



doi:10.6048/j.issn.1001-4330.2024.05.016
摘" 要:【目的】研究楊樹-苜蓿間作對紫花苜蓿生長發育及品質的影響,為新疆林草復合模式的可持續發展提供理論和技術依據。
【方法】2018~2019年4月上旬至9月上旬,每隔15 d對紫花苜蓿進行采樣,測定紫花苜蓿的農藝性狀(株高、葉面積指數、莖葉比、莖粗、生長速度)及品質(粗蛋白、粗脂肪、飼用品質),并監測單作、間作紫花苜蓿田間微氣候(空氣溫度、空氣濕度、露點溫度、風速)。
【結果】間作苜蓿各項指標均顯著低于單作,間作的干草總產量比單作低55.27%;單作紫花苜蓿的露點溫度和風速分別比間作高70.68%、93.83%,但單作紫花苜蓿的空氣濕度比間作低13.49%,空氣溫度無顯著差異;間作紫花苜蓿的粗蛋白、粗脂肪和飼用品質分別比對應的單作高17.78%、12.33%和17.26%。
【結論】楊樹-紫花苜蓿間作能夠改善農田微氣候并顯著提高紫花苜蓿的營養品質。
關鍵詞:楊樹;紫花苜蓿;農藝性狀;飼用品質;間作
中圖分類號:S54""" 文獻標識碼:A""" 文章編號:1001-4330(2024)05-1182-08
收稿日期(Received):
2024-01-25
基金項目:
國家自然科學基金項目(31460335,31560376);國家牧草產業技術體系石河子綜合試驗站(CARS-34);中國博士后科學基金(2015M582737)
作者簡介:
代元帥(1996-),男,河南人,碩士研究生,研究方向為耕作學與農業生態學,(E-mail)1424260483@qq.com
通訊作者:
張偉(1979-),男,甘肅人,教授,博士,碩士生/博士生導師,研究方向為農田生態與生物多樣性,(E-mail)bluesky2002040@163.com
0" 引 言
【研究意義】新疆氣候干燥,降水稀少,土壤鹽漬化較為普遍[1-3]。林草復合模式有利于改善生態環境,增加農田生物量,提高土壤含水量[4-7]。研究林草間作模式(楊樹-苜蓿),對新疆林草復合模式的可持續發展有重要意義。【前人研究進展】林草復合系統中牧草的生長發育特性受林-草-環境相互作用的影響[8]。樹木遮陰降低了地面太陽能輻射和雨水量,紫花苜蓿的光合和水分吸收受到制約,樹木的根系分布也會阻礙紫花苜蓿根系從土壤中汲取足夠多的養分,維持自身生長發育,影響紫花苜蓿品質形成和干草產量[9-11]。牧草對林下裸露的地表覆蓋會改變地表光、溫、水、熱等微環境條件,與光合作用所需的能量和物質關系密切[12]。紫花苜蓿與楊樹間作能促進紫花苜蓿固定的氮素向楊樹轉移,有利于提高間作作物生物產量[13]。采用施肥、灌溉和改變栽培模式等措施,通過改善牧草群體內部小氣候,提高牧草對水資源的利用率,以達到高產優質的目的[14]。林下植草能夠提高自然資源的利用率,又能獲得額外牧草收益[15-17]。【本研究切入點】目前對林草間作根系、生態和產量研究較多,而對林草間作條件下紫花苜蓿形態學特征和品質影響的研究鮮有報道[18-21]。需要研究林草間作對紫花苜蓿生長發育和飼用品質的影響。【擬解決的關鍵問題】測定紫花苜蓿的農藝性狀(株高、葉面積指數、莖葉比、莖粗、生長速度)及品質(粗蛋白、粗脂肪、飼用品質),并監測單作、間作紫花苜蓿田間微氣候(空氣溫度、空氣濕度、露點溫度、風速),研究楊樹-紫花苜蓿間作對紫花苜蓿生長發育及品質的影響,為林草復合模式的可持續發展提供理論和技術依據。
1" 材料與方法
1.1" 材 料
