摘要:非酒精性脂肪肝(NAFLD)是全球肝臟疾病最常見的原因之一,定義為在無顯著飲酒史和其他肝臟疾病的患者中存在≥5%的肝細胞脂肪變性。目前,在全球范圍內,NAFLD發病率正以驚人的速度在增長,但其具體的發病機制尚不完全清楚。NAFLD發病機理中,最引人注目的線索來自于人類遺傳學。全基因組研究表明,Patatin樣磷脂酶域3(PNPLA3)、跨膜6超家族成員2(TM6SF2)、載脂蛋白C3(APOC3)、跨溶血脂酰肌醇酰基轉移酶1(MBOAT7)和葡萄糖激酶調節蛋白(GCKR)中不同的單核苷酸多態性(SNPs)對NAFLD的發生和預后有相當大的影響。本文就近年來NAFLD遺傳易感性中的5種基因的多態性展開綜述,以期對該疾病的發病機制提供新的見解以及對臨床提供新的治療方向。
關鍵詞:非酒精性脂肪肝;PNPLA3;TM6SF2;基因多態性
中圖分類號:R575.5 " " " " " " " " " " " " " " " "文獻標識碼:A " " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2023.24.043
文章編號:1006-1959(2023)24-0183-05
Research Progress on Gene Polymorphisms Related to Non-alcoholic Fatty Liver Disease
WANG Jing1,CAO Ming-bo2
(Department of Gastroenterology,People's Hospital of Zhengzhou University/Henan Provincial People's Hospital,
Zhengzhou 450000,Henan,China)
Abstract:Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. It is defined as the presence of ≥5% hepatocellular steatosis in patients without a significant history of alcohol consumption and other liver diseases. The prevalence of NAFLD is currently increasing at an alarming rate globally, but its exact pathogenesis is not completely understood. The most compelling clue to the pathogenesis of NAFLD comes from human genetics. Genome-wide studies have shown that different single nucleotide polymorphisms (SNPs) in patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), apolipoprotein C3 (APOC3), membrane bound O-acyltransferase domain containing 7 (MBOAT7) and glucokinase regulatory protein (GCKR) have a considerable impact on NAFLD onset and long-term prognosis. This article reviews the polymorphisms of five genes in the genetic susceptibility of NAFLD in recent years, in order to provide new insights into the pathogenesis of the disease and provide new directions for clinical treatment.
Key words:Non-alcoholic fatty liver disease;PNPLA3;TM6SF2;Gene polymorphism
