





摘要:評述了近幾年不同環(huán)境介質(zhì)中銻的形態(tài)分析方法,其中,電感耦合等離子體質(zhì)譜法具有檢出限低、靈敏度高、穩(wěn)定性好、分析速度快等優(yōu)點(diǎn),在銻的形態(tài)分析領(lǐng)域受到越來越多的關(guān)注。在形態(tài)分析之前,從復(fù)雜基質(zhì)中提取不同形態(tài)銻,并保持其價態(tài)的穩(wěn)定性是關(guān)鍵,靈敏的檢測技術(shù)與高效的樣品前處理技術(shù)以及分離技術(shù)的融合,為解決這一問題提供了思路。近年來,聯(lián)用技術(shù)已經(jīng)廣泛應(yīng)用于大氣、水體、土壤和沉積物等環(huán)境樣品中銻形態(tài)的檢測。最后,探討了該領(lǐng)域面臨的挑戰(zhàn)并對其未來的發(fā)展方向進(jìn)行了展望。
關(guān)鍵詞:銻;形態(tài)分析;前處理技術(shù);液相色譜;聯(lián)用技術(shù);綜述
中圖分類號:X703 文獻(xiàn)標(biāo)志碼:A 文章編號:1002-4026(2023)04-0122-12
開放科學(xué)(資源服務(wù))標(biāo)志碼(OSID):
Review on the analytical technique for antimony speciation in environmental media
XU Lei1, ZHAO Rusong1, JING Chuanyong2, WANG Xia1*
(1.Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;2.School of environmental science and engineering, Shandong University, Qingdao 266237, China)
Abstract∶This study reviews the speciation analysis methods of antimony indifferent environmental media in recent years. Inductively-coupled plasma mass spectrometry is widely used in the antimony speciation analysis because of its advantages such as low detection limit, high sensitivity, and good stability. Before the speciation analysis, extracting different forms of antimony from a complex matrix and maintaining its valence stability are essential. This can be achieved by combining the sensitive detection technology, efficient sample pretreatment techniques, and separation methods. In recent years, the combined techniques have been widely used for the determination of antimony in various environmental samples. Moreover, the challenges in this field and the development prospect of antimony speciation analysis method are discussed.
Key words∶antimony;speciation analysis;pretreatment techniques;liquid chromatography;hyphenated technology;review
銻(antimony, Sb)是一種重要的金屬元素,在合金、醫(yī)藥、電子材料、電池、煙火材料、抗蟲藥劑、半導(dǎo)體、搪瓷、化纖工業(yè)等方面被大量地應(yīng)用,其最主要的用途是制作耐火材料和阻燃劑。銻及其化合物的大量使用使得相當(dāng)數(shù)量的各種價態(tài)的銻及其化合物進(jìn)入大氣、水和土壤等環(huán)境體系,導(dǎo)致銻污染越來越嚴(yán)重。隨著銻的潛在毒性和致癌性的發(fā)現(xiàn),銻及其化合物在自然界中的存在形態(tài)和含量引起了人們的廣泛關(guān)注。巴塞爾公約中,銻和銻化合物被列為應(yīng)加控制的廢物類別,美國和歐盟將銻列為優(yōu)先控制污染物[1]。
銻在各個環(huán)境介質(zhì)中的遷移性、毒性、生物有效性等與其在環(huán)境中的含量和存在形態(tài)緊密相關(guān),已有國內(nèi)外學(xué)者對環(huán)境介質(zhì)中不同形態(tài)銻的分離和形態(tài)分析方法進(jìn)行了研究。相關(guān)綜述包括水體中銻的形態(tài)及其遷移轉(zhuǎn)化規(guī)律[2]、土壤和沉積物中銻總量分析及形態(tài)分析的預(yù)處理方法和分析方法[3]、銻在環(huán)境樣品中的化學(xué)行為、分析方法和去除技術(shù)[4]以及基于HPLC-ICP-MS聯(lián)用技術(shù)的多元素形態(tài)分析等[5]。