試驗于2018~2019年設在位于新疆石河子市147團7連(86°10′ E,44°37′ N,平均海拔450 m)的定位試驗田,年均氣溫6.6~7.1℃,年均降水量189~200 mm,年均蒸發量1 500~2 000 mm,無霜期148~187 d。土壤為輕鹽漬化灌耕荒漠土,土壤有機質含量17.1 g/kg,速效鉀含量135.8 mg/kg,堿解氮含量18.6 mg/kg,速效磷含量5.2 mg/kg。
1.2" 方 法
1.2.1" 試驗設計
選擇8年生的人造楊樹林,設楊樹-紫花苜蓿間作(以下簡稱間作)、楊樹(新疆楊)
單作和紫花苜蓿單作3個處理,每個處理設3個重復,小區面積3 m×6 m=18 m2。單作和間作楊樹于2012年9月種植,南北向種植,行間距為5.6 m×1.4 m;間作和單作紫花苜蓿于2015年9月播種,(三得利)苜蓿,由百綠(天津)國際草業有限公司提供。試驗使用滴灌帶灌溉,每年灌水6次,每次灌水500 m3/hm2。
采用TNHY-5-A-G手持農業環境監測儀(浙江托普云農科技股份有限公司出品)于09:00~10:00。分別測量間作和單作小區的空氣溫度、空氣濕度、露點溫度和風速。
1.2.2" 測定指標
在紫花苜蓿返青至枯黃期(4月下旬~9月上旬),每隔15 d田間采樣調查1次。
1.2.2.1" 農藝性狀
株高:在不同小區選取具有代表性的10株紫花苜蓿,測定其自然株高,并計算平均值;莖葉比:將莖和葉(花序葉面積的測定歸入葉)分開后自然風干,再分別稱量,計算莖葉比;莖粗:用游標卡尺測量紫花苜蓿距地面5 cm處的莖粗;干草產量:在初花期刈割,刈割各小區1 m×1 m面積上的紫花苜蓿,留茬高度5 cm,將收獲鮮草置于105℃烘箱中殺青30 min后在85℃烘干至恒重稱重,計算干草產量;生長速度:根據測得的紫花苜蓿干草產量以及每茬刈割間隔的天數計算出紫花苜蓿每一茬的生長速度(kg/hm2·d);各小區選取1 m×1 m的紫花苜蓿,利用YMJ-B葉面積儀測定單株葉面積并計算葉面積指數:
葉面積指數(LAI)=單位土地上的總葉面積指數/土地面積。(1)
1.2.2.2" 營養成分
粗蛋白(crude protein,CP)含量采用凱氏定氮法測定;粗脂肪(crude fat,CF)含量采用ANKOM2000索氏抽提法測定;酸性洗滌纖維(acid detergent fiber,ADF)和中性洗滌纖維(neutral detergent fiber,NDF)采用van Soest方法測定。計算相對飼用價值(relative feed value,RFV)[22-23]。
RFV=(88.9-0.779×ADF)×(120/NDF)/1.29.(2)
1.3" 數據處理
R3.6.1的AVO函數進行方差分析,用ggplot2包作圖。使用SPSS 22.0進行方差分析和多重比較,在0.05概率水平上采用Duncan法進行顯著性檢驗。
2" 結果與分析
2.1" 間作對紫花苜蓿葉面積指數(LAI)的影響
研究表明,隨著生育時期的推進,紫花苜蓿的LAI逐漸增加,刈割后紫花苜蓿的LAI會降低,并在刈割后的再生期后逐漸恢復。間作紫花苜蓿的LAI在各個時期均低于單作。單作、間作紫花苜蓿的LAI均在第一茬初花期達到最大值,分別為19.82和17.32。LAI隨著生育時期的推進雖然逐漸恢復,但均低于第一茬初花期的最大值。單作、間作紫花苜蓿LAI之間的差異在第三茬初花期達到最大。表1
2.2" 間作對紫花苜蓿生長性狀指標的影響
