



[摘要] 目的
探討血小板衍生生長因子(PDGF)對脈絡膜黑色素瘤(choroidal melanoma,CM)細胞活性及侵襲能力的影響。
方法 將CM細胞分為A、B組,分別轉染空載體和敲降PDGF的慢病毒,采用RT-qPCR技術檢測兩組細胞中PDGF mRNA相對表達量,采用XTT實驗檢測兩組細胞活性,采用Transwell實驗檢測兩組細胞侵襲能力,采用Western blot實驗檢測兩組細胞上皮-間質轉化(EMT)及基質金屬蛋白酶(MMPs)相關標志物蛋白的相對表達量。GEPIA數(shù)據(jù)庫分析PDGF水平與CM患者預后的關系。
結果 與A組比較,B組細胞中PDGF RNA相對表達量下降(t=176.30,Plt;0.05),細胞存活數(shù)目下降及侵襲能力減弱(F=57.21,t=14.10,Plt;0.05)。Western blot實驗結果顯示,與A組相比,B組細胞中E-cadherin相對表達量升高,N-cadherin、Snail、Vimentin、MMP9及MT1 MMP的相對表達量下降(t=4.13~14.14,Plt;0.05)。GEPIA數(shù)據(jù)庫分析顯示,PDGF-A、PDGF-B高表達與CM患者的不良預后有關(Plt;0.05)。
結論 PDGF具有增強CM細胞活性,促進CM細胞侵襲的作用,其機制可能與誘導細胞EMT的發(fā)生有關。
[關鍵詞] 黑色素瘤;脈絡膜腫瘤;血小板源性生長因子;細胞增殖;腫瘤浸潤;上皮-間質轉化;基質金屬蛋白酶類
[中圖分類號] R739.7
[文獻標志碼] A
Effect of platelet-derived growth factor on the activity and invasion ability of choroidal melanoma cells
YAO Ningning, YUAN Yingying, MA Qingyue, YI Wendan, SUI Aihua, LUO Wenjuan
(Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)
; [ABSTRACT]\ Objective To investigate the effect of platelet-derived growth factor (PDGF) on the activity and invasion ability of choroidal melanoma (CM) cells.
Methods CM cells were divided into groups A and B and were transfected with empty vector and PDGF knockdown lentivirus, respectively. RT-qPCR was used to measure the relative expression level of PDGF mRNA; XTT assay was used to measure cell activity; Transwell assay was used to test the invasion ability of cells in the two groups; Western blot was used to measure the relative expression levels of epithelial-mesenchymal transition (EMT) marker proteins and matrix metalloproteinases (MMPs). GEPIA database was used to investigate the association between PDGF and the prognosis of CM patients.
Results Compared with group A, group B had significant reductions in the relative expression level of PDGF RNA (t=176.30,Plt;0.05), the number of cells which survived (F=57.21,Plt;0.05), and the invasion ability of cells (F=57.21,t=14.10,Plt;0.05). Western blot showed that compared with group A, group B had a significant increase in the relative expression level of E-cadherin and significant reductions in the relative expression levels of N-cadherin, Snail, Vimentin, MMP9, and MT1 MMP (t=4.13-14.14,Plt;0.05). The GEPIA database analysis showed that the high expression levels of PDGF-A and PDGF-B were associated with the poor prognosis of CM patients (Plt;0.05).
Conclusion PDGF can enhance the activity of CM cells and promote the invasion of CM cells, possibly by inducing EMT.