本文對環(huán)境介質(zhì)和生物體中重金屬銻的存在形態(tài)和遷移轉(zhuǎn)化、銻形態(tài)分析的前處理和分析方法進(jìn)行了綜述,著重介紹了大氣、水體、土壤及沉積物中銻的存在形態(tài)和遷移轉(zhuǎn)化規(guī)律,復(fù)雜樣品基體中銻形態(tài)的分離和富集技術(shù)以及銻形態(tài)的定量分析技術(shù)等,并探討了該領(lǐng)域面臨的困難及未來的發(fā)展方向。
1 銻在環(huán)境介質(zhì)中的遷移轉(zhuǎn)化和存在形態(tài)
研究銻的遷移轉(zhuǎn)化,可以明確銻的來源、分布、形態(tài)、環(huán)境及生態(tài)影響和歸宿,是評價銻的環(huán)境化學(xué)行為和生物效應(yīng)的基礎(chǔ),具有十分重要的毒理學(xué)意義。銻在自然界中主要以礦物的形式存在[4],因銻與砷的化學(xué)性質(zhì)相似[6],都是親硫金屬,因此在自然界中銻的硫化物是其主要的礦物形態(tài)[2,7]。
隨著采礦業(yè)和金屬冶煉工業(yè)的發(fā)展,采礦產(chǎn)生的大量廢石和冶煉產(chǎn)生的尾礦廢渣暴露在地表環(huán)境中,在雨水沖刷和地表水的作用下,銻從礦物和巖石中溶解出來并遷移至各類環(huán)境介質(zhì)中,從而對礦區(qū)及其周圍環(huán)境造成嚴(yán)重危害[8-12]。
1.1 大氣環(huán)境中的銻形態(tài)
銻通過自然過程和人類活動兩個途徑進(jìn)入到大氣環(huán)境中。自然過程包括火山噴發(fā)、地質(zhì)活動產(chǎn)生的細(xì)顆粒等。化石燃料的燃燒是銻進(jìn)入大氣環(huán)境非常重要的人為排放過程[13]。此外,銻礦的大量開采和冶煉、道路交通中汽車剎車片的磨損、汽油的燃燒都是大氣環(huán)境中銻的主要釋放途徑。Chang 等[14]的研究顯示交通區(qū)域城市街道塵埃中銻的濃度顯著高于居民區(qū)和工業(yè)區(qū),而且隨著道路密度的增加,城市街道粉塵中銻的濃度也顯著增加。
有研究發(fā)現(xiàn),垃圾焚燒爐排放的煙道氣中的銻主要以Sb(V)的形態(tài)存在[15-16]。而通過燃料燃燒過程排放到大氣中的銻除了以Sb(III)和Sb(V)形式存在,還存在SbCl3(g)和SbO2H2(g)等其他形態(tài)[17]。
1.2 水和沉積物中銻的存在形態(tài)
銻在未受污染的天然水體中質(zhì)量濃度極低,一般在ng/L或μg/L量級[18],屬于微量元素。水環(huán)境中的銻主要通過巖石風(fēng)化、土壤徑流、生物作用、大氣沉降等自然過程[19]以及化石燃料燃燒、銻礦的開采和使用、銻產(chǎn)業(yè)的廢物排放等人類活動釋放到水環(huán)境中。值得注意的是,人類活動主導(dǎo)了銻釋放到水體環(huán)境中的過程,是目前銻污染最主要的來源[20]。地表水與地下水中銻的來源有所不同:地表水中的銻主要來源于采礦活動污染的土壤以及巖石風(fēng)化和冶煉過程,其含量與水源的地理位置及水體物理化學(xué)條件、水體與污染源的距離相關(guān)[2];地下水中的銻主要受采礦廢渣淋溶和礦坑滲濾液等的影響[21]。
銻在水體環(huán)境的遷移過程中,主要以Sb(III)、Sb(V)和有機(jī)銻的形式存在,其中Sb(III)和Sb(V)以氧化物的形式存在于水體環(huán)境中[22]。銻的具體存在形態(tài)與水環(huán)境中溶解氧(DO)的含量即氧化還原條件密切相關(guān):在富氧環(huán)境中,水體處于氧化條件,主要以Sb(V)的形式存在;在厭氧環(huán)境中,水體處于還原條件,主要以Sb(III)的形式存在[19]。
沉積物中的銻與水環(huán)境中銻的存在形式相關(guān),主要為Sb(III)和Sb(V)[23]。有研究表明,銻在沉積物中存在可交換態(tài)、可氧化態(tài)、可還原態(tài)和殘渣態(tài)等4種形態(tài),這4種形態(tài)受酸堿度、氧化還原電位(Eh)、陽離子交換能力(CEC)、溶解氧(DO)等環(huán)境條件的影響而保持動態(tài)分布平衡,且不同形態(tài)的銻之間存在顯著的正相關(guān)性[24]。
1.3 土壤環(huán)境中銻的形態(tài)
土壤中的銻主要來源于人類活動,如與礦物篩選、開采、利用有關(guān)的工業(yè)產(chǎn)業(yè)以及含銻產(chǎn)品的應(yīng)用。除此之外,大氣中含銻顆粒物的沉降、含銻巖石的風(fēng)化以及含銻廢水、污水中銻的遷移也是土壤中銻的一個重要來源。研究發(fā)現(xiàn),銻主要存在于土壤表層中,且均以Sb(V)的氧化態(tài)為主要存在形式[25]。土壤的物理化學(xué)條件復(fù)雜,銻在土壤中的存在形態(tài)與土壤土質(zhì)密切相關(guān)。
1.4 生物體內(nèi)銻的存在形態(tài)