研究表明,單作紫花苜蓿的株高、莖粗、莖葉比、生長速度在各茬次均高于間作。在紫花苜蓿的3次刈割中,單作與間作的株高、莖粗、莖葉比、生長速度在第三茬刈割時差異最大,單作分別比對應的間作高18.76%、35.43%、6.10%和9.63%。隨刈割茬次的增加,單作、間作紫花苜蓿的株高、莖粗、莖葉比、生長速度呈先增加后降低的趨勢,第三茬與第二茬差異最大(Plt;0.05)。表2
2.3" 間作對紫花苜蓿干草產量的影響
研究表明,單作、間作紫花苜蓿的干草產量在3次刈割中,第一茬最高,分別為7 060.03和3 498.83 kg/hm2。隨后的2次刈割紫花苜蓿的干草產量逐漸下降,干草產量與刈割次數成負相關。在第二茬刈割中,單作、間作紫花苜蓿的干草產量分別為4 889.88和2 144.43 kg/hm2,第三茬刈割中,單作、間作紫花苜蓿的干草產量分別為3 793.42和1 398.39 kg/hm2。單作、間作紫花苜蓿3次刈割的總干草產量分別為15 743.47和7 041.66 kg/hm2。間作紫花苜蓿的在3次刈割中收獲的干草產量與單作相比分別低了50.44%、56.15%和63.14%。間作紫花苜蓿的總干草產量比單作低55.27%。圖1
2.4" 間作對紫花苜蓿品質的影響
研究表明,在間作條件下,紫花苜蓿粗蛋白含量、粗脂肪含量和飼用品質均高于對應的單作,而中性洗滌纖維、酸性洗滌纖維含量均低于對應的單作;隨刈割次數的增加,單作、間作紫花苜蓿粗蛋白含量、粗脂肪含量和飼用品質逐漸下降,中性洗滌纖維、酸性洗滌纖維含量逐漸升高,飼用品質也逐漸降低。在第一、二、三刈割茬次,間作紫花苜蓿的粗蛋白含量比對應單作分別高18.13%,17.6%和17.63%;間作紫花苜蓿粗脂肪含量比對應單作分別高15.58%,8.78%和12.5%;間作紫花苜蓿中性洗滌纖維含量比對應單作分別低10.53%,13.85%和13.3%;間作紫花苜蓿酸性洗滌纖維含量比對應單作分別低7.48%,8%和3.69%;間作紫花苜蓿飼用品質比對應單作分別高14.96%,19.94%和17.01%。其中,間作紫花苜蓿的粗蛋白含量和粗脂肪含量均顯著高于對應單作,并在第一茬差異達到最大;間作紫花苜蓿的中性洗滌纖維和酸性洗滌纖維含量均顯著低于單作,并在第一、二茬差異最大;間作紫花苜蓿的飼用品質顯著高于單作,并在第二茬差異最大。表3
2.5" 間作對農田微氣候的影響
研究表明,在紫花苜蓿整個生長季中,間作的空氣溫度、露點溫度和風速低于單作,而空氣濕度高于單作。其中單作、間作在空氣濕度和露點溫度的年平均差異不明顯,但在第二茬刈割時單作紫花苜蓿的露點溫度比間作高72.13%,差異顯著(Plt; 0.05)。3次刈割中,單作紫花苜蓿的風速均顯著高于間作(P lt; 0.05),分別比間作高141.97%、87.16%和52.36%;間作紫花苜蓿的空氣濕度分別比單作高8.47%、10.36%和21.66%。圖2
3" 討 論
3.1" 間作對紫花苜蓿生長發育和干草產量影響
干草產量是評價苜蓿生產性能的主要指標,株高、莖粗和生長速度與干草產量密切相關[24]。苗曉茸等[25]通過灰色關聯度分析得出,紫花苜蓿的生長速度、莖粗對其干草產量有較高的貢獻率。與研究結果一致,間作條件下紫花苜蓿的株高、莖粗、莖葉比和生長速度均低于單作,導致間作的干草總產量也明顯低于單作。由于林下作物在光能競爭中處于弱勢,紫花苜蓿的生長發育受到了不利影響[24]。不同遮陰程度下紫花苜蓿的生長發現,當遮陰為50%時能夠獲得較高的干草產量[13]。受刈割影響,紫花苜蓿干草產量在第一茬刈割時達到最大,隨后逐漸降低,是因為地上部分同化器官的恢復能力隨著刈割次數增加而減弱導致的[26-27]。間作下對刈割的反應更強烈,間作干草產量在整個生長期均低于對應的單作。
3.2" 間作對紫花苜蓿營養品質的影響
