




doi:10.6048/j.issn.1001-4330.2024.05.001
摘" 要:【目的】研究土壤水分對不同抗旱性春小麥品種葉片保護性酶活性及產量的影響,為選育春小麥抗旱品種及制定節水高產措施提供理論依據。
【方法】在大田條件下,以抗旱性較強的品種新春46號、抗旱性中等的品種新春37號、抗旱性較弱的品種新春26號為材料,設置3種水分處理,研究土壤水分對不同抗旱性春小麥品種旗葉超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)活性、丙二醛(MDA)含量及產量的影響。
【結果】隨著水分虧缺程度的加劇,春小麥旗葉SOD、CAT活性在揚花期呈升高的趨勢,而在灌漿期則呈先升高后降低的趨勢;POD活性在揚花期呈先升高后降低的趨勢,灌漿期則呈升高的趨勢;MDA含量呈升高的趨勢;SOD、POD活性表現為抗旱性較強的品種新春46號gt;抗旱性中等的品種新春37號gt;抗旱性較弱的品種新春26號,MDA活性在春小麥品種間則呈相反的趨勢。收獲穗數、穗粒數和產量均隨著水分虧缺程度的加劇而降低,抗旱性較強的品種新春46號在有限灌溉和虧缺灌溉處理下,其收獲穗數和穗粒數降低幅度小于新春37號和新春26號,且產量高于新春37號和新春26號。
【結論】抗旱性較強的品種新春46號在有限灌溉和虧缺灌溉條件下,旗葉SOD、POD酶活性較高,MDA含量較低,活性氧清除能力較強,有效延緩了小麥植株的衰老,收獲穗數和穗粒數較抗旱性中等的新春37號和抗旱性較弱的新春26號下降幅度低,在水分虧缺條件下有利于獲得較高的產量。
關鍵詞:春小麥;土壤水分;抗旱性品種;保護性酶活性;產量
中圖分類號:S512""" 文獻標志碼:A""" 文章編號:1001-4330(2024)05-1041-07
收稿日期(Received):
2023-10-11
基金項目:
新疆維吾爾自治區天山青年計劃-杰出青年科技人才培養項目“新疆高產春小麥品種節水機制的生理生態學基礎研究”(2020Q009);新疆維吾爾自治區重大科技專項子課題“新疆小麥生產氣象災害防控關鍵技術研究與集成示范”(2022B02001-3)
作者簡介:
張宏芝(1983-), 男, 甘肅永昌人, 副研究員, 研究方向為小麥高產栽培, (E-mail)dreamzhz@163.com
通訊作者:
樊哲儒(1964-), 男, 甘肅人, 研究員, 研究方向為小麥遺傳育種, (E-mail)fzr518@163.com
張躍強(1976-), 男, 新疆奇臺人, 研究員, 研究方向為小麥遺傳育種, (E-mail)zhangyqyhm@163.com
0" 引 言
【研究意義】干旱是導致作物產量低而不穩的主要因素之一[1-2]。在滴灌條件下,選用具有較強抗旱能力的小麥品種,通過滴灌精確控制水分,提升小麥生物節水潛力,延緩植株衰老。因此,在高產穩產前提下實現高效用水是新疆小麥獲得高產的關鍵措施?!厩叭搜芯窟M展】水分脅迫將影響作物體內活性氧的產生和抗氧化酶活性之間的平衡系統,當脅迫程度較輕時,超氧化物歧化酶(SOD)、過氧化物酶(POD)和過氧化氫酶(CAT)可通過酶活力升高來清除體內產生的活性氧,使其不至于傷害植物[3]。當遭受干旱脅迫時,作物細胞中活性氧產生和清除的平衡會被破壞,體內的防御酶SOD、POD、CAT將被抑制,MDA含量增加,導致細胞受到傷害[4]。在施氮條件下,隨著水分脅迫的加劇,SOD、POD、CAT活性均有所增加,其中POD活性對干旱脅迫響應最快[5]?!颈狙芯壳腥朦c】不同水分處理對小麥品種保護性酶活性的影響已有研究,但不同水分處理對滴灌條件下不同抗旱性春小麥品種保護性酶活性及產量和產量構成因素的影響研究尚較少。需研究土壤水分對不同抗旱性春小麥品種保護性酶活性及產量的影響?!緮M解決的關鍵問題】選用前期篩選的不同抗旱性春小麥品種為材料,分析土壤水分對不同抗旱性春小麥品種SOD、POD、CAT活性和MDA含量及產量的影響,研究土壤水分對不同抗旱性春小麥品種衰老特性的影響,為春小麥水分管理和抗旱品種的選育提供理論依據。