非酒精性脂肪肝(non-alcoholic fatty liver disease,NAFLD)是最常見的肝臟疾病之一,與肥胖、2型糖尿?。╰ype 2 diabetes mellitus,T2DM)、胰島素抵抗(insulin resistance,IR)密切相關。有研究顯示[1],1990-2019年NAFLD的全球流行率約為30%,趨勢分析顯示,截至2019年,全球37%的成年人可能患有NAFLD。有研究認為[2],單純脂肪變性是良性病變,而NASH患者發展為肝硬化和肝細胞癌(hepatocellular carcinoma,HCC)的風險明顯高于單純肝脂肪變性患者,且死亡風險明顯高于單純肝脂肪變性患者。NAFLD的發病機制尚未完全明確,越來越多的證據表明,關鍵基因的異常表達或突變導致了NAFLD的發生和進展[3],包括胰島素抵抗、脂肪組織分泌的激素、營養因素和腸道菌群在內的“多重攻擊”假說認為多重攻擊共同作用于具有基因易感性的NAFLD,對NAFLD的發病機制提供了更準確的解釋[4]。
非酒精性脂肪肝是一種多因素疾病,高達50%的相對風險歸因于遺傳易感性,證據來自于大量的對家族、雙胞胎和不同種族的研究中,NAFLD的易感性不同[3]。全基因組關聯研究(genome-wide association studies,GWAS)中發現了許多與NAFLD相關的變異,但在大多數情況下,優勢比(odds ratio,OR)值相對較小。很多研究表明[5-7],在大規模人群研究中,PNPLA3、TM6SF2、ApoC3、MBOAT7和GCKR的單核苷酸多態性(single nucleotide polymorphisms,SNPs)與NAFLD的發生發展存在潛在的聯系。本文主要圍繞PNPLA3、TM6SF2、ApoC3、MBOAT7和GCKR 5種基因的單核苷酸多態性和非酒精性脂肪肝病之間的聯系進行闡述,并對相關的發病機制進行探討,以期為臨床用藥提供新的方向。
1 PNPLA3多態性降低甘油脂類的水解
NAFLD最重要的遺傳因素之一是含有蛋白3的patatin樣磷脂酶結構域(patatin-like phospholipase domain-containing protein 3,PNPLA3)的單核苷酸多態性(rs738409)。編碼PNPLA3的I148M變異的rs738409 C>G SNP,占NAFLD遺傳易感性的最大比例[8]。PNPLA3 I148M變異增加了與NAFLD相關的所有肝損傷的易感性,包括從脂肪變性到NASH、纖維化和HCC,是一種常見的肝臟疾病風險因子[9]。
研究表明[10],攜帶PNPLA3多態性的種族人群發生NAFLD的風險更大。在PNPLA3 rs738409多態性中,不同基因型與非酒精性脂肪肝的聯系也有很大區別。研究認為[11],CC基因型(OR=0.48)發生非酒精性脂肪肝的風險較低,而CG和GG基因型的這一比例分別為1.19和2.05,因此這些基因型發生非酒精性脂肪肝的概率大幅增高。因此,在PNPLA3基因型多態性對NAFLD的影響中,G等位基因可能發揮重要作用。
PNPLA3變異導致NAFLD的具體機制尚未研究清楚。之前有相關研究表明[12],在胰島素抵抗過程中,PNPLA3在肝細胞、肝星狀細胞和脂肪細胞中被胰島素誘導。PNPLA3具有酰基水解酶活性,可水解單酰甘油、二酰甘油和三酰甘油(三種主要的甘油脂)。該蛋白的水解功能在rs738409多態性中丟失,當野生型蛋白被迅速降解時,變異蛋白不僅沒有脂肪酶活性,還會發生積累,損害脂質重塑和翻轉,同時可能導致肝內甘油三酯儲存和胰島素抵抗,進而很大可能發生NAFLD[13-16]。這些研究表明,PNPLA3基因多態性導致PNPLA3本身具有的甘油酯類水解性丟失,進一步導致肝內脂肪積累,是促進NAFLD進展的主要原因。
2 TM6SF2多態性促進肝臟脂肪蓄積
最初,Kozlitina J等[17]發現TM6SF2中的一個非同義突變SNP(rs58542926)(E167K),即跨膜6超家族2號成員中的第19號染色體上功能未知的基因,在質子磁共振波譜(proton magnetic resonance spectroscopy,1H-MRS)定量中與肝臟甘油三酯含量(hepatic triglyceride content,HTGC)相關聯,這種變異也與血脂異常和心血管風險相關。編碼TM6SF2 E167K變體的rs58542926 C>T通過減少脂質分泌,有利于肝脂肪在細胞內脂滴中積累,從而增加包括NASH和嚴重纖維化的肝損傷的易感性。與此同時,E167K變體通過減少循環脂質來預防心血管疾病[18]。