粗蛋白含量、粗脂肪含量,中性和酸性洗滌纖維是評價紫花苜蓿的營養品質的重要指標。其中NDF、ADF決定紫花苜蓿的飼用品質,CP含量和CF含量影響苜蓿干草市場的交易價格[28]。NDF含量越高、ADF含量越低,紫花苜蓿的飼用品質越高,反之飼用品質降低[29]。研究也證實了這一點,間作下紫花苜蓿的NDF比單作的高,而ADF比單作低,計算結果也表明,間作飼用品質、CP、CF均顯著高于單作,可能是樹木適當的遮陰促進了紫花苜蓿品質的提高[30]。遮陰促進了紫花苜蓿固定N的能力,有利于紫花苜蓿自身營養物質合成[31]。間作中通過改變樹行距使遮陰在適當范圍內對于紫花苜蓿產量和品質的提高有促進作用[32]。
紫花苜蓿的適宜微氣候條件是促進紫花苜蓿品質形成的關鍵[33-34]。
4" 結 論
間作對紫花苜蓿的農藝性狀和品質產生重要影響。在間作條件下,紫花苜蓿的葉面積指數、株高、莖粗、莖葉比、生長速度和干草產量比相應的單作分別低21.50%、10.75%、19.65%、4.92%、3.77%和55.27%。單作紫花苜蓿的露點溫度和風速分別比間作高70.68%、93.83%,單作紫花苜蓿的空氣濕度比間作低13.49%,空氣溫度無顯著差異。林草復合模式具有降低林下風速和調節林下溫度、濕度的作用,避免了夏季干熱風對紫花苜蓿品質形成的不利影響,又提高了紫花苜蓿的水分利用效率。間作紫花苜蓿的粗蛋白、粗脂肪和飼用品質分別比對應的單作高17.78%、12.33%和17.26%。間作雖然會導致林下紫花苜蓿農藝性狀和干草產量下降,但林草間作有利于林下紫花苜蓿品質的提升。
參考文獻(References)
[1]
陶雪, 蘇德榮, 蔻丹, 等. 西北旱區灌溉方式對苜蓿生長及水分利用效率的影響[J]. 草地學報, 2016, 24(1): 114-120.
TAO Xue, SU Derong, KOU Dan, et al. Effects of irrigation methods on growth and water use efficiency of alfalfa in arid northwest China [J]. Acta Agrestia Sinica, 2016, 24(1): 114-120.
[2] 冉錦成, 蘇洋, 胡金鳳, 等. 新疆畜牧養殖經濟效益與碳排放脫鉤關系的實證研究[J]. 中國農業資源與區劃, 2017, 38(1): 17-23.
RAN Jincheng, SU Yang, HU Jinfeng, et al. Economic performance and its decoupling relationship with carbon emissions in Xinjiang [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(1): 17-23.
[3] 徐麗君, 徐大偉, 逄煥成, 等.中國苜蓿屬植物適宜性區劃[J].草業科學, 2017, 34(11):2347-2358.
XU Lijun, XU Dawei, PANG Huancheng, et al. Chinese alfalfa habitat suitability regionalization [J]. Pratacultural Science, 2017, 34 (11): 2347-2358.
[4] 陳澍, 荊文濤, 祖艷群, 等. 林草復合系統削減滇池流域農業面源污染研究[J]. 中國水土保持, 2015,(4): 46-49,69.