[KEY WORDS] Melanoma; Choroid neoplasms; Platelet-derived growth factor; Cell proliferation; Neoplasm invasiveness; Epithelial-mesenchymal transition; Matrix metalloproteinases
脈絡膜黑色素瘤(choroidal melanoma,CM)是起源于脈絡膜基質內的黑色素瘤細胞,是成人眼部最常見的惡性腫瘤[1]。CM易通過血液循環(huán)發(fā)生轉移,最容易轉移的部位是肝臟[2-3]。目前手術、放療(包括放射敷貼)、激光等治療方法雖然可以使CM患者的癥狀獲得一定程度的改善,但是患者的總體生存率仍然很低。因此揭示CM發(fā)生發(fā)展的具體機制,探尋其潛在的治療靶點,是目前的研究熱點之一。血小板衍生生長因子(PDGF)是一種有絲分裂因子,可分為PDGF-A~PDGF-D四種亞型,單體通過二硫鍵可形成PDGF-AA、PDGF-BB、PDGF-CC、PDGF-DD、PDGF-AB同型或異型二聚體[4-5]。在生理狀態(tài)下,PDGF與受體結合后可以激活MAPK、PI3K等信號通路[6],促進細胞的生長、遷移和表型轉化等[7]。研究還發(fā)現(xiàn),PDGF在多種惡性腫瘤的發(fā)展中均發(fā)揮著重要作用,如PDGF高表達的卵巢癌患者,其臨床預后較差[8],在轉基因小鼠前列腺癌模型中PDGF-B高表達,且給予PDGF-B抑制劑后前列腺癌細胞的增殖能力減弱[9]。然而PDGF對CM細胞增殖和侵襲能力的影響尚不清楚。本研究通過慢病毒敲降CM細胞中PDGF的表達水平,探討PDGF對CM細胞增殖、侵襲及上皮-間充質轉化(EMT)的影響,旨在為CM的治療提供數(shù)據(jù)參考。
1 材料與方法
1.1 細胞來源及培養(yǎng)
CM細胞Ocm-1購自北京北納創(chuàng)聯(lián)生物技術研究院,置于含10%胎牛血清、1%青霉素/鏈霉素的RIPM-1640培養(yǎng)基中,于37 ℃、含體積分數(shù)0.05 CO2的恒溫培養(yǎng)箱中培養(yǎng),至對數(shù)生長期時用于后續(xù)實驗。
1.2 細胞的轉染
敲降PDGF的慢病毒購買于上海漢恒生物科技有限公司。將對數(shù)生長期的Ocm-1細胞接種于6孔板中,當細胞融合度接近于50%時,分為A、B組,分別于培養(yǎng)基中加入空載體慢病毒(A組)和敲降PDGF慢病毒(B組)再繼續(xù)培養(yǎng)48 h。然后更換為新鮮培養(yǎng)基,使用倒置相差顯微鏡觀察細胞熒光情況,當細胞熒光密度達80%~90%時,用于后續(xù)實驗。
1.3 RT-qPCR技術檢測細胞中PDGF mRNA相對表達量
根據(jù)說明書使用TRIzol試劑分別提取A、B組細胞中的總RNA,使用分光光度計檢測RNA濃度和純度,然后根據(jù)說明書進行逆轉錄和RT-qPCR反應。以GAPDH為內參,使用2-△△CT公式計算PDGF的相對表達量。引物名稱及其序列見表1。
1.4 XTT實驗檢測細胞的活性
將轉染成功的A、B組細胞培養(yǎng)至對數(shù)生長期,接種于96孔板中,每孔1×104個細胞,每組設置3個復孔。第2天待細胞完全貼壁后,根據(jù)說明書加
入XTT試劑繼續(xù)培養(yǎng),分別在培養(yǎng)第24、48、72小
時時使用酶標儀于波長450 nm處檢測兩組細胞的吸光度值。根據(jù)吸光度值按照說明書計算細胞的存活數(shù)目。
1.5 Transwell實驗檢測細胞的侵襲能力
按照說明書要求,提前將基質膠鋪于上室并待其凝固。然后將轉染成功的A、B組細胞培養(yǎng)至對數(shù)生長期,依次進行消化、計數(shù),每組取1×104個細胞,用不含血清的培養(yǎng)基重懸細胞后加入到上室。下室中均加入600 μL含有10% FBS的培養(yǎng)基作為化學引誘劑。繼續(xù)培養(yǎng)48 h后,棄去上室培養(yǎng)基,使用PBS清洗2次,用棉簽輕輕擦去上室存留的細胞,然后依次進行甲醇固定、1%伊紅染色和自然風干后,使用倒置顯微鏡觀察并拍照,計算穿過小室(即下室)的細胞數(shù)目。
1.6 Western blot實驗檢測細胞中EMT相關標志物蛋白的相對表達量
將轉染成功的A、B組細胞培養(yǎng)至對數(shù)生長期,用PBS沖洗細胞3次后,加入含1%蛋白酶抑制劑(P0100,北京索萊寶生物科技有限公司)的RIPA蛋白裂解液(P0010,北京索萊寶生物科技有限公司),于冰上裂解30 min,然后在4 ℃下13 000 r/min離心15 min,取上清液。采用BCA蛋白測定試劑盒測定細胞的蛋白濃度。以SDS-PAGE電泳分離蛋白樣品,后將其電轉至PVDF膜上。用5%脫脂乳在室溫下封閉膜2 h,加一抗4 ℃過夜。第2天,用PBST沖洗PVDF膜3次,加入相應二抗室溫孵育1 h。最后,用PBST再沖洗PVDF膜3次,以ECL化學發(fā)光法檢測蛋白表達水平,使用Image J軟件分析蛋白條帶的灰度值,以目的蛋白灰度值/GAPDH灰度值計算目的蛋白的相對表達量。
1.7 統(tǒng)計學分析
采用SPSS 22.0和Graphpad Prism 9軟件對數(shù)據(jù)進行統(tǒng)計分析,計量資料以x-±s表示,兩組間比較采用t檢驗,兩組間不同時間點的比較采用重復測量設計的方差分析。在GEPIA數(shù)據(jù)庫當中采用Kaplan-Meier法分析PDGF-A、PDGF-B基因表達與CM患者預后的關系。以Plt;0.05為差異有統(tǒng)計學意義。