1" 材料與方法
1.1" 材 料
試驗于2021~2022年在新疆農業科學院核技術生物技術研究所軍戶農場小麥育種基地(87°01′E, 43°96′N)進行,海拔717.2 m,土壤類型為灰漠土。選擇抗旱性較強的品種新春46號、抗旱性中等的品種新春37號、抗旱性較弱的品種新春26號為材料。
1.2" 方 法
1.2.1" 試驗設計
試驗為裂區設計,水分處理為主區,品種為副區。水分處理設置3個水平,W1:生育期滴水總量300 m3/667m2(常規灌溉);W2:生育期滴水總量250 m3/667m2(有限灌溉);W3:生育期滴水總量200 m3/667m2(虧缺灌溉),水分處理出苗后滴水8次;小區面積15 m2=5 m×3 m,3次重復,水分處理間設置隔離帶。采用水表和球閥控制水量。所有處理基施磷酸二銨375 kg/hm2,2葉1心期追施尿素75 kg/hm2,拔節期追施尿素225 kg/hm2,孕穗期追施尿素75 kg/ hm2(追肥隨水滴施);播種量375 kg/hm2,行距16 cm。
1.2.2" 測定指標
1.2.2.1" 保護性酶活性和丙二醛含量
于春小麥揚花期和灌漿中期取不同處理旗葉,每處理取15片葉,
經液氮速凍后放入超低溫冰箱,使用ELISA(酶聯免疫吸附)試劑盒法測定
超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)活性及丙二醛(MDA)含量。
1.2.2.2" 產量及產量構成
小麥收獲期進行田間測產,每處理取2 m2樣方,每處理重復5次,取平均值;每處理取定點1 m行長進行室內考種(單位面積產量、穗數、穗粒數和千粒重)。
1.3" 數據處理
采用DPS軟件、Duncan多重比較法進行數據統計分析。
2" 結果與分析
2.1" 不同處理下春小麥SOD酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚花期旗葉SOD酶活性升高,灌漿期SOD酶活性呈先升高后降低的趨勢,以W2(有限灌溉脅迫)處理較高。水分虧缺處理前期,葉片清除活性氧的能力增強,可維持活性氧代謝平衡,而長期水分虧缺則導致春小麥生長后期酶活性氧代謝紊亂、細胞膜受到傷害、SOD酶活性降低。有限灌溉和虧缺灌溉條件下,SOD酶活性表現為抗旱性較強的品種新春46號gt;抗旱性中等的品種新春37號gt;抗旱性較弱的品種新春26號。圖1
2.2" 不同處理下春小麥POD酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚花期旗葉POD活性呈先升高后降低的趨勢,灌漿期呈上升的趨勢。春小麥揚花期品種間POD活性差異不明顯,灌漿期品種間POD活性表現為抗旱性較強的品種新春46號gt;抗旱性中等的品種新春37號gt;抗旱性較弱的品種新春26號。圖2
2.3" 不同處理下春小麥CAT酶活性的變化
研究表明,隨著水分虧缺程度的加劇,春小麥揚花期旗葉CAT活性升高,灌漿期呈先升高后降低的趨勢,以有限灌溉處理較高。春小麥品種間CAT活性差異不明顯。圖3
2.4" 不同處理下春小麥MDA含量的變化
研究表明,隨著水分虧缺程度的加劇春小麥揚花期和灌漿期旗葉MDA含量均升高,尤其是虧缺灌溉處理。春小麥旗葉MDA含量表現為抗旱性較強的品種新春46號<抗旱性中等的品種新春37號<抗旱性較弱的品種新春26號。圖4
2.5" 不同處理下春小麥產量及產量的構成因素