CHEN Shu, JING Wentao, ZU Yanqun, et al. Reducing agricultural area-source pollution in Dianchi watershed through tree-grass compound system [J]. Soil and Water Conservation in China, 2015,(4): 46-49,69.
[5] 郭忠錄, 鄭珉嬌, 丁樹文, 等. 農田改為農林(草)復合系統對紅壤CO2和N2O排放的影響[J]. 中國生態農業學報, 2012, 20 (9): 1191-1196.
GUO Zhonglu, ZHENG Minjiao, DING Shuwen, et al. CO2 and N2O emissions in the red soils of agro-forestry (grass) systems conversed from cropland in subtropical hilly region of China [J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1191-1196.
[6] 唐夫凱, 齊丹卉, 盧琦, 等. 中國西北地區農林復合經營的保護與發展[J]. 自然資源學報, 2016, 31(9):1429-1439.
TANG Fukai, QI Danhui, LU Qi, et al. Strategies of conservation and development of agroforestry ecosystem in Northwest China [J]. Journal of Natural Resources, 2016, 31(9): 1429-1439.
[7] Cárdenas A, Moliner A, Hontoria C, et al. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua [J]. Agroforestry Systems, 2019, 93(1): 229-239.
[8] Kuyah S, Whitney C W, Jonsson M, et al. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis [J]. Agronomy for Sustainable Development, 2019, 39(5): 1-18.
[9] Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry systems. 3. Soil water distribution and dynamics [J]. Plant and Soil, 2004, 264 (1-2): 129-139.
[10] 王國良, 賈春林, 周玉雷, 等. 遮蔭對紫花苜蓿生長發育和產草量影響的初探[J]. 草業科學, 2010, 27(10): 69-73.
WANG Guoliang, JIA Chunlin, ZHOU Yulei, et al. Preliminary study on effect of shading on the growth and yield of Medicago sativa [J]. Pratacultural Science, 2010, 27 (10): 69-73.
[11] Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass) [J]. Plant and Soil, 2017, 412(1-2): 7-19.
[12] 張永強, 張娜, 李亞杰, 等. 滴灌量對復播大豆生理特性及農田小氣候的影響[J]. 中國農業氣象, 2015, 36(5): 586-593.
ZHANG Yongqiang, ZHANG Na, LI Yajie, et al. Impacts of drip irrigation amount on physiological characteristic of summer soybean and field micro-climate [J]. Chinese Journal of Agrometeorology, 2015, 36(5): 586-593.
[13]Mccallum M H , Peoples M B , Connor D J . Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a lucerne (Medicago sativa L.)-based pasture ley in the Victorian Wimmera[J]. Crop amp; Pasture Science, 2000, 51(1):13-22.
[14] 張娜, 張永強, 徐文修, 等. 滴灌量對冬小麥田間小氣候及產量的影響研究[J]. 中國生態農業學報,2016, 24(1): 64-73.
ZHANG Na, ZHANG Yongqiang, XU Wenxiu, et al. Effect of different drip irrigation amounts on microclimate and yield of winter wheat [J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 64-73.
[15] 張德閃, 李洪波, 申建波. 集約化互作體系植物根系高效獲取土壤養分的策略與機制[J]. 植物營養與肥料學報, 2017, 23(6): 1547-1555.
ZHANG Deshan, LI Hongbo, SHEN Jianbo. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems [J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1547-1555.
[16] Asbjornsen H, Hernandez-Santana V, Liebman M, et al. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services [J]. Renewable Agriculture and Food Systems, 2013, 29(2): 101-125.
[17] LIU Weiwei, LI Wenhua, LIU Moucheng, et al. Traditional agroforestry systems: One type of globally important agricultural heritage systems [J]. Journal of Resources and Ecology, 2014, 5(4): 306-313.
[18] 張盼盼, 周瑜, 宋慧, 等. 不同肥力水平下糜子生長狀況及農田小氣候特征比較[J].應用生態學報, 2015, 26(2): 473-480.