NAFLD和TM6SF2之間的緊密聯系在2014年的全基因組關聯研究中首次被發現,Liu YL等[19]證實,在NAFLD患者中,TM6SF2 rs58542926 C>T(E167K)等位基因影響肝纖維化,與PNPLA3 G等位基因多態性、肥胖、T2DM和年齡等混雜危險因素無關。從細胞內液中的脂滴到極低密度脂蛋白(very low-density lipoprotein,VLDL)合成、分泌,這種脂質的流量調節參與了肝臟脂肪積累和肝臟疾病的發展。TM6SF2 E167K變異相關的NAFLD的發生機制強調了這一概念,即在人體中,TM6SF2調節VLDL中甘油三酯的富集,也調節脂質合成和分泌脂蛋白顆粒的數量,而E167K是一種功能缺失的變體,其使更多的脂質進入肝臟,進而肝臟脂肪蓄積,最終發展為NAFLD[20,21]。TM6SF2主要作用是可以促進肝臟中脂質的分泌,其變體喪失這一功能,便導致了脂肪在肝中的蓄積,促進NAFLD的發展。
3 APOC3多態性增加外源甘油三酯的蓄積
NAFLD常與肥胖、胰島素抵抗和血脂異常有關,這些都包含在代謝綜合征(metabolic syndrome,MetS)的定義中。MetS患者表現為高密度脂蛋白(high-density lipoprotein,HDL)分解代謝增加,導致HDL膽固醇水平降低。在NAFLD患者中,也常表現為低HDL膽固醇。HDL是由多種生物分子組成的復雜脂蛋白顆粒家族,主要包括蛋白質和脂質[22]。越來越多的證據表明[23],HDL的生理作用取決于其蛋白質載體。除載脂蛋白A1(apolipoprotein A1,APOA1)外,高密度脂蛋白中最豐富的蛋白質是載脂蛋白C3(apolipoprotein C3,APOC3),其是一種主要在肝臟中合成的促炎糖蛋白。
先前的研究表明[24],APOC3基因的多態性可能與NAFLD的遺傳易感性有關。針對中國和印度人群的多項研究報告表明[25,26],APOC3變異等位基因(rs2854116[T-455C]和rs2854117[C-482T])增加了IR和NAFLD的風險。2020年,在中國進行的另一項研究表明[27],APOC3 rs2070667位點的等位基因對血脂有顯著的下調作用。在APOC3 rs2070667位點攜帶A而非G等位基因的NAFLD患者,更容易發生肝臟炎癥。一項隨機試驗使用了一種合成APOC3的反義抑制劑,結果顯示空腹甘油三酯顯著降低[28]。因此,APOC3有可能通過影響循環甘油三酯來調節肝臟脂肪積累。其本能在其他類型載體蛋白的相互作用下抑制肝臟對乳糜微粒的攝取,進而減少肝內外源性甘油三酯的蓄積。APOC3基因多態性導致肝內脂質增多,促進NAFLD的發展。
4 MBOAT7多態性促進肝臟炎癥
跨溶血脂酰肌醇?;D移酶1(membrane bound O-acyltransferase domain-containing 7,MBOAT7)基因非編碼區的rs641738 C>T突變體與非酒精性脂肪肝、酒精性肝病、乙型肝炎和丙型肝炎等肝臟疾病的纖維化相關[29]。在rs641738 C>T變異的攜帶者中,觀察到正常肝臟中MBOAT7蛋白水平的降低[30]。此外,在MBOAT7基因敲除的小鼠中,發現其體內重塑了肝臟磷脂酰肌醇(phosphatidylinositol,PI)和溶血磷脂酰肌醇(lysophosphatidylinositol,LPI)水平,從而促進了高胰島素血癥和肝臟胰島素抵抗[31]。關于MBOAT7的人類基因數據表明一系列不同的肝臟疾病與纖維化密切相關。纖維化是NAFLD的關鍵預后標記物,也是目前許多NASH臨床研究的終點。然而,rs641738 C>T變異導致NAFLD發展,特別是肝纖維化的具體機制尚不完全清楚。
