魏 堯 柯棟梁 黃東曉 汪鳳翔 康勁松
基于時(shí)間序列的永磁同步電機(jī)連續(xù)控制集無模型預(yù)測電流控制
魏 堯1柯棟梁1黃東曉1汪鳳翔1康勁松2
(1. 電機(jī)驅(qū)動(dòng)與功率電子國家地方聯(lián)合研究中心(中國科學(xué)院海西研究院泉州裝備制造研究中心)晉江 362216 2. 同濟(jì)大學(xué)鐵道與城市軌道交通研究院 上海 201804)
時(shí)間序列數(shù)據(jù)驅(qū)動(dòng)模型通過采樣輸入輸出數(shù)據(jù)將被控對(duì)象在線擬合為離散傳遞函數(shù),但在連續(xù)控制集(CCS)預(yù)測控制中直接應(yīng)用存在困難。為了解決這個(gè)問題,該文結(jié)合最小二乘法,提出一種基于時(shí)間序列的永磁同步電機(jī)(PMSM)連續(xù)控制集無模型預(yù)測電流控制方法。該方法通過拉格朗日法合理設(shè)計(jì)回歸矢量,在線估算模型待定系數(shù),并建立數(shù)據(jù)驅(qū)動(dòng)模型預(yù)測所需變量。不僅從根本上消除了模型預(yù)測控制(MPC)中先驗(yàn)?zāi)P蛯?duì)被控對(duì)象時(shí)變物理參數(shù)的依賴,而且所得模型符合電機(jī)運(yùn)動(dòng)特性,有更高的模型精度和良好控制性能。仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了提出方法的有效性,以及在動(dòng)態(tài)性能、電流質(zhì)量和系統(tǒng)噪聲方面的優(yōu)勢。
無模型預(yù)測控制 時(shí)間序列模型 最小二乘估計(jì)算法 電流預(yù)測
永磁同步電機(jī)(Permanent Magnet Synchronous Motor, PMSM)存在功率密度高、質(zhì)量體積小、效率高等優(yōu)勢,在電動(dòng)汽車中得到廣泛應(yīng)用。由于電動(dòng)汽車需要適應(yīng)復(fù)雜路況,使得電機(jī)系統(tǒng)運(yùn)行環(huán)境復(fù)雜多變。并且電動(dòng)汽車對(duì)續(xù)航里程、可靠性、運(yùn)行噪聲等性能有所需求,對(duì)于控制性能要求日益提升,傳統(tǒng)的PI控制器無法充分滿足要求[1]。模型預(yù)測控制(Model Predictive Control, MPC)可提供優(yōu)良的動(dòng)態(tài)性能,并且上手操作容易,結(jié)構(gòu)貼近被控對(duì)象,得到國內(nèi)外學(xué)者的關(guān)注[2]。在電機(jī)控制領(lǐng)域中,根據(jù)首要控制目標(biāo)的不同,MPC主要分為預(yù)測電流控制(Predictive Current Control, PCC)、預(yù)測轉(zhuǎn)速控制(Predictive Speed Control, PSC)和預(yù)測轉(zhuǎn)矩控制(Predictive Torque Control, PTC)[3-4]。隨著PMSM的運(yùn)行工況不同,其物理參數(shù)呈現(xiàn)非線性變化,使先驗(yàn)?zāi)P统掷m(xù)處在失配狀態(tài),影響控制性能。為了獲得良好的控制性能,國內(nèi)外研究人員從各種角度提高M(jìn)PC的魯棒性,如多步預(yù)測[5]、變權(quán)重系數(shù)[6-7]、引入觀測器或參數(shù)辨識(shí)方法等。
在MPC中結(jié)合觀測器或參數(shù)辨識(shí)方法,可在線獲得電機(jī)參數(shù)或狀態(tài)變量,實(shí)時(shí)調(diào)整先驗(yàn)?zāi)P停行嵘刂葡到y(tǒng)魯棒性[8]。文獻(xiàn)[9]結(jié)合Lyapunov函數(shù)設(shè)計(jì)擾動(dòng)觀測器(Disturbance Observer, DOB),在保證誤差漸近穩(wěn)定條件下對(duì)狀態(tài)和擾動(dòng)進(jìn)行觀測。文獻(xiàn)[10]采用擴(kuò)張狀態(tài)觀測器(Extended State Observer, ESO)通過估計(jì)參數(shù)和抑制干擾降低先驗(yàn)?zāi)P蛥?shù)失配的影響。一些先進(jìn)觀測器同樣可用于狀態(tài)和擾動(dòng)估計(jì),以獲得更高的估計(jì)精度和更好的控制性能,如龍伯格觀測器[11]、滑模觀測器[12]和自適應(yīng)高增益觀測器[13]等。