人類或動物與含銻的環(huán)境介質(zhì)接觸后,銻可以通過呼吸、飲食或皮膚接觸吸收等途徑進(jìn)入人和動物體內(nèi)[26],之后通過生物體循環(huán)系統(tǒng)分布在生物組織和體液中。植物對環(huán)境中銻的吸收、富集則主要依靠作物蒸騰作用產(chǎn)生的水動力推動水溶態(tài)的銻在植物體內(nèi)的循環(huán)[27-28]。研究發(fā)現(xiàn),銻在植物體內(nèi)的形態(tài)取決于植物的種類和植物吸收積累的銻的形態(tài)[29-30]。相關(guān)研究表明,植物體內(nèi)銻絕大部分是無機(jī)態(tài),少量的有機(jī)態(tài)以二甲基銻為主,偶爾也會有一甲基銻[31]。
2 銻的形態(tài)分析技術(shù)
銻在環(huán)境介質(zhì)中的遷移能力和生物有效性等特性與不同價態(tài)銻的賦存特征密切相關(guān),因此,確定環(huán)境樣品中銻的形態(tài)十分重要。目前,對環(huán)境樣品中銻的形態(tài)分析研究仍集中于環(huán)境水體、礦區(qū)周邊土壤以及礦區(qū)礦渣等受人類活動影響較大且易于分析的環(huán)境介質(zhì),除此之外,近些年對銻的研究還拓展到了食品[32]、汽車制動粉塵[33]、藥物[34]等人類生活息息相關(guān)的領(lǐng)域。而水體沉積物、大氣環(huán)境、生活污水、汽車尾氣和道路揚(yáng)塵等環(huán)境中銻的形態(tài)分析仍需進(jìn)一步的研究。
2.1 樣品前處理技術(shù)
由于不同環(huán)境介質(zhì)的物理化學(xué)性質(zhì)不同,而且銻在各類環(huán)境介質(zhì)和生物樣品中的含量很低,一般是痕量或超痕量,因此,在進(jìn)行形態(tài)分析之前,選用合適的預(yù)處理方法對樣品進(jìn)行富集并保證銻的形態(tài)不發(fā)生變化顯得尤為重要。萃取法因在預(yù)處理過程中可以保證環(huán)境樣品中銻元素價態(tài)的穩(wěn)定性而得到廣泛的應(yīng)用。不同環(huán)境介質(zhì)中銻的預(yù)處理方法有所不同,目前主要聚焦于水環(huán)境中無機(jī)銻形態(tài)的分析,較為成熟且應(yīng)用較多的萃取方法有固相萃取[35-38]、磁固相萃取[39-40]、固相微萃取[41-42]等。生物樣品基質(zhì)復(fù)雜,單一的萃取步驟往往難以有效分離樣品中的痕量銻,因此不同萃取技術(shù)的結(jié)合是有效的處理方法[43]。對土壤、沉積物等固體樣品進(jìn)行形態(tài)分析之前,微波消解是可靠的前處理技術(shù)[44]。從應(yīng)用結(jié)果來看,現(xiàn)有的萃取應(yīng)用通常只針對單一的銻形態(tài),多種形態(tài)同時萃取的應(yīng)用幾乎沒有。
2.2 形態(tài)分析方法
銻形態(tài)分析的檢測方法主要有原子吸收光譜法(AAS)、原子熒光光譜法(AFS)、電感耦合等離子體發(fā)射光譜法(ICP-OES)和電感耦合等離子體質(zhì)譜法(ICP-MS)。此外,電化學(xué)分析方法由于成本低、環(huán)境友好等特性在元素檢測分析中受到廣泛關(guān)注[48]。近年來,高效的分離技術(shù)(例如流動注射分析(FIA)、離子色譜(IC)以及高效液相色譜(HPLC)等)與對元素進(jìn)行特異性檢測的分析技術(shù)的聯(lián)用成為同時分析不同銻形態(tài)的熱門研究領(lǐng)域。
2.2.1 原子吸收光譜聯(lián)用技術(shù)
無論是AAS,還是原子發(fā)射光譜法(AES),均可利用銻的特征譜線(206.8 nm或217.6 nm)及譜線的強(qiáng)弱程度來定性定量測定銻[4],但靈敏度不高,而這也是光譜法測定銻檢出限偏高的根本原因。
石墨爐原子吸收光譜法(GF-AAS)適用于水中不同形態(tài)銻的檢測[49],但在分析復(fù)雜基質(zhì)的樣品時,其分析靈敏度還是稍有欠缺[50]。氫化物發(fā)生(HG)技術(shù)由于實(shí)現(xiàn)了待測元素與基體的分離,從而減少或消除了基體的干擾,近些年受到研究者們的關(guān)注。氫化物發(fā)生原子吸收光譜法(HG-AAS)儀器操作簡單,維護(hù)成本低,而且對三價銻具有更高的檢測能力,可以區(qū)分三價銻和五價銻,用于銻形態(tài)的分析也是一大熱門,該分析方法在早期被用于測定大氣顆粒物[51]、人體肝組織和血液[52]中不同形態(tài)的無機(jī)銻,近年來則主要用于分析天然水體和飲用水中銻的形態(tài)。有研究者發(fā)現(xiàn)在HG-AAS之前增加基于固相萃取的在線流動注射(FIA)的預(yù)濃縮方法可以有效提高系統(tǒng)的靈敏性,用于測定環(huán)境樣品中痕量的無機(jī)銻離子[38]。
2.2.2 原子熒光光譜聯(lián)用技術(shù)
原子熒光光譜聯(lián)用技術(shù)(AFS)是通過測量待測元素的原子蒸氣在輻射能激發(fā)下產(chǎn)生的熒光強(qiáng)度來確定待測元素含量的一種方法。
AFS作為一種元素分析方法,需要與其他的分離手段聯(lián)用才能用于銻形態(tài)的分析。銻較易形成氣態(tài)氫化物,從而與樣品中雜質(zhì)分離,減少復(fù)雜基質(zhì)的干擾[4],因此,HG-AFS在測定Sb等可以形成氫化物的微量金屬元素方面具有很大的優(yōu)勢,基于不同形態(tài)銻生成銻氫化物的時間不同,結(jié)合差減法可以有效地測定不同樣品中的無機(jī)銻[53-55],該方法測定銻具有較高的靈敏度和準(zhǔn)確性,檢出限也比較低[56]。此外,HG-AFS與流動批次分析(FBA)[57]、多通道注射流動注射分析(MSFIA)[58-59]相結(jié)合,不僅可以測定無機(jī)銻的形態(tài),還可以同時測定土壤樣品中的總銻和三甲基銻,與單獨(dú)的HG-AFS相比,應(yīng)用范圍更廣,樣品損耗少,分析效率更高,但仍是使用差減法來對無機(jī)銻形態(tài)進(jìn)行分析。