Mancina RM等[32]已經證明MBOAT7 rs641738 C>T與更多的壞死炎癥相關。Helsley RN等[31]研究表明高脂肪喂養(high-fat diet,HFD)的MBOAT7缺陷小鼠導致總巨噬細胞和M2巨噬細胞在肝臟中的積累減少,而CD8+T細胞和M1巨噬細胞則增加。此外,相關研究表明[33],MBOAT7是一種跨膜蛋白,通過將花生四烯醇輔酶A添加到1-硬脂酰-溶血磷脂酰肌醇中,從而生成sn-1-硬脂酰-sn-2-花生四烯酰-磷脂酰肌醇,參與Lands循環中PI的?;溨貥?。研究表明[34],如果MBOAT7在肝臟中缺失,這反過來可能導致LPI水平升高和PI譜改變,從而導致高PI周轉率,推動甘油三酯在肝臟中的合成。同時,LPI通過ATP結合盒亞家族C成員1(ATP binding cassette subfamily C member 1,ABCC1)癌基因,從細胞中輸出,從而使其成為一種候選的前纖維化脂質介質,可能直接與星狀細胞室相互作用,促進炎癥和纖維化[35]。最近一項研究表明[31],與健康人相比,肝纖維化患者的循環LPI水平顯著升高;同時,外源性LPI處理的肥胖小鼠的肝臟中促纖維化基因的表達增加。因此,LPI可能在纖維化的發展中發揮信號作用,并且此種作用與炎癥無關。MBOAT7下調與NAFLD的聯系不僅體現在使肝臟甘油三酯的合成增多,在促進肝臟炎癥方面的影響也同樣不可忽視。總之,肝臟MBOAT7的下調與肥胖和胰島素抵抗期間的NAFLD發展和纖維化有關。
5 GCKR多態性使肝臟攝取葡萄糖增多
近年來,一些全基因組關聯研究分析顯示GCKR rs780094和rs1260326與日本[36]、伊朗[37]、中國[6]人群的NAFLD風險密切相關。此外,另一項包含26 552例參與者的研究也證明了GCKR rs780094和rs1260326多態性均與NAFLD風險增加顯著相關[38]。一項關于歐洲人群的研究顯示[39],使NAFLD風險增加的等位基因在代謝指標上表現出不同的關聯譜,GCKR rs1260326與脂肪肝在循環脂質和脂蛋白上相關聯。于歐洲展開的基于電子健康檔案的GWAS研究表明[40],控制BMI變量后,GCKR是NAFLD的易感位點,并且GCKR位點的遺傳變異可能調節與肥胖或甘油三酯水平升高相關的NAFLD風險。
葡萄糖激酶調節蛋白由GCKR基因編碼,是一種主要抑制肝臟中己糖激酶葡萄糖激酶(glucokinase,GCK)活性的蛋白。GCK是體內糖酵解通路的首個關鍵酶,作為葡萄糖傳感器調節胰島素的釋放從而調節葡萄糖代謝,維持機體血糖平衡。有報道稱其與肝臟胰島素敏感性密切相關,在NAFLD的發生發展中起著至關重要的作用[9,41]。研究發現[40],GCKR基因座的變異與肝臟脂肪積累存在相關性,該研究表明,GCKR位點的遺傳變異可能調節與肥胖或甘油三酯水平升高相關的NAFLD風險。rs1260326位點位于GCKR基因上,表現為T錯義突變為C。一項針對白種人、美國人和冰島人的研究表明rs1260326的變異可能導致GCKR抑制功能缺陷,導致葡萄糖激酶活性升高和肝葡萄糖攝取增多[42];另一項研究中進行了rs1260326變體與代謝參數、血脂異常和糖尿病的關聯分析,發現T等位基因與較低的空腹血糖、空腹胰島素水平和高甘油三酯水平密切相關[43]。因此,胰島素水平和甘油三酯水平在rs1260326與NAFLD的發生之間可能起中介作用。GCKR基因多態性導致肝攝取葡萄糖增多,從而更多的轉化為脂質,加速進展為NAFLD。
6 總結與展望
NAFLD發病率在全球范圍內逐步上升,目前,NAFLD在成人中的患病率高達20%~30%,在工業化國家中患病率更高。因此,對于NAFLD的發病機制與治療的研究十分重要,可以改善相當多肝病患者的生活質量,符合當代社會的發展。NAFLD的發病機制尚不明確,但越來越多的研究表明NAFLD具有相當大程度的遺傳易感性。因此,尋找基因標志物和研究相關基因于NAFLD發病機制中扮演的角色對NAFLD的預防和后續治療至關重要。多年來,關于NAFLD全基因組研究目標主要集中在PNPLA3和TM6SF2上。近年又發現了APOC3、MBOAT7和GCKR SNPs與NAFLD相關聯。然而,在以基因組為基礎治療NAFLD的具體臨床應用之前,仍有幾個重要的問題和技術挑戰有待解決,具體包括擴大研究人群,關注不同人群間的差異性,深入學習掌握相關基因的作用,研究基因間、基因與環境間的相互作用及相關基因作為治療靶點的實用性和可能性等。解決這些問題后不僅可以治療肝病,還有助于解決其它醫學難題。
參考文獻:
[1]Le MH,Yeo YH,Li X,et al.2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis[J].Clin Gastroenterol Hepatol,2022,20(12):2809-2817.e28.