研究表明,有限灌溉和虧缺灌溉條件下,產量均表現為抗旱性較強的品種新春46號gt;抗旱性中等的品種新春37號gt;抗旱性較弱的品種新春26號,且新春46號在2種水分虧缺處理下產量下降幅度較新春37號和新春26號低。收獲穗數和穗粒數均隨著水分虧缺程度的加劇而顯著降低,千粒重下降不明顯;品種間表現為新春46號在有限灌溉和虧缺灌溉處理下收獲穗數和穗粒數降低幅度小于新春37號和新春26號。表1
3" 討 論
3.1
小麥葉片衰老與葉片的活性氧積累,以及活性氧清除系統能力降低,導致細胞生物膜和其他生物大分子結構與功能受到破壞有關[2-3]。SOD、POD、CAT是3種主要的抗氧化酶,可以降低植物體內逆境環境造成的氧化脅迫,水分虧缺對小麥旗葉和穗器官抗氧化酶活性有顯著影響[6-7]。隨著灌水量的減少,植株衰老時間加快,過氧化物酶(POD)和過氧化氫酶(CAT)活性均呈先增后降的趨勢,峰值出現時間提前;旗葉丙二醛(MDA)含量逐漸升高,籽粒灌漿中后期增量顯著[8]。
蔡昆爭等[9]研究表明,干旱脅迫在小麥不同生育期均造成葉片和根系的 SOD、POD、CAT 活性顯著提高。輕度或中度干旱脅迫
初期,各種酶的活性緩慢上升,重度干旱脅迫或干旱持續時間過長,酶活性逐漸減弱或失活[10]。試驗研究表明,隨著水分虧缺程度的加劇,春小麥旗葉SOD、CAT活性在揚花期呈升高的趨勢,灌漿期則呈先升高后降低的趨勢;POD活性揚花期呈先升高后降低的趨勢,灌漿期則呈升高的趨勢;MDA含量呈升高的趨勢。張仁和等[11]在玉米上的研究也發現,干旱脅迫下葉片抗氧化酶活性呈先升高后降低的趨勢,干旱脅迫初期對保護系統酶活性升高有誘導作用,及時清除過量活性氧,從而維持活性氧代謝平衡,重度脅迫下活性氧清除酶的活性下降、活性氧代謝紊亂、細胞膜受傷害。
3.2
干旱條件下,抗旱性弱的小麥品種抗氧化酶保護系統不協調,并導致膜脂過氧化程度增強;而灌漿后期POD活性提高增強
了膜脂過氧化程度,旗葉衰老加速[12]。相同處理條件下,抗旱性品種小麥MDA含量相對較低,抗氧化酶活性顯著高于水分敏感性品種[13]?;ê蟾珊得{迫下,持綠型作物能夠保持較高的超氧化物歧化酶(SOD)和過氧化物酶(POD)活性,提高脯氨酸含量,降低丙二醛(MDA)含量,使綠葉面積和光合生產力得到有效提高[14-15]。試驗研究表明,SOD、POD活性抗旱性較強的品種新春46號gt;抗旱性中等的品種新春37號gt;抗旱性較弱的品種新春26號,CAT活性品種間差異較小,MDA含量表現為抗旱性較強的品種新春46號lt;抗旱性中等的品種新春37號lt;抗旱性較弱的品種新春26號??购敌暂^強的品種,其保護酶的活性也較高[16]。同一水分處理下保護系統酶活性不同品種間的差異較大,抗旱性高的品種明顯高于抗旱性低的品種[13,17]。
小麥拔節期適度干旱雖然顯著降低成穗數,但增加了穗粒數、而且延緩了開花后葉片衰老、顯著提高葉片凈光合速率,籽粒灌漿速率、千粒重、籽粒產量和水分利用效率[18]。然而拔節期過度干旱則會降低小麥有效穗數和穗粒數,嚴重干旱條件下小麥千粒重、單株和單位面積籽粒產量亦顯著降低[19-20]。研究表明,隨著水分虧缺程度的加劇,收獲穗數、穗粒數和產量均顯著降低,抗旱性較強的品種新春46號在有限灌溉和虧缺灌溉處理下,其收獲穗數和穗粒數降低幅度小于新春37號和新春26號,產量降低幅度也較小。干旱脅迫下高抗品種減產幅度小,減緩了干旱對產量的影響。干旱脅迫使小麥的有效穗數、穗粒數、千粒重及產量均顯著下降。輕度干旱脅迫下,有效穗數和產量降幅較大;嚴重干旱脅迫下,穗粒數、千粒重和產量下降的幅度均更明顯[19]。
4" 結 論
抗旱性較強的品種新春46號在有限灌溉和虧缺灌溉條件下,旗葉SOD、POD酶活性較高,MDA含量較低,活性氧清除能力較強,有效的延緩小麥植株的衰老;收獲穗數和穗粒數較抗旱性中等和抗旱性較弱的品種下降幅度低,在水分虧缺條件下有利于獲得較高的產量。在小麥實際生產中的應根據不同小麥品種的抗旱性強弱,合理進行水分運籌,延緩小麥植株衰老,延長葉片的功能期,從而提高產量。