使用差減法進(jìn)行銻形態(tài)分析時,往往需要較復(fù)雜的前處理操作,導(dǎo)致實(shí)驗(yàn)結(jié)果誤差較大,HG-AFS與色譜法的聯(lián)用有效地改善了這一缺陷,通過調(diào)整流動相的種類和比例,可以在較短時間內(nèi)實(shí)現(xiàn)不同形態(tài)銻的分離從而進(jìn)行元素多形態(tài)的同時分析,分析效率更高。目前,液相色譜與原子熒光光譜法聯(lián)用技術(shù)因其操作簡單、準(zhǔn)確度高、檢測限低而被廣泛的應(yīng)用于測定環(huán)境樣品中的痕量銻。有研究者通過微波萃取結(jié)合HPLC與AFS實(shí)現(xiàn)了空氣懸浮顆粒物中的Sb(III)和Sb(V)的提取和檢測,可以很好地應(yīng)用于大氣顆粒物中低至ng/m3范圍的銻的形態(tài)分析[60]。
2.2.3 電感耦合等離子體發(fā)射光譜聯(lián)用技術(shù)
ICP-OES在同時分析復(fù)雜基質(zhì)中痕量金屬元素方面具有很大的優(yōu)勢[61-64]。與AAS相似,電感耦合等離子體發(fā)射光譜法(ICP-OES)在銻形態(tài)分析方面的應(yīng)用相對較少,大多需要與高效的前處理技術(shù)相結(jié)合來提高檢測的靈敏度。Jakavula等[65]選擇磁性離子印跡聚合物(MIIP)為吸附劑、超聲輔助磁固相萃取結(jié)合ICP-OES,成功地選擇性提取并分析了環(huán)境樣品中的痕量Sb(III),檢出限為0.13 μg/L。
近年來,AAS、AFS、ICP-OES等光譜技術(shù)在銻形態(tài)分析中的應(yīng)用見表2。
2.2.4 電感耦合等離子體質(zhì)譜聯(lián)用技術(shù)
ICP-MS具有線性范圍寬、穩(wěn)定性好、靈敏度高、檢出限低、分析速度快等優(yōu)點(diǎn),因而在環(huán)境樣品中銻元素分析領(lǐng)域受到了越來越多的關(guān)注。ICP-MS作為靈敏的元素檢測方法,必須與分離手段聯(lián)用才能實(shí)現(xiàn)元素的形態(tài)分析,IC、HPLC等色譜分離技術(shù)根據(jù)不同元素或同一元素的不同價態(tài)與色譜柱的結(jié)合強(qiáng)弱的不同,選擇合適的洗脫液使目標(biāo)物在不同的時間被洗脫下來進(jìn)入檢測器進(jìn)行分析。這些分離技術(shù)與ICP-MS的聯(lián)用使環(huán)境樣品中銻的形態(tài)分析取得長足的發(fā)展。目前,電感耦合等離子體質(zhì)譜與色譜等分離技術(shù)的聯(lián)用在環(huán)境水樣中銻的形態(tài)分析已有很多研究[58,62,69-71],而環(huán)境空氣[72]、土壤[73]、沉積物[70-71]及生物樣品[74]中銻形態(tài)分析的研究相對較少。近年來電感耦合等離子體質(zhì)譜法在銻形態(tài)分析中的應(yīng)用見表3。
3 結(jié)論與展望
目前,重金屬環(huán)境污染物的形態(tài)分析仍是研究的熱點(diǎn)之一。銻因其潛在的毒性、致癌性等特點(diǎn)而受到廣泛的關(guān)注。從銻的形態(tài)分析的角度出發(fā),高效液相色譜與電感耦合等離子體質(zhì)譜聯(lián)用將成為未來銻形態(tài)分析的主要分析方法,聯(lián)用技術(shù)不但檢出限低、靈敏度高、穩(wěn)定性好,而且能夠同時分離分析不同形態(tài)銻,適用于環(huán)境樣品中痕量銻的檢測。但現(xiàn)階段的研究仍集中在水環(huán)境樣品中,尚未在其他復(fù)雜基質(zhì)中應(yīng)用。未來需在以下兩個方面進(jìn)一步研究,為復(fù)雜基質(zhì)中銻的形態(tài)分析提供有效的分析方法。
(1)高效萃取方法的研究。各類環(huán)境介質(zhì)的物理化學(xué)性質(zhì)不同,決定了銻的存在形態(tài)不同,因此,在對銻進(jìn)行形態(tài)分析時,針對復(fù)雜環(huán)境樣品,如土壤、沉積物等,如何同時高效萃取銻的不同形態(tài),并保持萃取過程中銻各種形態(tài)的穩(wěn)定性至關(guān)重要。未來應(yīng)進(jìn)一步加強(qiáng)對更高效、更專一的萃取程序的研究,提高銻的萃取效率,同時保證銻價態(tài)的穩(wěn)定性。
(2)高性價比萃取材料的開發(fā)。固相萃取法操作簡單、萃取效率高、選擇性好,在痕量銻的富集分離中得到廣泛的應(yīng)用。其中萃取劑的選擇和使用對于后續(xù)的分析影響巨大,未來應(yīng)聚焦于研發(fā)萃取效率更高、價態(tài)結(jié)合更穩(wěn)定、性價比更高的的萃取劑,以實(shí)現(xiàn)銻檢測分析技術(shù)的大范圍應(yīng)用。
參考文獻(xiàn):
[1]HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75: 14-39. DOI: 10.1016/j.jes.2018.05.023.