[2]Simon TG,Roelstraete B,Khalili H,et al.Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort[J].Gut,2021,70(7):1375-1382.
[3]Eslam M,Valenti L,Romeo S.Genetics and epigenetics of NAFLD and NASH: Clinical impact[J].J Hepatol,2018,68(2):268-279.
[4]Santos-Laso A,Gutiérrez-Larra?觡aga M,Alonso-Pe?觡a M,et al.Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets[J].Biomedicines,2021,10(1):46.
[5]Ahadi M,Molooghi K,Masoudifar N,et al.A review of non-alcoholic fatty liver disease in non-obese and lean individuals[J].J Gastroenterol Hepatol,2021,36(6):1497-1507.
[6]Yuan F,Gu Z,Bi Y,et al.The association between rs1260326 with the risk of NAFLD and the mediation effect of triglyceride on NAFLD in the elderly Chinese Han population[J].Aging (Albany NY),2022,14(6):2736-2747.
[7]Trépo E,Valenti L.Update on NAFLD genetics: From new variants to the clinic[J].J Hepatol,2020,72(6):1196-1209.
[8]Salari N,Darvishi N,Mansouri K,et al.Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis[J].BMC Endocr Disord,2021,21(1):125.
[9]Pusec CM,De Jesus A,Khan MW,et al.Hepatic HKDC1 Expression Contributes to Liver Metabolism[J].Endocrinology,2019,160(2):313-330.
[10]Negoita F,Blomdahl J,Wasserstrom S,et al.PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes[J].J Cell Biochem,2019,120(1):343-356.
[11]BasuRay S,Wang Y,Smagris E,et al.Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis[J].Proc Natl Acad Sci U S A,2019,116(19):9521-9526.
[12]陳立震.TM6SF2基因E167K多態性聯合PNPLA3基因I148M多態性在非酒精性脂肪肝發生中的作用研究[D].青島:中國海洋大學,2019.
[13]BasuRay S,Smagris E,Cohen JC,et al.The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation[J].Hepatology,2017,66(4):1111-1124.
[14]Mitsche MA,Hobbs HH,Cohen JC.Patatin-like phospholipase domain–containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets[J].J Biol Chem,2018,293(18):6958-6968.
[15]Donati B,Motta BM,Pingitore P,et al.The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage[J].Hepatology,2016,63(3):787-798.
[16]Luukkonen PK,Nick A,H?觟ltt?覿-Vuori M,et al.Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids[J].JCI Insight,2019,4(16):e127902.
[17]Kozlitina J,Smagris E,Stender S,et al.Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease[J].Nat Genet,2014,46(4):352-356.
[18]Newberry EP,Hall Z,Xie Y,et al.Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer[J].Hepatology,2021,74(3):1203-1219.
[19]Liu YL,Reeves HL,Burt AD,et al.TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease[J].Nat Commun,2014,5:4309.
[20]Luukkonen PK,Zhou Y,Nidhina Haridas PA,et al.Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD[J].J Hepatol,2017,67(1):128-136.
[21]Kim DS,Jackson AU,Li YK,et al.Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns[J].J Lipid Res,2017,58(7):1471-1481.
[22]Darabi M,Kontush A.High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids[J].2022,1867(1):159058.
[23]Ramms B,Gordts PLSM.Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism[J].Curr Opin Lipidol,2018,29(3):171-179.