由于基于觀測器的預(yù)測控制同樣需要依賴先驗(yàn)?zāi)P皖A(yù)測狀態(tài)變量,模型和參數(shù)失配的影響無法完全消除。無模型預(yù)測控制(Model-Free Predictive Control, MFPC)通過對(duì)輸入輸出數(shù)據(jù)采樣,在線設(shè)計(jì)訓(xùn)練數(shù)據(jù)驅(qū)動(dòng)模型,從本質(zhì)上消除先驗(yàn)?zāi)P蛯?duì)物理參數(shù)的依賴。該方法需要將數(shù)據(jù)驅(qū)動(dòng)模型訓(xùn)練為特定結(jié)構(gòu),主要包括緊格式、偏格式和全格式的動(dòng)態(tài)線性化模型結(jié)構(gòu)[14]、自回歸外部輸入(Auto- Regressive with eXogenous input, ARX)模型結(jié)構(gòu)[15]、泛模型結(jié)構(gòu)[16]和超局部模型結(jié)構(gòu)[17]等。文獻(xiàn)[18]通過第一種結(jié)構(gòu)將非線性系統(tǒng)線性化,實(shí)現(xiàn)無模型自適應(yīng)預(yù)測控制,并獲得收斂跟蹤誤差和良好的魯棒性;文獻(xiàn)[15]將被控對(duì)象設(shè)計(jì)為ARX結(jié)構(gòu),通過估計(jì)算法在線擬合結(jié)構(gòu)系數(shù)。該方法可很好估計(jì)被控對(duì)象,但需要強(qiáng)處理器算力實(shí)現(xiàn);文獻(xiàn)[19]將被控對(duì)象近似為一階超局部模型,將其中已知和未知部分表示為單一變量,并通過觀測器對(duì)該部分和狀態(tài)變量在線估計(jì)和預(yù)測。該方法僅需較小計(jì)算量,即可獲得較強(qiáng)魯棒性和良好動(dòng)態(tài)性能。在此基礎(chǔ)上,文獻(xiàn)[20]將該方法與線性ESO結(jié)合,設(shè)計(jì)觀測器參數(shù)和電壓成本函數(shù),并結(jié)合調(diào)制部分有效提升定子電流質(zhì)量;文獻(xiàn)[21]結(jié)合滑模觀測器提出一種無模型容錯(cuò)預(yù)測控制,有效應(yīng)對(duì)永磁體失磁故障。
除了以上結(jié)構(gòu)外,一些人工智能算法也應(yīng)用至數(shù)據(jù)驅(qū)動(dòng)模型訓(xùn)練中,如人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)[22]和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)算法[23],通過模擬生物神經(jīng)網(wǎng)絡(luò)原理在線學(xué)習(xí)和訓(xùn)練被控對(duì)象模型。
由于有限控制集(Finite Control Set type, FCS- type)預(yù)測控制諧波含量較高、控制精度有限,連續(xù)控制集(Continuous Control Set type, CCS-type)的無模型預(yù)測電流控制(Model Free PCC, MF-PCC)更符合電動(dòng)汽車需求。基于時(shí)間序列的MF-PCC策略將電機(jī)擬合為離散傳遞函數(shù)形式,更符合電機(jī)系統(tǒng)運(yùn)動(dòng)特性。但由于在數(shù)字計(jì)算中無法輕易求得模型的逆,在連續(xù)控制集下應(yīng)用存在困難。本文提出一種基于時(shí)間序列連續(xù)控制集的MF-PCC策略,通過有合適回歸矢量的最小二乘法在線估算模型中待定系數(shù),并結(jié)合拉格朗日法設(shè)計(jì)合適控制律。該方法消除模型中電機(jī)時(shí)變物理參數(shù)及其影響的同時(shí),模型精度更高且控制效果更好。將方法應(yīng)用至PMSM控制系統(tǒng)中與基于滑模觀測器和級(jí)-并聯(lián)ESO的超局部MF-PCC策略比較,仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了提出控制策略的有效性,以及在動(dòng)態(tài)性能、定子電流質(zhì)量和產(chǎn)生噪聲方面的優(yōu)勢。