參考文獻(References)
[1]
Deng X P, Shan L, Zhang H P, et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1/2/3): 23-40.
[2] 屈艷萍, 高輝, 呂娟, 等. 基于區域災害系統論的中國農業旱災風險評估[J]. 水利學報, 2015, 46(8): 908-917.
QU Yanping, GAO Hui, LYU Juan, et al. Agricultural drought disaster risk assessment in China based on the regional disaster system theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 908-917.
[3] 魏煒, 趙欣平, 呂輝, 等. 三種抗氧化酶在小麥抗干旱逆境中的作用初探[J]. 四川大學學報(自然科學版), 2003, 40(6): 1172-1175.
WEI Wei, ZHAO Xinping, LYU Hui, et al. The study of the function of three antioxidant enzymes in wheat leaf under drought stress[J]. Journal of Sichuan University (Natural Science Edition), 2003, 40(6): 1172-1175.
[4] 孔東, 晏云, 段艷, 等. 不同水氮處理對冬小麥生長及產量影響的田間試驗[J]. 農業工程學報, 2008, 24(12): 36-40.
KONG Dong, YAN Yun, DUAN Yan, et al. Field experiment on growth and yields of winter wheat under different water and nitrogen treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12): 36-40.
[5] 張迪, 孫婷, 王冀川, 等. 不同水氮組合對滴灌冬小麥葉片保護性酶活性及產量的影響[J]. 新疆農業科學, 2018, 55(10): 1775-1785.
ZHANG Di, SUN Ting, WANG Jichuan, et al. Effects of different water and nitrogen combinations on protective enzyme activities and yield of winter wheat under drip irrigation[J]. Xinjiang Agricultural Sciences," 2018, 55(10): 1775-1785.
[6] Gill M B, Cai K F, Zhang G P, et al. Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure[J]. Plant Growth Regulation, 2017, 82(3): 447-455.
[7] Liu M X, Chen J J, Guo Z F, et al. Differential responses of polyamines and antioxidants to drought in a centipedegrass mutant in comparison to its wild type plants[J]. Frontiers in Plant Science, 2017, 8: 792.