ZHANG Panpan, ZHOU Yu, SONG Hui, et al. Comparison of growth and field microclimate characteristics of broomcorn millet under different fertilization conditions [J]. Chinese Journal of Applied Ecology, 2015, 26 (2): 473-480.
[19] 張雷一, 張靜茹, 劉方, 等. 林草復合系統的生態效益[J]. 草業科學, 2014, 31(9): 1789-1797.
ZHANG Leiyi, ZHANG Jingru, LIU Fang, et al. A review of ecological benefits of silvopasture system [J]. Pratacultural Science, 2014, 31(9): 1789-1797.
[20] Hamzei J, Seyedi M. Evaluation of the effects of intercropping systems on yield performance, land equivalent ratio, and weed control efficiency [J]. Agricultural Research, 2015, 4(2): 202-207.
[21] 李隆. 間套作強化農田生態系統服務功能的研究進展與應用展望[J]. 中國生態農業學報, 2016, 24(4): 403-415.
LI Long. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives [J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415.
[22]熊乙, 許慶方, 玉柱, 等.不同產地燕麥干草養分及飼用價值[J]. 草業科學, 2018, 35(10): 2457-2462.
XIONG Yi, XU Qingfang, YU Zhu, et al. Evaluation of nutritional and feeding value of oat hay from different regions [J]. Pratacultural Science, 2018, 35 (10): 2457-2462.
[23]曹志軍, 史海濤, 李德發, 等. 中國反芻動物飼料營養價值評定研究進展[J]. 草業學報, 2015, 24(3): 1-19.
CAO Zhijun, SHI Haitao, LI Defa, et al. Progress on nutritional evaluation of ruminant feedstuff in China [J]. Acta Prataculturae Sinica, 2015, 24(3): 1-19.
[24] 張凡凡, 于磊, 馬春暉, 等. 綠洲區滴灌條件下施磷對紫花苜蓿生產性能及品質的影響[J]. 草業科學, 2015, 24(10): 175-182.
ZHANG Fanfan, YU Lei, MA Chunhui, et al. Effects of phosphorus application under drip irrigation on the productivity and quality of alfalfa in Northern Xinjiang [J]. Pratacultural Science, 2015, 24(10): 175-182.
[25] 苗曉茸, 孫艷梅, 于磊, 等. 氮磷互作對不同茬次滴灌苜蓿生產性能及營養品質的影響[J]. 草業學報, 2019, 28(9): 55-66.
MIAO Xiaorong, SUN Yanmei, YU Lei, et al. Effects of nitrogen and phosphorus fertilizer rate on hay yield and nutritional quality of alfalfa under drip irrigation [J]. Pratacultural Science, 2019, 28(9): 55-66.
[26] 彭曉邦, 蔡靖, 姜在民, 等. 光能競爭對農林復合生態系統生產力的影響[J]. 生態學報, 2009, 29(1): 545-552.
PENG Xiaobang, CAI Jing, JIANG Zaiming, et al. Effects of light competition on crop productivity in an intercropping agroforestry ecosystem [J]. Acta Ecologica Sinica, 2009, 29(1): 545-552.
[27] 包烏云, 趙萌莉, 安海波, 等. 刈割對不同苜蓿品種生長和產量的影響[J]. 西北農林科技大學學報(自然科學版), 2015, 43(2): 65-71.
BAO Wuyun, ZHAO Mengli, AN Haibo, et al. Effects of mowing on growth and yield of different alfalfa varieties [J]. Journal of Northwest A amp; F University(Natural Science Ed.), 2015, 43(2): 65-71.
[28] 金文斌, 張凡兵. 紫花苜蓿生長特性及品質對不同刈割強度的響應[J]. 北方園藝, 2014 ,(21): 72-77.
JIN Wenbin, ZHANG Fanbing. Response of quality and growth characteristics of Medicago sativa for the different intensity of cutting [J]. Northern Horticulture, 2014,(21): 72-77.
