annuloplasty system[J].EuroIntervention,2015,11 Suppl W:W60-W61.DOI:10.4244/EIJV11SWA16.
[81]Cardiac Success Ltd.Cardiac success closes US $5.2M series a financing[A/OL].(2021-6-24) [2023-1-20].https://www.cardiacsuccess.com/.
[82]Klein P,Anker SD,Wechsler A,et al.Less invasive ventricular reconstruction for ischaemic heart failure[J].Eur J Heart Fail,2019,21(12):1638-1650.DOI:10.1002/ejhf.1669.
[83]Agdamag AC,Shaffer A,John R,et al.First successful LVAD implantation after BioVentrix Revivent TC ventricular reshaping[J].Ann Thorac Surg,2021,112(2):e123-e126.DOI:10.1016/j.athoracsur.2020.11.052.
[84]Feld Y,Reisner Y,Meyer-Brodnitz G,et al.The CORolla device for energy transfer from systole to diastole:a novel treatment for heart failure with preserved ejection fraction[J].Heart Fail Rev,2021.DOI:10.1007/s10741-021-10104-x.
[85]Burlacu A,Simion P,Nistor I,et al.Novel percutaneous interventional therapies in heart failure with preserved ejection fraction:an integrative review[J].Heart Fail Rev,2019,24(5):793-803.DOI:10.1007/s10741-019-09787-0.
[86]Su X,Yang W,Zhu Z,et al.Heartech(R) left ventricular partitioning device improves left ventricular systolic function of patients with chronic heart failure post-myocardial infarction at 1-year follow-up[J].Catheter Cardiovasc Interv,2022,99(1):50-56.DOI:10.1002/ccd.29489.
[87]Li J,Liu H,Liu Q,et al.Long-term prognosis analysis of PARACHUTE device implantation in patients with ischemic heart failure:a single-center experience of Chinese patients[J].J Cardiothorac Surg,2021,16(1):98.DOI:10.1186/s13019-021-01484-0.
[88]Shanks J,Abukar Y,Lever NA,et al.Reverse re-modelling chronic heart failure by reinstating heart rate variability[J].Basic Res Cardiol,2022,117(1):4.DOI:10.1007/s00395-022-00911-0.
[89]BioVentrix.BioVentrix expands heart failure treatment portfolio with MateraCor acquisition[A/OL].(2022-1-27)[2023-5-15].https://bioventrix.com/en-us/about-biovenetrix/press-releases/89-bioventrix-expands-portfolio-with-acquisition-of-materacor-inc.
[90]Raval AN,Johnston PV,Duckers HJ,et al.Point of care,bone marrow mononuclear cell therapy in ischemic heart failure patients personalized for cell potency:12-month feasibility results from CardiAMP heart failure roll-in cohort[J].Int J Cardiol,2021,326:131-138.DOI:10.1016/j.ijcard.2020.10.043.
[91]TCTMD.Splanchnic nerve ablation improves HFpEF symptoms,QoL in FIH Study[A/OL].(2020-10-12)[2023-1-20].https://www.tctmd.com/news/splanchnic-nerve-ablation-improves-hfpef-symptoms-qol-fih-study.
[92]Kapur NK,Kiernan MS,Gorgoshvili I,et al.Intermittent occlusion of the superior vena cava to improve hemodynamics in patients with acutely decompensated heart failure:The VENUS-HF early feasibility study[J].Circ Heart Fail,2022,15(2):e008934.DOI:10.1161/CIRCHEARTFAILURE.121.008934.
[93]Abiomed.Our story [A/OL].(2023-1-20)[2023-3-26].https://www.abiomed.com/about-us/our-story.
[94]Abraham WT,Jonas M,Dongaonkar RM,et al.Direct interstitial decongestion in an animal model of acute-on-chronic ischemic heart failure[J].JACC Basic Transl Sci,2021,6(11):872-881.DOI:10.1016/j.jacbts.2021.09.008.
[95]Kapur NK,Jorde UP,Sharma S,et al.Early experience with the HeartMate percutaneous heart pump from the SHIELD II trial[J].ASAIO J,2022,68(4):492-497.DOI:10.1097/MAT.0000000000001517.
[96]Kretzschmar D,Schulze PC,F(xiàn)errari MW.Concept,evaluation,and future perspectives of PERKAT(R) RV-A novel right ventricular assist device[J].J Cardiovasc Transl Res,2019,12(2):150-154.DOI:10.1007/s12265-018-9834-9.
[97]Kapur NK,Esposito ML,Whitehead E.Aortix:a novel intra-aortic entrainment pump[J].Future Cardiol,2021,17(2):283-291.DOI:10.2217/fca-2020-0057.
[98]Escher A,Choi Y,Callaghan F,et al.A valveless pulsatile pump for heart failure with preserved ejection fraction:hemo-and fluid dynamic feasibility[J].Ann Biomed Eng,2020,48(6):1821-1836.DOI:10.1007/s10439-020-02492-2.
[99]Fukamachi K,Horvath DJ,Karimov JH,et al.Left atrial assist device to treat patients with heart failure with preserved ejection fraction:initial in vitro study[J].J Thorac Cardiovasc Surg,2021,162(1):120-126.DOI:10.1016/j.jtcvs.2019.12.110.
[100]Pya Y,Maly J,Bekbossynova M,et al.First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device[J].J Heart Lung Transplant,2019,38(4):339-343.DOI:10.1016/j.healun.2019.01.1316.
[101]Mullens W,Sharif F,Dupont M,et al.Digital health care solution for proactive heart failure management with the Cordella heart failure system:results of the SIRONA first-in-human study[J].Eur J Heart Fail,2020,22(10):1912-1919.DOI:10.1002/ejhf.1870.
[102]Ancona GD,Murero M,F(xiàn)eickert S,et al.Implantation of an innovative intracardiac microcomputer system for web-based real-time monitoring of heart failure:usability and patients attitudes[J].JMIR Cardio,2021,5(1):e21055.DOI:10.2196/21055.
(收稿日期:2022-11-21)