[2]劉曉蕓, 劉晶晶, 柯勇, 等. 水體中銻的形態(tài)及轉(zhuǎn)化規(guī)律研究進(jìn)展[J].中國有色金屬學(xué)報, 2021, 31(5): 1330-1346. DOI: 10.11817/j.ysxb.1004.0609.2021-36569.
[3]劉碩勛, 黃天舒, 顏耕, 等. 土壤和沉積物中重金屬銻及其價態(tài)分析方法研究進(jìn)展[J].環(huán)境化學(xué), 2018, 37(2): 271-278. DOI: 10.7524/j.issn.0254-6108.2017081504.
[4]ZHANG Y, DING C X, GONG D X, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology amp; Innovation, 2021, 24: 102026. DOI: 10.1016/j.eti.2021.102026.
[5]MARCINKOWSKA M, BARA?KIEWICZ D. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review[J]. Talanta, 2016, 161: 177-204. DOI: 10.1016/j.talanta.2016.08.034.
[6]WESTERHOFF P, PRAPAIPONG P, SHOCK E, et al. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water[J]. Water Research, 2008, 42(3): 551-556. DOI: 10.1016/j.watres.2007.07.048.
[7]GUO Q H, PLANER-FRIEDRICH B, LUO L, et al. Speciation of antimony in representative sulfidic hot springs in the YST Geothermal Province (China) and its immobilization by spring sediments[J]. Environmental Pollution (Barking, Essex: 1987), 2020, 266(Pt 1): 115221. DOI: 10.1016/j.envpol.2020.115221.
[8]MCCALLUM R I. Occupational exposure to antimony compounds[J]. Journal of Environmental Monitoring: JEM, 2005, 7(12): 1245-1250. DOI: 10.1039/b509118g.
[9]GUO X J, WANG K P, HE M C, et al. Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors[J]. Journal of Environmental Sciences, 2014, 26(7): 1549-1556. DOI: 10.1016/j.jes.2014.05.022.
[10]WEN B, ZHOU J W, ZHOU A G, et al. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures[J]. Science of the Total Environment, 2016, 569/570: 114-122. DOI: 10.1016/j.scitotenv.2016.05.124.
[11]HU X Y, HE M C, KONG L H. Photopromoted oxidative dissolution of stibnite[J]. Applied Geochemistry, 2015, 61: 53-61. DOI: 10.1016/j.apgeochem.2015.05.014.
[12]ZHANG D, GUO J L, XIE X J, et al. Acidity-dependent mobilization of antimony and arsenic in sediments near a mining area[J]. Journal of Hazardous Materials, 2022, 426: 127790. DOI: 10.1016/j.jhazmat.2021.127790.
[13]LIN Q, LIU E F, ZHANG E L, et al. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing[J]. Science of the Total Environment, 2018, 613/614: 331-341. DOI: 10.1016/j.scitotenv.2017.09.073.
[14]CHANG X, YU Y, LI Y X. Response of antimony distribution in street dust to urban road traffic conditions[J]. Journal of Environmental Management, 2021, 296: 113219. DOI: 10.1016/j.jenvman.2021.113219.
[15]梅俊, 王秀季, 吳喜仁, 等. HG-AFS測定垃圾焚燒爐煙道氣中銻的形態(tài)[J].廣東微量元素科學(xué), 2012, 19(4): 62-66. DOI: 10.16755/j.cnki.issn.1006-446x.2012.04.003.
[16]TAKAOKA M, YAMAMOTO T, TANAKA T, et al. Direct speciation of lead, zinc and antimony in fly ash from waste treatment facilities by XAFS spectroscopy[J]. Physica Scripta, 2005: 943. DOI: 10.1238/physica.topical.115a00943.
[17]QI C C, LIU G J, CHOU C L, et al. Environmental geochemistry of antimony in Chinese coals[J]. The Science of the Total Environment, 2008, 389(2/3): 225-234. DOI: 10.1016/j.scitotenv.2007.09.007.
[18]MONTSERRAT F, NELSON B, CHEN Y W. Antimony in the environment: A review focused on natural waters[J]. Earth-Science Reviews, 2002, 57(1/2): 125-176. DOI: 10.1016/s0012-8252(01)00070-8.
[19]LONG X J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences (China), 2020, 90: 189-204. DOI: 10.1016/j.jes.2019.12.008.