[24]Chen BF,Chien Y,Tsai PH,et al.A PRISMA-compliant meta-analysis of apolipoprotein C3 polymorphisms and nonalcoholic fatty liver disease[J].J Chin Med Assoc,2021,84(10):923-929.
[25]Jain V,Kumar A,Ahmad N,et al.Genetic polymorphisms associated with obesity and non-alcoholic fatty liver disease in Asian Indian adolescents[J].J Pediatr Endocrinol Metab,2019,32(7):749-758.
[26]Kumar A,Shalimar,Walia GK,et al.Genetics of nonalcoholic fatty liver disease in Asian populations[J].J Genet,2019,98:29.
[27]Xu QY,Li H,Cao HX,et al.APOC3 rs2070667 Associates with Serum Triglyceride Profile and Hepatic Inflammation in Nonalcoholic Fatty Liver Disease[J].Biomed Res Int,2020,2020:8869674.
[28]Morze J,Koch M,Aroner SA,et al.Associations of HDL Subspecies Defined by ApoC3 with Non-Alcoholic Fatty Liver Disease: The Multi-Ethnic Study of Atherosclerosis[J].J Clin Med,2020,9(11):3522.
[29]Thangapandi VR,Knittelfelder O,Brosch M,et al.Loss of hepatic Mboat7 leads to liver fibrosis[J].Gut,2021,70(5):940-950.
[30]Zusi C,Morandi A,Maguolo A,et al.Association between MBOAT7 rs641738 polymorphism and non-alcoholic fatty liver in overweight or obese children[J].Nutr Metab Cardiovasc Dis,2021,31(5):1548-1555.
[31]Helsley RN,Varadharajan V,Brown AL,et al.Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease[J].Elife,2019,8:e49882.
[32]Mancina RM,Dongiovanni P,Petta S,et al.The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent[J].Gastroenterology,2016,150(5):1219-1230.e6.
[33]Caddeo A,Jamialahmadi O,Solinas G,et al.MBOAT7 is anchored to endomembranes by six transmembrane domains[J].J Struct Biol,2019,206(3):349-360.
[34]Tanaka Y,Shimanaka Y,Caddeo A,et al.LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover[J].Gut,2021,70(1):180-193.
[35]Pi?觡eiro R,Maffucci T,Falasca M.The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation[J].Oncogene,2011,30(2):142-152.
[36]Zain SM,Mohamed Z,Mohamed R.Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis[J].J Gastroenterol Hepatol,2015,30(1):21-27.
[37]Mohammadi S,Farajnia S,Shadmand M,et al.Association of rs780094 polymorphism of glucokinase regulatory protein with non-alcoholic fatty liver disease[J].BMC Res Notes,2020,13(1):26.
[38]Li J,Zhao Y,Zhang H,et al.Contribution of Rs780094 and Rs1260326 Polymorphisms in GCKR Gene to Non-alcoholic Fatty Liver Disease: A Meta-Analysis Involving 26,552 Participants[J].Endocr Metab Immune Disord Drug Targets,2021,21(9):1696-1708.
[39]Sliz E,Sebert S,Würtz P,et al.NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects[J].Hum Mol Genet,2018,27(12):2214-2223.
[40]Ghodsian N,Abner E,Emdin CA,et al.Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease[J].Cell Rep Med,2021,2(11):100437.
[41]Samuel VT,Shulman GI.Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases[J].Cell Metab,2018,27(1):22-41.
[42]Gao H,Liu S,Zhao Z,et al.Association of GCKR Gene Polymorphisms with the Risk of Nonalcoholic Fatty Liver Disease and Coronary Artery Disease in a Chinese Northern Han Population[J].J Clin Transl Hepatol,2019,7(4):297-303.
[43]Lin Z,Wang Y,Zhang B,et al.Association of type 2 diabetes susceptible genes GCKR, SLC30A8, and FTO polymorphisms with gestational diabetes mellitus risk: a meta-analysis[J].Endocrine,2018,62(1):34-45.
收稿日期:2022-12-23;修回日期:2023-02-13
編輯/王萌