[8] 李清瑤. 灌水量對強筋小麥旗葉衰老和籽粒發育特性的調控效應及其生理基礎[D]. 秦皇島: 河北科技師范學院, 2021.
LI Qingyao. Effects of Irrigation Volume on Flag Leaf Senescence and Grain Development Characteristics of Strong Gluten Wheat and Its Physiological Basis[D]. Qinhuangdao: Hebei Normal University of Science amp; Technology, 2021.
[9] 蔡昆爭, 吳學祝, 駱世明, 等. 不同生育期水分脅迫對水稻根系活力、葉片水勢和保護酶活性的影響[J]. 華南農業大學學報, 2008, 29(2): 7-10.
CAI Kunzheng, WU Xuezhu, LUO Shiming, et al. Effects of water stress at different growth stages on root activity, leaf water potential and protective enzymes activity in rice[J]. Journal of South China Agricultural University, 2008, 29(2): 7-10.
[10] 張永福, 黃鶴平, 銀立新, 等. 冷(熱)激對干旱脅迫下玉米活性氧清除及膜脂過氧化的調控機制[J]. 江蘇農業科學, 2015, 43(5): 56-60.
ZHANG Yongfu, HUANG Heping, YIN Lixin, et al. Regulation mechanism of cold (heat) shock on active oxygen scavenging and membrane lipid peroxidation in maize under drought stress[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 56-60.
[11] 張仁和, 鄭友軍, 馬國勝, 等. 干旱脅迫對玉米苗期葉片光合作用和保護酶的影響[J]. 生態學報, 2011, 31(5): 1303-1311.
ZHANG Renhe, ZHENG Youjun, MA Guosheng, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding[J]. Acta Ecologica Sinica, 2011, 31(5): 1303-1311.
[12] 王征宏. 干旱對小麥灌漿期物質轉運的調控[D]. 楊凌: 西北農林科技大學, 2009.
WANG Zhenghong. Regulation of Drought Stress on Assimilate Translocation during Grain Filling in Wheat[D]. Yangling: Northwest A amp; F University, 2009.
[13] 葉君, 鄧西平, 王仕穩, 等. 干旱脅迫下褪黑素對小麥幼苗生長、光合和抗氧化特性的影響[J]. 麥類作物學報, 2015, 35(9): 1275-1283.
YE Jun, DENG Xiping, WANG Shiwen, et al. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress[J]. Journal of Triticeae Crops, 2015, 35(9): 1275-1283.
[14] Song Y W, Xiang F Y, Zhang G Z, et al. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana[J]. Frontiers in Plant Science," 2016, 7: 181.
[15] Zhang K W, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology," 2012, 158(2): 961-969.
[16] Sgherri C L M, Maffei M, Navari-Izzo F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J]. Journal of Plant Physiology, 2000, 157(3): 273-279.
[17] 楊貝貝, 趙丹丹, 任永哲, 等. 不同小麥品種對干旱脅迫的形態生理響應及抗旱性分析[J]. 河南農業大學學報, 2017, 51(2): 131-139.
YANG Beibei, ZHAO Dandan, REN Yongzhe, et al. Drought resistance of different wheat cultivars and physiological response to drought stress[J]. Journal of Henan Agricultural University," 2017, 51(2): 131-139.
[18] 胡洋山, 湯穎子, 李治, 等. 小麥分蘗成穗數相關分子標記在重組自交系(RIL)群體中的有效性驗證及實用性評價[J]. 麥類作物學報, 2018, 38(1): 8-15.
HU Yangshan, TANG Yingzi, LI Zhi, et al. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population[J]. Journal of Triticeae Crops, 2018, 38(1): 8-15.
[19] 金欣欣, 姚艷榮, 賈秀領, 等. 基因型和環境對小麥產量、品質和氮素效率的影響[J]. 作物學報, 2019, 45(4): 635-644.