[20]YUAN L, WANG J L, ZHONG Z Q, et al. Immobilization of antimony in soil and groundwater using Ferro-magnesium bimetallic organic frameworks[J]. Journal of Environmental Sciences, 2023, 125: 194-204. DOI: 10.1016/j.jes.2022.01.030.
[21]FANG L, ZHOU A G, LI X Q, et al. Response of antimony and arsenic in Karst aquifers and groundwater geochemistry to the influence of mine activities at the world′s largest antimony mine, central China[J]. Journal of Hydrology, 2021, 603: 127131. DOI: 10.1016/j.jhydrol.2021.127131.
[22]LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. DOI: 10.1016/j.ecoenv.2018.03.024.
[23]吳汯翰. 銻在環(huán)境中的形態(tài)變化及生物毒性研究[J].節(jié)能, 2018, 37(8): 86-87. DOI: 10.3969/j.issn.1004/7948.2018.08.025.
[24]ZHANG C P, LIU T, YANG Z Y, et al. Study on antimony and arsenic cycling, transformation and contrasting mobility in river-type reservoir[J]. Applied Geochemistry, 2022, 136: 105132. DOI: 10.1016/j.apgeochem.2021.105132.
[25]SERAFIMOVSKA J M, ARPADJAN S, STAFILOV T, et al. Study of the antimony species distribution in industrially contaminated soils[J]. Journal of Soils and Sediments, 2013, 13(2): 294-303. DOI: 10.1007/s11368-012-0623-9.
[26]任杰, 劉曉文, 李杰, 等. 我國銻的暴露現(xiàn)狀及其環(huán)境化學(xué)行為分析[J].環(huán)境化學(xué), 2020, 39(12): 3436-3449. DOI: 10.7524/j.issn.0254-6108.2019090701.
[27]王麗, 楊愛江, 鄧秋靜, 等. 貴州獨(dú)山銻礦區(qū)土壤-頭花蓼系統(tǒng)中重金屬的分布特征[J].生態(tài)學(xué)雜志, 2017, 36(12): 3545-3552. DOI: 10.13292/j.1000-4890.201712.005.
[28]馮人偉, 韋朝陽, 涂書新. 植物對銻的吸收和代謝及其毒性的研究進(jìn)展[J].植物學(xué)報, 2012, 47(3): 302-308. DOI: 10.3724/SP.J.1259.2012.00302.
[29]WU T L, CUI X D, CUI P X, et al. Speciation and location of arsenic and antimony in rice samples around antimony mining area[J]. Environmental Pollution, 2019, 252: 1439-1447. DOI: 10.1016/j.envpol.2019.06.083.
[30]NATASHA, SHAHID M, KHALID S, et al. Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health[J]. Applied Geochemistry, 2019, 106: 45-59. DOI: 10.1016/j.apgeochem.2019.04.006.
[31]CRAIG P J, JENKINS R O, MILLER D, et al. An analytical method for the detection of methylantimony species in environmental matrices: Methylantimony levels in some UK plant material[J]. Analyst, 1999, 124(8): 1243-1248. DOI: 10.1039/A903787J.
[32]譚湘武, 馬金輝, 蕭福元, 等. 食品中總銻含量及形態(tài)分析技術(shù)研究進(jìn)展[J].實(shí)用預(yù)防醫(yī)學(xué), 2016, 23(1): 126-129. DOI: 10.3969/j.issn.1006-3110.2016.01.040.
[33]ZIH-PERENYI K, NEUROHR K, G. NAGY G, et al. Selective extraction of traffic-related antimony compounds for speciation analysis by graphite furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9/10): 847-851. DOI: 10.1016/j.sab.2010.06.006.
[34]VINHAL J O, GON?ALVES A D, CRUZ G F B, et al. Speciation of inorganic antimony (III amp; V) employing polyurethane foam loaded with bromopyrogallol red[J]. Talanta, 2016, 150: 539-545. DOI: 10.1016/j.talanta.2015.12.080.
[35]WU H, WANG X C, LIU B, et al. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(1): 74-80. DOI: 10.1016/j.sab.2010.12.002.
[36]MENDIL D, BARDAK H, TUZEN M, et al. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry[J]. Talanta, 2013, 107: 162-166. DOI: 10.1016/j.talanta.2013.01.010.
[37]LONDONIO A, PARODI B, GIL R A, et al. A comparative study of two nanosubstrates for the on-line solid phase extraction of antimony by FI-HG-AAS[J]. Microchemical Journal, 2016, 128: 235-241. DOI: 10.1016/j.microc.2016.05.003.
[38]de OLIVEIRA L L G, FERREIRA G O, SUQUILA FAC, et al. Development of new analytical method for preconcentration/speciation of inorganic antimony in bottled mineral water using FIA-HG AAS system and SiO2/Al2O3/SnO2 ternary oxide[J]. Food Chemistry, 2019, 294: 405-413. DOI: 10.1016/j.foodchem.2019.05.061.
[39]JAKAVULA S, BIATA N R, DIMPE K M, et al. Magnetic ion imprinted polymers (MIIPs) for selective extraction and preconcentration of Sb(III) from environmental matrices[J]. Polymers, 2021, 14(1): 21. DOI: 10.3390/polym14010021.