2 結" 果
2.1 PDGF表達對細胞活性的影響
RT-qPCR技術檢測結果顯示,A、B組細胞中PDGF的相對表達量分別為1.00±0.00、0.11±0.01,與A組相比,B組細胞中PDGF的相對表達量明顯下降(t=176.30,Plt;0.05)。重復測量設計的方差分析結果顯示,組別、時間以及時間和組別的交互作用對Ocm-1細胞存活數(shù)目均具有顯著影響(F組別=57.21,F(xiàn)時間=1 012.46,F(xiàn)交互=35.77,Plt;0.05);單獨效應分析顯示,隨著培養(yǎng)時間延長,A、B組細胞存活的數(shù)目均逐漸增高,差異具有顯著意義(F組內=444.90,130.50,Plt;0.05);在培養(yǎng)第24、48、72小時時兩組細胞存活數(shù)目比較均具有顯著差異(F組間=14.45~105.68,Plt;0.05)。見表2。
2.2 PDGF對兩組細胞侵襲能力的影響
Transwell實驗結果顯示,A、B組細胞侵襲數(shù)量分別為(288.70±13.32)、(127.00±14.73)個,兩組間比較差異具有顯著性(t=14.10,Plt;0.05),詳見圖1。
2.3 PDGF對細胞中EMT相關標志物蛋白表達的影響
Western blot結果顯示,與A組相比,B組細胞中上皮標志物E-cadherin的相對表達量顯著增加(t=4.13,Plt;0.05),間質標志物N-cadherin、Snail和Vimentin蛋白的相對表達量均顯著下降(t=7.70~14.14,Plt;0.05),腫瘤遷移侵襲相關因子MMP9以及MT1 MMP的相對表達量也顯著下降(t=5.30、8.50,Plt;0.05)。見表3。
2.4 PDGF與CM患者不良預后的關系
GEPIA數(shù)據(jù)庫分析發(fā)現(xiàn),PDGF-A、PDGF-B基因的表達水平與CM患者的不良預后呈負相關(Plt;0.05)。
3 討" 論
CM是葡萄膜黑色素瘤的主要亞型。CM具有預后差、轉移率高和死亡率高的特點,其發(fā)生發(fā)展的詳細機制尚不完全清楚。雖然手術、放療(包括放射敷貼)、激光等治療方法有了一定進展,但CM患者的總體生存率仍然很低。目前關于CM發(fā)生發(fā)展的具體機制也尚待明確。
PDGF具有促進細胞的生長、增殖、遷移及血管生成等多種功能[10]。在小鼠皮下瘤模型(T241纖維肉瘤和Lewi肺癌細胞)中,PDGF-BB可通過與PDGFR-β結合誘導促紅細胞生成素(EPO)的表達,從而促進腫瘤血管生成和腫瘤生長[11]。PDGF-D在人類惡性腫瘤中發(fā)揮重要作用,參與腫瘤細胞增殖、凋亡、遷移、侵襲、血管生成等多種生命過程[12]。本研究首先使用空載體慢病毒和敲降PDGF病毒轉染CM細胞,使用RT-qPCR方法,檢測兩組細胞中PDGF基因的表達水平,結果顯示B組的細胞中PDGF表達水平顯著下降,說明敲降PDGF慢病毒轉染成功。然后使用XTT和Transwell實驗檢測PDGF對于CM細胞活性和侵襲能力的影響。XTT實驗結果顯示,敲降PDGF后CM細胞的活性下降;Transwell實驗結果顯示,敲降PDGF后CM細胞的侵襲能力下降,說明PDGF表達能夠增強CM細胞的活性和促進其侵襲能力。為了進一步研究PDGF對CM的影響,本研究使用GEPIA數(shù)據(jù)庫分析發(fā)現(xiàn)PDGF-A、PDGF-B高表達與CM患者的不良預后有關。由此可知,PDGF在CM的發(fā)生發(fā)展中發(fā)揮重要作用。
EMT是指上皮細胞通過特定程序轉化為具有間質表型細胞的生物學過程[13]。EMT會使癌細胞失去細胞與細胞之間的連接,并且通過調控各種基質降解酶降解局部組織的基底膜,從而使腫瘤細胞完成侵襲與遷移的過程,導致腫瘤的轉移以及復發(fā)[14-16],是腫瘤獲得惡性表型的關鍵。EMT相關標志物包括E-cadherin、N-cadherin、Snail、Vimentin、Zeb1等。SINKEVICIUS等[17]發(fā)現(xiàn)在肺腺癌小鼠模型中,腫瘤組織中E-cadherin低表達可以促進腫瘤的進展和轉移。而組蛋白乙酰轉移酶CSRP2BP通過激活N-cadherin的表達促進宮頸癌細胞的轉移[18]。在胰腺導管癌中,Girdin與Vimentin相互作用可以誘導EMT進程,從而促進腫瘤細胞的生長和轉移[19]。相關研究顯示EMT相關標志物Zeb1、Snail等也具有促進腫瘤轉移的作用[20-22]。MMPs不僅是一個蛋白水解酶的大家族,也是鋅依賴性內肽酶,可降解細胞外基質的蛋白質,在激活生長因子和維持人體正常組織結構穩(wěn)定方面發(fā)揮著關鍵的作用,特別是在腫瘤侵襲和轉移中。MMP9和MT1 MMP屬于MMPs家族的成員,研究表明MMP9和MT1 MMP可通過降解組織中的膠原蛋白和凝膠蛋白促進腫瘤的轉移[23]。研究還發(fā)現(xiàn),膽管癌細胞中PDGF高表達可以誘導腫瘤細胞發(fā)生EMT形態(tài)轉化,從而促進腫瘤轉移[24]。在結直腸癌中,PDGF通過誘導EMT增強腫瘤細胞遷移和侵襲[25],說明PDGF可以通過EMT促進腫瘤細胞的遷移、侵襲和轉移。由此可以推測,PDGF可能通過影響EMT進程影響CM的遷移。因此在本研究中,使用Western blot實驗檢測敲降PDGF后CM細胞中EMT相關標志物蛋白的水平,結果顯示,EMT上皮標志物E-cadherin蛋白水平表達升高,間質標志物N-cadherin、Snail和Vimentin的蛋白表達水平下降,同時腫瘤遷移侵襲相關因子MMP9和MT1 MMP的蛋白表達水平也下降,因此進一步提示,敲降PDGF可以抑制EMT進程,從而抑制CM的侵襲能力。