JIN Xinxin, YAO Yanrong, JIA Xiuling, et al. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2019, 45(4): 635-644.
[20] 楊文平, 單長卷, 胡喜巧, 等. 土壤干旱對冬小麥拔節期葉片碳代謝的影響[J]. 河南農業科學, 2008, 37(9): 20-22, 26.
YANG Wenping, SHAN Changjuan, HU Xiqiao, et al. Effects of soil drought on carbon metabolism of winter wheat during jointing stage[J]. Journal of Henan Agricultural Sciences, 2008, 37(9): 20-22, 26.
Effects of soil moisture on leaf protective enzyme activities and yield of spring wheat cultivars with different drought resistance
ZHANG Hongzhi1, WANG Lihong1, SHI Jia1, KONG Depeng2, WANG Zhong1, GAO Xin1, LI Jianfeng1, WANG Chunsheng1, XIA Jianqiang1, FAN Zheru1, ZHANG Yueqiang1
(1. Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Agricultural Ministry/Xinjiang Engineering Technology Research Center of Crop Chemical Regulation/ Xinjiang Key Laboratory of Crop Biotechnology / Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 2. Agricultural Technology Extension Master Station of Xinjiang Uygur Autonomous Region, Urumqi 830000, China)
Abstract:【Objective】 To study the effects of soil moisture on the yield of protective enzyme active agent in different drought-resistant varieties in the hope of providing theoretical basis for the breeding of drought-resistant spring wheat varieties.
【Methods】" Under field conditions, Xinchun 46 with strong drought resistance, Xinchun 37 with medium drought resistance and Xinchun 26 with weak drought resistance were used as experimental materials to study the effects of soil moisture on SOD, POD, CAT activities, MDA content and yield of flag leaves of spring wheat varieties with different drought resistance.
【Results】" With the increase of water deficit, the activities of SOD and CAT in flag leaves of wheat increased at flowering stage, and first increased and then decreased at filling stage.POD activity increased at flowering stage and then decreased, and increased at grout stage.MDA content showed an increasing trend.The SOD and POD activity of drought-resistant cultivar Xinchun 46 gt; drought-resistant medium cultivar Xinchun 37 gt; drought-resistant weak cultivar Xinchun 26 showed an opposite trend among varieties.The harvest panicle number, grain number per ear and yield decreased with the increase of water deficit.The harvest panicle number and grain number per ear of Xinchun 46 with strong drought resistance decreased less than those of Xinchun 37 and Xinchun 26 under limited irrigation and deficit irrigation, and the yield of Xinchun 46 under water deficit was higher than those of the other two varieties.
【Conclusion】" Under the condition of limited irrigation and deficit irrigation, the flag leaves of Xinchun 46 with strong drought resistance had higher SOD and POD enzyme activities, lower MDA content, and stronger active oxygen scavenging ability, which effectively delayed the senility of wheat plants.Compared with the cultivars with moderate drought resistance and weak drought resistance, the number of harvested ears and grain per ear decreased less, which was conducive to higher yield under the condition of water deficit.
Key words:spring wheat; soil moisture; drought-resistant varieties; protective activity; yield
Fund projects:Tianshan Youth Plan-Cultivation Project for Outstanding Young Scientific and Technological Talents of Autonomous Region \"Physiological and Ecological Basis Research on Water-saving Mechanism of High-Yield Spring Wheat Varieties in Xinjiang\"(2020Q009);Sub-project of Major Science and Technology Special Project of the Autonomous Region \"Research and Integrated Demonstration on Key Technologies of Meteorological Disaster Prevention and Control in Wheat Production in Xinjiang\"(2022B02001-3)
Correspondence author:FAN Zheru(1964-), male, from Gansu, researcher, research direction: wheat mutation breeding, (E-mail)fzr518@163.com
ZHANG Yueqiang(1976-), male, from Qitai, Xinjiang, researcher, research direction: wheat mutation breeding, (E-mail)zhangyqyhm@163.com