基于采樣周期s,結(jié)合前向歐拉法,將狀態(tài)方程離散化為

式中,sd(+1)和sq(+1)為第+1個(gè)采樣周期的電流分量預(yù)測值。
對(duì)于電流控制策略,各個(gè)電流分量跟隨其參考值工作是首要控制目標(biāo)。成本函數(shù)可設(shè)計(jì)為

分別將成本函數(shù)對(duì)定子電壓分量求偏導(dǎo),所得結(jié)果為零,所得控制律為

超局部模型結(jié)構(gòu)為

其中



在連續(xù)控制集下,其控制律設(shè)計(jì)為


將基于滑模觀測器的超局部MF-PCC命名為傳統(tǒng)算法1,并將文獻(xiàn)[25]中采用的級(jí)-并聯(lián)ESO超局部MF-PCC方法命名為傳統(tǒng)算法2。本文中各傳統(tǒng)方法所需參數(shù)見表1。

表1 傳統(tǒng)算法選取參數(shù)
測試電機(jī)主要參數(shù)見表2。1.5 s時(shí)將負(fù)載轉(zhuǎn)矩從4 N·m增加至11.5 N·m;3 s時(shí)將轉(zhuǎn)速從500 r/min增加至1 000 r/min。傳統(tǒng)算法1和傳統(tǒng)算法2的仿真波形分別如圖1和圖2所示。

表2 主要系統(tǒng)參數(shù)

圖1 傳統(tǒng)算法1仿真波形

圖2 傳統(tǒng)算法2仿真波形
基于傳統(tǒng)算法1的系統(tǒng)抵抗負(fù)載轉(zhuǎn)矩?cái)_動(dòng)過程如圖1a所示,超調(diào)量約1.64%,調(diào)整時(shí)間約0.46 s;轉(zhuǎn)速參考跟蹤過程如圖1b所示,超調(diào)量約4.77%,調(diào)整時(shí)間約7.19 ms。基于傳統(tǒng)算法2的系統(tǒng)在抵抗負(fù)載轉(zhuǎn)矩?cái)_動(dòng)過程中超調(diào)量約1.49%,調(diào)整時(shí)間約0.36 s;轉(zhuǎn)速參考跟蹤過程中超調(diào)量約0.74%,調(diào)整時(shí)間約15.50 ms。在整個(gè)工作過程中,轉(zhuǎn)速綜合時(shí)間與絕對(duì)誤差(Integrated Time and Absolute Error, ITAE)值分別為14.54和17.01。
時(shí)間序列模型可設(shè)計(jì)為

其中

式中,ux,m和ix,n為待定系數(shù),下標(biāo)表示d軸或q軸分量;和為模型維度。該模型將電機(jī)擬合為離散傳遞函數(shù)形式。
預(yù)先確定模型維度,并將待定系數(shù)和輸入輸出參數(shù)分別構(gòu)成++1維向量,有


通過最小二乘法進(jìn)行在線估算待定系數(shù),有



控制律設(shè)計(jì)為

式中,+1時(shí)刻的參考電流通過拉格朗日法獲得,有

綜上所述,模型建立和控制律生成過程流程如圖3所示,提出方法整體框圖如圖4所示。
圖3 時(shí)間序列模型更新過程流程
Fig.3 Time-flow of the updating process of the time-series model

圖4 基于時(shí)間序列的無模型預(yù)測電流控制結(jié)構(gòu)
根據(jù)圖4所示結(jié)構(gòu)搭建仿真環(huán)境,選擇參數(shù)見表3。在相同工作條件下,提出方法仿真波形如圖5所示。該方法可穩(wěn)定地追蹤轉(zhuǎn)速參考變化,并抵抗負(fù)載擾動(dòng)。抵抗負(fù)載轉(zhuǎn)矩?cái)_動(dòng)過程的超調(diào)量約1.50%,調(diào)整時(shí)間約0.38 s;轉(zhuǎn)速參考跟蹤過程的超調(diào)量約3.69%,調(diào)整時(shí)間約5.63 ms。在整個(gè)工作過程中,轉(zhuǎn)速ITAE值為12.36。

表3 提出算法選擇參數(shù)