[40]LI P, CHEN Y J, HU X, et al. Magnetic solid phase extraction for the determination of trace antimony species in water by inductively coupled plasma mass spectrometry[J]. Talanta, 2015, 134: 292-297. DOI: 10.1016/j.talanta.2014.11.026.
[41]IGNACIO L G, SILVIA R, MANA J, et al. Speciation of very low amounts of antimony in waters using magnetic core-modified silver nanoparticles and electrothermal atomic absorption spectrometry[J]. Talanta, 2017, 162: 309-315. DOI: 10.1016/j.talanta.2016.10.044.
[42]PANHWAR A H, TUZEN M, HAZER B, et al. Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples[J]. Talanta, 2018, 184: 115-121. DOI: 10.1016/j.talanta.2018.03.004.
[43]CHEN S Z, ZHU S P, LU D B. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 139: 70-74. DOI: 10.1016/j.sab.2017.11.008.
[44]QUIROZ W, ASTUDILLO F, BRAVO M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J]. Microchemical Journal, 2016, 129: 111-116. DOI: 10.1016/j.microc.2016.06.016.
[45]de ANDRADE K J, de ANDRADE C K, FELSNER M L, et al. Pre-concentration and speciation of inorganic antimony in bottled water and natural water by cloud point extraction with Electrothermal Atomic Absorption Spectrometry[J]. Microchemical Journal, 2017, 133: 222-230. DOI: 10.1016/j.microc.2017.03.043.
[46]OVIEDO M N, FIORENTINI E F, LEMOS A A, et al. Ultra-sensitive Sb speciation analysis in water samples by magnetic ionic liquid dispersive liquid-liquid microextraction and multivariate optimization[J]. Analytical Methods: Advancing Methods and Applications, 2021, 13(8): 1033-1042. DOI: 10.1039/d0ay02276d.
[47]ALTUNAY N, ELIK A, GURKAN R. Innovative and practical deep eutectic solvent based vortex assisted microextraction procedure for separation and preconcentration of low levels of arsenic and antimony from sample matrix prior to analysis by hydride generation-atomic absorption spectrometry[J]. Food Chemistry, 2019, 293: 378-386. DOI: 10.1016/j.foodchem.2019.05.019.
[48]LIENDO F, de la VEGA A P, JESUS AGUIRRE M, et al. A simple graphene modified electrode for the determination of antimony(III) in edible plants and beverage[J]. Food Chemistry, 2022, 367: 130676. DOI: 10.1016/j.foodchem.2021.130676.
[49]明佳佳, 雷曉慶, 李倩. 石墨爐原子吸收法原位分析生活飲用水中銻形態(tài)[J].中國衛(wèi)生檢驗(yàn)雜志, 2018, 28(17): 2071-2074.
[50]BAGHBAN N, YILMAZ E, SOYLAK M. Nanodiamond/MoS2 nanorod composite as a novel sorbent for fast and effective vortex-assisted micro solid phase extraction of lead(II) and copper(II) for their flame atomic absorption spectrometric detection[J]. Journal of Molecular Liquids, 2017, 234: 260-267. DOI: 10.1016/j.molliq.2017.03.079.
[51]de DONCKER K, DUMAREY R, DAMS R, et al. Determination of antimony in atmospheric particulate matter by hydride generation and atomic absorption spectrometry[J]. Analytica Chimica Acta, 1983, 153: 33-40. DOI: 10.1016/S0003-2670(00)85485-9.
[52]de PENA Y P, VIELMA O, BURGUERA J L, et al. On-line determination of antimony(III) and antimony(V) in liver tissue and whole blood by flow injection - hydride generation - atomic absorption spectrometry[J]. Talanta, 2001, 55(4): 743-754. DOI: 10.1016/S0039-9140(01)00483-0.
[53]LONDONIO A, PARODI B, GIL R A, et al. A comparative study of two nanosubstrates for the on-line solid phase extraction of antimony by FI-HG-AAS[J]. Microchemical Journal, 2016, 128: 235-241. DOI: 10.1016/j.microc.2016.05.003.
[54]DOS SANTOS G, SILVA L, SANTOS A F, et al. Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG AFS)[J]. Journal of the Brazilian Chemical Society, 2018, 29(1): 185-190. DOI: 10.21577/0103-5053.20170129.
[55]譚湘武, 馬金輝, 蕭福元, 等. 氫化物發(fā)生-原子熒光光譜法測定食品樣品中的銻(III)和銻(V)[J].中國衛(wèi)生檢驗(yàn)雜志, 2015, 25(23): 4021-4023.
[56]COSTA FERREIRA S L, DOS ANJOS J P, ASSISFELIXCS, et al. Speciation analysis of antimony in environmental samples employing atomic fluorescence spectrometry - Review[J]. TrAC Trends in Analytical Chemistry, 2019, 110: 335-343. DOI: 10.1016/j.trac.2018.11.017.
[57]LIMA E A, CUNHA F A S, JUNIOR M M S, et al. A fast and sensitive flow-batch method with hydride generating and atomic fluorescence spectrometric detection for automated inorganic antimony speciation in waters[J].Talanta, 2020, 207: 119834. DOI: 10.1016/j.talanta.2019.04.035.
[58]PORTUGAL L A, FERRER L, SERRA A M, et al. A non-chromatographic automated system for antimony speciation in natural water exploiting multisyringe flow injection analysis coupled with online hydride generation-atomic fluorescence spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(5): 1133-1141. DOI: 10.1039/C4JA00476K.