[29] Corl B, Rhoads M, Harrell R J, et al. Rotaviral enteritis stimulates ribosomal p70 s6 kinase and increases intestinal protein synthesis in neonatal pigs [J]. The Federation of American Societies for Experimental Biology Journal, 2005, 19 (5): 976.
[30] 劉東霞, 劉貴河, 楊志敏. 種植及收獲因子對紫花苜蓿干草產量和莖葉比的影響[J]. 草業學報, 2015, 24(3): 48-57.
LIU Dongxia, LIU Guihe, YANG Zhimin. The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(3): 48-57.
[31] Aurélie Q, Patricia B, Lydie D, et al. Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a Mediterranean agroforestry system [J]. European Journal of Agronomy, 2017, 84: 35-46.
[32] 唐晨陽, 魏臻武, 江舟, 等. 行比對不同豆禾間作模式產量與品質的影響[J]. 草地學報, 2020, 28(1): 214-220.
TANG Chenyang, WEI Zhenwu, JIANG Zhou, et al. Effects of row ratio on yield and quality of different intercropping modes [J]. Acta Agrestia Sinica, 2020, 28(1): 214-220.
[33] 劉玉華. 紫花苜蓿生長發育及產量形成與氣象條件關系的研究[D]. 楊凌: 西北農林科技大學, 2006.
LIU Yuhua. Study on the relations between growth development and yield formation of alfalfa and climate conditions [D]. Yangling: Northwest A amp; F University, 2006.
[34] 吳佳. 紫花苜蓿葉片生長動態特征及影響環境因素分析[D]. 楊凌:西北農林科技大學, 2008.
WU Jia. Analysis of growing dynamic of alfalfa leaves and affecting environmental factors [D]. Yangling: Northwest A amp; F University, 2008.
Effects of intercropping poplar-alfalfa on growth and quality of alfalfa in forest-grass compound system
DAI Yuanshuai1, LU Weihua2, SHEN Lei1, WANG Xiuyuan1, ZHANG Wenlong1, ZHANG Wei1
(1." College of Agronomy, Shihezi University, Shihezi Xinjiang 832000, China; 2. College of Animal Science and Technology, Shihezi University, Shihezi Xinjiang 832000, China)
Abstract:【Objective】 This experiment explored the influence of poplar-alfalfa intercropping on the growth, development and quality of alfalfa, so as to provide theoretical and technical basis for the sustainable development of forest and grass composite model in Xinjiang.
【Methods】" The experiment from 2018 to 2019, during the early April to September of every 15 days to sampling of alfalfa, determination of alfalfa agronomic traits (plant height, leaf area index, stem/leaf ratio, stem diameter, growth rate) and quality (crude protein, crude fat, forage quality), and the sole, intercropping alfalfa microclimate monitoring field (air temperature, air humidity and dew point temperature, wind speed) monitoring.
【Results】" The results showed that intercropped alfalfa was significantly lower than sole-cropped alfalfa in agronomic traits, and the total yield of intercropped alfalfa was 55.27% lower than that of sole-cropped alfalfa. The dew point temperature and wind speed of alfalfa monoculture were 70.68% and 93.83% higher than that of intercropping, but the air humidity of sole-cropped alfalfa was 13.49% lower than that of intercropped alfalfa, and there was no significant difference in air temperature. The crude protein, crude fat and forage quality of intercropping alfalfa were 17.78%, 12.33% and 17.26% higher than that of sole-cropped alfalfa.
【Conclusion】" The development of intercropping between forest and grass can improve the microclimate of farmland.
Key words:poplar; alfalfa; agronomic characters; feeding quality; intercropping
Fund project: Project of the National Natural Science Foundation of China (31460335 and 31560376 ); China Agriculture Research System (CARS-34);" China Postdoctoral Science Foundation(2015M582737)
Correspondence author: ZHANG Wei (1979-), male, Gansu,professor, research direction: farmland ecology and biodiversity,(E-mail)bluesky2002040@163.com