圖5 提出算法仿真波形
不同維度和下,提出方法所得相電流總諧波畸變率(Total Harmonic Distortion, THD)和全工作過程轉(zhuǎn)速ITAE如圖6所示。可見,電流THD和轉(zhuǎn)速ITAE均小于傳統(tǒng)超局部MF-PCC算法結(jié)果,即由于時(shí)間序列模型有較高精度,電流和轉(zhuǎn)速質(zhì)量均有所提升。隨著維度提升,相電流THD有微弱上升趨勢,轉(zhuǎn)速ITAE下降;隨著維度提升,電流THD無明顯變化趨勢,轉(zhuǎn)速ITAE同樣下降。
在1 000 r/min轉(zhuǎn)速、11.5 N·m負(fù)載轉(zhuǎn)矩穩(wěn)態(tài)運(yùn)行條件下測定連續(xù)5 000個(gè)采樣周期的提出算法計(jì)算時(shí)間,并取平均值。不同維度下算法所需運(yùn)算時(shí)間如圖7所示。可見,在隨著維度上升,計(jì)算時(shí)間越長;在維度和+相同時(shí),運(yùn)算負(fù)擔(dān)基本相同。由于大維度可能引發(fā)系統(tǒng)超時(shí)錯(cuò)誤,且所得性能不一定滿足系統(tǒng)要求,因而可根據(jù)所需性能選取維度。

圖6 提出算法不同維度下轉(zhuǎn)速和電流性能

圖7 提出算法不同維度運(yùn)算時(shí)間
根據(jù)文獻(xiàn)[26],遺忘因子通常在[0.9, 1]之間選取,是魯棒性和快速性的折中。在不同遺忘因子時(shí),相電流THD和轉(zhuǎn)速ITAE結(jié)果如圖8所示。本文綜合考慮控制性能和系統(tǒng)魯棒性,遺忘因子選取為1。

圖8 提出算法不同遺忘因子相電流THD和轉(zhuǎn)速ITAE
基于DSP F28379D和4.8kW PMSM搭建實(shí)驗(yàn)平臺(tái),平臺(tái)及實(shí)驗(yàn)驗(yàn)證系統(tǒng)框圖如圖9所示,其中,估算算法和數(shù)據(jù)驅(qū)動(dòng)模型在DSP中實(shí)現(xiàn)。電機(jī)參數(shù)和算法參數(shù)分別與表1和表2相同。

圖9 實(shí)驗(yàn)平臺(tái)結(jié)構(gòu)


圖10 算法跟蹤參考過程實(shí)驗(yàn)波形

圖11 算法抵抗擾動(dòng)過程實(shí)驗(yàn)波形
圖12為部分放大暫態(tài)波形。圖中,傳統(tǒng)算法1和傳統(tǒng)算法2轉(zhuǎn)速性能幾乎一致。但根據(jù)相電流包絡(luò)線,提出算法和傳統(tǒng)算法2的相電流幾乎不存在超調(diào),平滑地進(jìn)入穩(wěn)態(tài)運(yùn)行過程。

圖12 部分放大實(shí)驗(yàn)波形比較
為消除傅里葉分析的隨機(jī)性,在0.8 s內(nèi)對(duì)相電流進(jìn)行連續(xù)采樣和分析,統(tǒng)計(jì)結(jié)果的小提琴圖如圖13所示。可見,提出算法的相電流THD位于3.3%~3.9%區(qū)間,多數(shù)THD值集中在3.55%,平均值位于3.53%;傳統(tǒng)算法1在3.4%~4.7%區(qū)間,多數(shù)THD值集中在3.65%和3.8%,平均值位于3.82%;傳統(tǒng)算法2在3.8%~4.9%區(qū)間,多數(shù)THD值集中在4.42%,平均值位于4.34%。

圖13 傅里葉分析結(jié)果
對(duì)預(yù)測電流和下一拍實(shí)際采樣電流進(jìn)行比較,20 000個(gè)采樣點(diǎn)內(nèi)實(shí)驗(yàn)結(jié)果如圖14所示。相較于傳統(tǒng)算法,提出算法的q軸電流累積誤差分別降低約34.34%和37.47%,d軸電流累計(jì)誤差分別降低14.99%和19.05%,提出方法模型有更高模型精度。

圖14 實(shí)驗(yàn)電流累積誤差
在跟蹤加速參考和抵抗擾動(dòng)階段,模型主要待定系數(shù),1、,2、dx,0、dx,1變化曲線如圖15所示。可以看出,待定系數(shù)dx,0、dx,1有較大取值,相對(duì)變化幅度較為隱晦;待定系數(shù),1、,2取值較小,相對(duì)變化幅度較為明顯。在系統(tǒng)出現(xiàn)變化后,待定系數(shù)通過在線估算和更新再次收斂,使模型保持對(duì)被控對(duì)象的高度擬合。