[59]SILVA JUNIOR M M, PORTUGAL L A, SERRA A M, et al. On line automated system for the determination of Sb(V), Sb(III), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS[J].Talanta, 2017, 165: 502-507. DOI: 10.1016/j.talanta.2016.12.022.
[60]ALSIOUFI L, SáNCHEZ DE LA CAMPA A M, SáNCHEZ-RODAS D. Microwave extraction as an alternative to ultrasound probe for antimony speciation in airborne particulate matter[J]. Microchemical Journal, 2016, 124: 256-260. DOI: 10.1016/j.microc.2015.09.004.
[61]GARC?A-MESA J C, MONTORO LEAL P, LóPEZ GUERRERO M M, et al. Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP OES based on a new functionalized magnetic graphene oxide[J]. Microchemical Journal, 2019, 150: 104141. DOI: 10.1016/j.microc.2019.104141.
[62]RAPHAEL B N, MASHILE G P, RAMONTJA J, et al. Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination[J]. Journal of Food Composition and Analysis, 2019, 76: 14-21. DOI: 10.1016/j.jfca.2018.11.004.
[63]WELNA M, SZYMCZYCHA-MADEJA A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES[J]. Food Chemistry, 2014, 159: 414-419. DOI: 10.1016/j.foodchem.2014.03.046.
[64]BIATA N R, NYABA L, RAMONTJA J, et al. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction[J]. Food Chemistry, 2017, 237: 904-911. DOI: 10.1016/j.foodchem.2017.06.058.
[65]JAKAVULA S, BIATA N R, DIMPE K M, et al. Magnetic ion imprinted polymers (MIIPs) for selective extraction and preconcentration of Sb(III) from environmental matrices[J]. Polymers, 2021, 14(1): 21. DOI: 10.3390/polym14010021.
[66]薛佳. 液相色譜-原子熒光光譜聯(lián)用法測定土壤砷鉻銻硒元素價態(tài)[J].巖礦測試, 2021, 40(2): 250-261. DOI: 10.15898/j.cnki.11-2131/td.202003090028.
[67]QUIROZ W, ASTUDILLO F, BRAVO M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J].Microchemical Journal, 2016, 129: 111-116. DOI: 10.1016/j.microc.2016.06.016.
[68]JAKAVULA S, BIATA N R, DIMPE K M, et al. Multi-ion imprinted polymers (MIIPs) for simultaneous extraction and preconcentration of Sb(III), Te(IV), Pb(II) and Cd(II) ions from drinking water sources[J]. Journal of Hazardous Materials, 2021, 416: 126175. DOI: 10.1016/j.jhazmat.2021.126175.
[69]JAB?ON′SKA-CZAPLA M. Antimony, arsenic and chromium speciation studies in bia?aprzemszariver (upper Silesia, Poland) water by HPLC-ICP-MS[J]. International Journal of Environmental Research and Public Health, 2015, 12(5): 4739-4757. DOI: 10.3390/ijerph120504739.
[70]JABLONSKA-CZAPLA M, SZOPA S, GRYGOYC K, et al. Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for P?awniowice reservoir (Poland) water and bottom sediments variability study[J]. Talanta, 2014, 120: 475-483. DOI: 10.1016/j.talanta.2013.11.092.
[71]JAB?ON′SKA-CZAPLA M, GRYGOYC′K. Spatial and temporal variability of metal(loid)s concentration as well as simultaneous determination of five arsenic and antimony species using HPLC-ICP-MS technique in the study of water and bottom sediments of the shallow, lowland, dam reservoir in Poland[J]. Environmental Science and Pollution Research, 2020, 27(11): 12358-12375. DOI: 10.1007/s11356-020-07758-9.
[72]FANG L Y, ZHANG Y M, LU B B, et al. New two-step extraction method in antimony speciation using HPLC-ICP-MS technique in inhalable particulate matter (PM2.5)[J]. Microchemical Journal, 2019, 146: 1269-1275. DOI: 10.1016/j.microc.2019.02.052.
[73]GE Z F, WEI C Y. Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography-inductively coupled plasma-mass spectrometry detection: Application to antimony speciation in soil samples[J]. Journal of Chromatographic Science, 2013, 51(5): 391-399. DOI: 10.1093/chromsci/bms153.
[74]CHEN S Z, ZHU S P, LU D B. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 139: 70-74. DOI: 10.1016/j.sab.2017.11.008.
[75]劉德曄, 姜新. 離子色譜-電感耦合等離子體質(zhì)譜法測定飲用水中痕量無機(jī)銻(Ⅲ)[J].食品安全質(zhì)量檢測學(xué)報, 2019, 10(23): 8056-8061. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2019.23.043.
[76]LIN Y A, JIANG S J, SAHAYAM A C. Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry[J]. Food Chemistry, 2017, 230: 76-81. DOI: 10.1016/j.foodchem.2017.03.014.
[77]LIU D Y, ZHU F, JI W L, et al. Determination of trace inorganic antimony in PET-bottled soy sauce by ion chromatography-inductively coupled plasma mass spectrometry[J]. Microchemical Journal, 2019, 151: 104257. DOI: 10.1016/j.microc.2019.104257.