圖15 動(dòng)態(tài)過程主要待定系數(shù)變化波形
在DSP中對(duì)算法運(yùn)算時(shí)間進(jìn)行測試。不同維度提出的算法和傳統(tǒng)算法比較結(jié)果如圖16所示,圖中提出算法的維度表示為[,]。提出算法運(yùn)算時(shí)間隨著維度上升而增加,變化趨勢與仿真結(jié)果基本一致。在提出算法維度為[2, 2]時(shí),運(yùn)算時(shí)間已分別超出傳統(tǒng)算法1、傳統(tǒng)算法2和基本CCS-PCC算法約48.03%、40.10%和63.11%。實(shí)際應(yīng)用中,提出算法需綜合評(píng)估處理器資源選取合適的模型維度。

圖16 運(yùn)算時(shí)間測試結(jié)果
將部分控制指標(biāo)列寫至表4中,其中轉(zhuǎn)速ITAE在穩(wěn)態(tài)連續(xù)2 s內(nèi)求得。可以看出,相較于傳統(tǒng)算法1,提出方法所得轉(zhuǎn)速ITAE和電流THD分別提升5.46%和7.59%;相較于傳統(tǒng)方法2,轉(zhuǎn)速ITAE和電流THD分別提升2.98%和18.66%,并且超調(diào)量和調(diào)整時(shí)間均有所降低。提出方法由于有更好的模型精度,在電流質(zhì)量和動(dòng)態(tài)性能方面均有所改善。

表4 系統(tǒng)參數(shù)
電動(dòng)汽車在牽引和制動(dòng)過程中,直流側(cè)電壓出現(xiàn)波動(dòng)。為確保在該過程中系統(tǒng)收斂,根據(jù)國家標(biāo)準(zhǔn)[27-28]和平臺(tái)參數(shù)設(shè)定直流側(cè)電壓浮動(dòng)范圍為440~540 V,并分別在邊界條件下對(duì)控制策略進(jìn)行驗(yàn)證。在系統(tǒng)帶載穩(wěn)定運(yùn)行時(shí),變化直流電源輸出電壓,提出算法實(shí)驗(yàn)波形如圖17所示。可以看出,直流側(cè)電壓變化前后,相電流基本沒有變化,系統(tǒng)保持穩(wěn)定運(yùn)行。
電動(dòng)汽車電機(jī)系統(tǒng)噪聲直接影響駕駛員體驗(yàn)感。對(duì)不同轉(zhuǎn)速下不同控制策略產(chǎn)生的電機(jī)系統(tǒng)噪聲進(jìn)行采集,平均噪聲幅值如圖18所示。可以看出,隨著電機(jī)轉(zhuǎn)速和負(fù)載轉(zhuǎn)矩的上升,噪聲幅值同樣上升。除傳統(tǒng)算法2在2 000 r/min空載運(yùn)行時(shí)有最小的噪聲幅值外,在其他工作條件下,相較于傳統(tǒng)算法,提出算法產(chǎn)生的噪聲得到優(yōu)化。

圖18 系統(tǒng)噪聲測試結(jié)果
定義se、se和me分別為控制算法中定子電阻、定子電感和永磁體磁鏈選擇參數(shù)。參數(shù)失配條件設(shè)定為se/s=0.2、se/s=3、me/m=0.5和se/s= 2、me/m=2。其中,對(duì)于定子電感參數(shù)失配同時(shí)作用在d軸和q軸分量上。
在不同參數(shù)失配條件下,提出算法、傳統(tǒng)算法1、傳統(tǒng)算法2和基本CCS-PCC算法的實(shí)驗(yàn)波形及傅里葉分析結(jié)果如圖19和圖20所示。可以看出,相較于采用先驗(yàn)?zāi)P秃褪剑?)控制律的基本CCS-PCC算法中相電流嚴(yán)重諧波含量,提出算法和傳統(tǒng)算法由于采用了數(shù)據(jù)驅(qū)動(dòng)模型,時(shí)變物理參數(shù)及其影響被完全消除,均可在參數(shù)失配條件下穩(wěn)定運(yùn)行。在參數(shù)失配條件下,提出算法的電流THD較低,波形質(zhì)量更高。

圖19 參數(shù)失配條件1實(shí)驗(yàn)結(jié)果

圖20 參數(shù)失配條件2實(shí)驗(yàn)結(jié)果
針對(duì)時(shí)間序列無模型預(yù)測控制在連續(xù)控制集實(shí)現(xiàn)困難問題上,PMSM驅(qū)動(dòng)系統(tǒng)提出一種基于時(shí)間序列連續(xù)控制集無模型預(yù)測控制策略。提出算法通過拉格朗日法設(shè)計(jì)合適的最小二乘法回歸矢量,在線估計(jì)模型待定系數(shù)并建立被控對(duì)象數(shù)據(jù)驅(qū)動(dòng)模型。建模過程無需被控對(duì)象的時(shí)變物理參數(shù)參與,所得模型完全消除模型失配對(duì)控制性能的影響,并且更加符合電機(jī)系統(tǒng)運(yùn)動(dòng)特性。根據(jù)仿真和實(shí)驗(yàn)結(jié)果,與傳統(tǒng)超局部MF-PCC策略相比,提出算法有更好的電流質(zhì)量、動(dòng)態(tài)性能和系統(tǒng)噪聲,以及良好的魯棒性。
[1] 趙劍飛, 花敏琪, 劉廷章. 電動(dòng)車用多盤式永磁同步電機(jī)協(xié)同優(yōu)化與容錯(cuò)控制方法[J]. 中國電機(jī)工程學(xué)報(bào), 2019, 39(2): 386-394, 636.
Zhao Jianfei, Hua Minqi, Liu Tingzhang. Cooperative optimization and fault-tolerant control method of multi-disk permanent magnet synchronous motor for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(2): 386-394, 636.
[2] 李祥林, 薛志偉, 閻學(xué)雨, 等. 基于電壓矢量快速篩選的永磁同步電機(jī)三矢量模型預(yù)測轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(7): 1666-1678.
Li Xianglin, Xue Zhiwei, Yan Xueyu, et al. Voltage vector rapid screening-based three-vector model predictive torque control for permanent magnet synchronous motor[J]. Transactions of China Elec- trotechnical Society, 2022, 37(7): 1666-1678.
[3] 李家祥, 汪鳳翔, 柯棟梁, 等. 基于粒子群算法的永磁同步電機(jī)模型預(yù)測控制權(quán)重系數(shù)設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 50-59, 76.
Li Jiaxiang, Wang Fengxiang, Ke Dongliang, et al. Weighting factors design of model predictive control for permanent magnet synchronous machine using particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 50-59, 76.
[4] 魏堯, 魏艷君, 馬云飛, 等. 永磁同步電機(jī)轉(zhuǎn)子位置的級(jí)聯(lián)預(yù)測控制[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(1): 41-48.
Wei Yao, Wei Yanjun, Ma Yunfei, et al. Cascade predictive control for rotor position of permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 41- 48.
[5] 王治國, 鄭澤東, 李永東, 等. 三相異步電機(jī)電流多步預(yù)測控制方法[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(9): 1975-1984.
Wang Zhiguo, Zheng Zedong, Li Yongdong, et al. Predictive current control for three phase induction machine using multi-steps prediction horizon[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1975-1984.
[6] 王安鵬, 黃旭珍, 李立毅, 等. 永磁直線同步電機(jī)的變權(quán)重系數(shù)多步模型預(yù)測電流控制方法[J]. 中國電機(jī)工程學(xué)報(bào), 2022, 42(22): 8332-8343.
Wang Anpeng, Huang Xuzhen, Li Liyi, et al. Variable weight coefficient multi-step model predictive current control method for permanent magnet linear syn- chronous motor[J]. Proceedings of the CSEE, 2022, 42(22): 8332-8343.
[7] Wei Yao, Wei Yanjun, Gao Yang, et al. A variable prediction horizon self-tuning method for nonlinear model predictive speed control on PMSM rotor position system[J]. IEEE Access, 2021, 9: 78812- 78822.
[8] Wang Fengxiang, Ke Dongliang, Yu Xinhong, et al. Enhanced predictive model based deadbeat control for PMSM drives using exponential extended state observer[J]. IEEE Transactions on Industrial Elec- tronics, 2022, 69(3): 2357-2369.
[9] 賈成禹, 王旭東, 周凱. 基于擾動(dòng)觀測器的PMSM模型預(yù)測電流控制[J]. 電力電子技術(shù), 2019, 53(10): 23-25, 95.
Jia Chengyu, Wang Xudong, Zhou Kai. Model predictive current control of PMSM based on dis- turbance observer[J]. Power Electronics, 2019, 53(10): 23-25, 95.
[10] Mousavi M S, Davari S A, Nekoukar V, et al. A robust torque and flux prediction model by a modified disturbance rejection method for finite-set model- predictive control of induction motor[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9322-9333.
[11] 余晨輝, 汪鳳翔, 林貴應(yīng). 基于在線擾動(dòng)補(bǔ)償?shù)娜娖絇WM整流器級(jí)聯(lián)式無差拍控制策略[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(4): 954-963.
Yu Chenhui, Wang Fengxiang, Lin Guiying. Cascaded deadbeat control strategy with online disturbance compensation for three-level PWM rectifier[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 954-963.
[12] 肖雄, 王浩丞, 武玉娟, 等. 基于雙滑模估計(jì)的主從結(jié)構(gòu)共軸雙電機(jī)模型預(yù)測直接轉(zhuǎn)矩控制無速度傳感器控制策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(5): 1014-1026.
Xiao Xiong, Wang Haocheng, Wu Yujuan, et al. Coaxial dual motor with master-slave structure model-predictive direct torque control speed sensor- less control strategy based on double sliding mode estimation[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1014-1026.
[13] 柯棟梁, 汪鳳翔, 李家祥. 基于自適應(yīng)高增益觀測器的永磁同步電機(jī)預(yù)測電流控制方法[J]. 中國電機(jī)工程學(xué)報(bào), 2021, 41(2): 728-738.
Ke Dongliang, Wang Fengxiang, Li Jiaxiang. Predictive current control of permanent magnet synchronous motor based on an adaptive high-gain observer[J]. Proceedings of the CSEE, 2021, 41(2): 728-738.
[14] Hou Zhongsheng, Lei Ting. Constrained model free adaptive predictive perimeter control and route guidance for multi-region urban traffic systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 912-924.
[15] Heydari R, Young H, Flores-Bahamonde F, et al. Model-free predictive control of grid-forming inverters with LCL filters[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 9200-9211.
[16] 史婷娜, 李聰, 姜國凱, 等. 基于無模型預(yù)測控制的無刷直流電機(jī)換相轉(zhuǎn)矩波動(dòng)抑制策略[J]. 電工技術(shù)學(xué)報(bào), 2016, 31(15): 54-61.
Shi Tingna, Li Cong, Jiang Guokai, et al. Model free predictive control method to suppress commutation torque ripple for brushless DC motor[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 54-61.
[17] 張永昌, 屈祈延, 楊海濤. 基于空間矢量調(diào)制的Vienna整流器無模型預(yù)測電流控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(21): 5541-5547.
Zhang Yongchang, Qu Qiyan, Yang Haitao. Model free predictive current control of Vienna rectifier based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5541- 5547.
[18] 王譽(yù), 侯忠生. 具有外部擾動(dòng)的PMSM系統(tǒng)的無模型自適應(yīng)預(yù)測控制[J]. 控制理論與應(yīng)用, 2022, 39(5): 837-846.
Wang Yu, Hou Zhongsheng. Model-free adaptive predictive control for PMSM systems with external disturbance[J]. Control Theory & Applications, 2022, 39(5): 837-846.
[19] Wang Fengxiang, Wei Yao, Young H, et al. Continuous-control-set model-free predictive funda- mental current control for PMSM system[J]. IEEE Transactions on Power Electronics, 2023, 38(5): 5928-5938.
[20] Zhang Yongchang, Jin Jialin, Huang Lanlan. Model- free predictive current control of PMSM drives based on extended state observer using ultralocal model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003.
[21] 趙凱輝, 周瑞睿, 冷傲杰, 等. 一種永磁同步電機(jī)的有限集無模型容錯(cuò)預(yù)測控制算法[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(1): 27-38.
Zhao Kaihui, Zhou Ruirui, Leng Aojie, et al. Finite control set model-free fault-tolerant predictive control for permanent magnet synchronous motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(1): 27-38.
[22] Wang Daming, Shen Z J, Yin Xin, et al. Model predictive control using artificial neural network for power converters[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3689-3699.
[23] Mesai A H, Jlassi I, Marques C A J, et al. Model-free predictive current control of synchronous reluctance motors based on a recurrent neural network[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11): 10984-10992.
[24] Mousavi M S, Davari S A, Nekoukar V, et al. Integral sliding mode observer-based ultralocal model for finite-set model predictive current control of indu- ction motor[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(3): 2912-2922.
[25] Babayomi O, Zhang Zhenbin. Model-free predictive control of power converters with cascade-parallel extended state observers[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10215-10226.
[26] Nelles O. Nonlinear system identification[M]. Kronberg: Springer-Verlag, 2001.
[27] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國國家標(biāo)準(zhǔn)化管理委員會(huì). GB/T 18384.1-2015 電動(dòng)汽車 安全要求 第1部分: 車載可充電儲(chǔ)能系統(tǒng)(REESS)[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2015.
[28] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國國家標(biāo)準(zhǔn)化管理委員會(huì). GB/T 18384.2-2015 電動(dòng)汽車 安全要求 第2部分: 操作安全和故障防護(hù)[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2015.
A Continuous-Control-Set Type Model-Free Predictive Current Control Based on Time-Series for Permanent Magnet Synchronous Motor Drives
11112
(1. National and Local Joint Engineering Research Center for Electrical Drives and Power Electronics Quanzhou Institute of Equipment Manufacturing Haixi Institutes Chinese Academy of Science Jinjiang 362216 China 2. Institute of Rail Transit Tongji University Shanghai 201804 China)
The finite-control-set type (FCS-type) predictive control method is not ideal for electric vehicles because of its limited control accuracy and high harmonic content. In contrast, the continuous-control-set type (CCS-type) model-free predictive current control (MF-PCC) is more suitable. The model-free predictive current control (MF-PCC) uses a time-series model as a discrete transfer function, which is more compliant with the motion characteristics of the motor system. However, calculating the inverse of the model in the digital processor makes it challenging to apply in the CCS-type. Therefore, a time-series-based CCS-type MF-PCC strategy is proposed in this paper for a permanent magnet synchronous motor (PMSM) driving system. The plant is accurately expressed, and the control strategy is easily realized in the CCS-type by the online building and updating the time-series model based on the sampled data.
Firstly, this approach establishes a time-series model and updates the regressive vector summarizing input and output signals based on sampled data. Secondly, all undetermined coefficients in the model are estimated through the recursive least square (RLS) algorithm. Herein, the current operating state is described as a discrete- time transfer function within the model. Finally, according to predictive reference by the Lagrange algorithm, the regressive vector is updated to predict the output signal and generate the control law. This time-series model is easily realized in the CCS type with good accuracy, addresses the problem of the complex calculation process, and eliminates all time-varying physical parameters and their influences in the a priori model of the plant.
Simulation and experimental results on a PMSM driving system show that the proposed method resists disturbances and tracks the reference successfully to suit electric vehicle driving operations. The disturbances mainly include changed parameter mismatches, load torque, and DC voltage. Continuous Fourier analysis and accumulated error comparisons between different control strategies demonstrate that the proposed method achieves a range of total harmonic distortion (THD) between 3.3%~3.9%, with an average value of 3.53%. Compared to conventional strategies, the proposed method has the minimum ascending slope of accumulated error of current. Additionally, to analyze the impact of system noise on driver perception, the proposed method is tested under different speed references and load torques. Finally, experimental results are obtained with different parameter mismatches of typical physical parameters, including stator resistance, stator inductance, and magnet flux linkage, and compared using continuous Fourier analysis.
The following conclusions can be drawn. (1) The proposed method represents the current operating state of the motor driving system as a time-series model in the CCS-type. Compared with the conventional MF-PCC strategy using ultra-local, it formulates the system as a group of discrete-time transfer functions. (2) The obtained current quality, dynamics, and system noises are improved due to the good accuracy of the time-series model. (3) Based on the designed estimation algorithm and sampled data, the time-series model includes multiple time-varying physical parameters of the system. (4) The orders of the model should be selected comprehensively, considering the permitted calculation time and performances to prevent overrun error or insufficient accuracy.
Model-free predictive control, time series model, least square estimation algorithm, current prediction
魏 堯 男,1993年生,博士,研究方向?yàn)樾履茉雌囯娍叵到y(tǒng)、交流電機(jī)伺服系統(tǒng)及其先進(jìn)控制。E-mail: yao.wei@fjirsm.ac.cn
汪鳳翔 男,1982年生,博士,研究員,博士生導(dǎo)師,研究方向?yàn)殡娏﹄娮优c電力傳動(dòng)。E-mail: fengxiang.wang@fjirsm.ac.cn(通信作者)
TM341
10.19595/j.cnki.1000-6753.tces.230159
國家自然科學(xué)基金(52277070)和福建省科技計(jì)劃(2022T3070)資助項(xiàng)目。
2023-02-14
2023-03-07
(編輯 崔文靜)