綜上所述,PDGF具有增強CM細胞活性的作用,其可能是通過促進EMT相關標志物蛋白的表達水平,進而調控EMT,促進CM細胞的侵襲。本研究為CM的治療提供了理論參考,后續(xù)還需對相關機制進行更深入和更全面的探討。
作者聲明:姚寧寧、袁瑩瑩、羅文娟參與了研究設計;姚寧寧、馬清悅、易雯丹、隋愛華參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻]
[1]SOUTO E B, ZIELINSKA A, LUIS M, et al. Uveal melanoma: Physiopathology and new in situ-specific therapies[J]. Cancer Chemother Pharmacol, 2019,84(1):15-32.
[2]BAI H X, BOSCH J J, HEINDL L M. Current management of uveal melanoma: A review[J]. Clin Exp Ophthalmol, 2023,51(5):484-494.
[3]SMIT K N, JAGER M J, KLEIN A D, et al. Uveal melanoma: Towards a molecular understanding[J]. Prog Retin Eye Res, 2020,75:100800.
[4]NOVAK S, MADUNIC J, SHUM L, et al. PDGF inhibits BMP2-induced bone healing[J]. NPJ Regen Med, 2023,8(1):3.
[5]YAO L B, RATHNAKAR B H, KWON H R, et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing[J]. Cell Rep, 2022,40(7):111192.
[6]FERNNDEZ-SIMN E, SUREZ-CALVET X, CARRASCO-ROZAS A, et al. RhoA/ROCK2 signalling is enhanced by PDGF-AA in fibro-adipogenic progenitor cells: Implications for Duchenne muscular dystrophy[J]. J Cachexia Sarcopenia Muscle, 2022,13(2):1373-1384.
[7]CONTRERAS O, CRDOVA-CASANOVA A, BRANDAN E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myoge-
nic cells[J]. Cell Signal, 2021,84:110036.
[8]LI J J, ZHI X L, SUN Y T, et al. The PDGF family is asso-
ciated with activated tumor stroma and poor prognosis in ova-
rian cancer[J]. Dis Markers, 2022,2022:5940049.
[9]ZHANG Y, WANG D, LI M, et al. Quantitative proteomics of TRAMP mice combined with bioinformatics analysis reveals that PDGF-B regulatory network plays a key role in prostate cancer progression[J]. J Proteome Res, 2018,17(7):2401-2411.
[10]BORKHAM-KAMPHORST E, WEISKIRCHEN R. The PDGF system and its antagonists in liver fibrosis[J]. Cytokine Growth Factor Rev, 2016,28:53-61.
[11]XUE Y, LIM S, YANG Y L, et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells[J]. Nat Med, 2011,18(1):100-110.
[12]ZHANG J N, LI W H, XIONG Z, et al. PDGF-D-induced immunoproteasome activation and cell-cell interactions[J]. Comput Struct Biotechnol J, 2023,21:2405-2418.
[13]CHEN H T, LIU H, MAO M J, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy[J]. Mol Cancer, 2019,18(1):101.
[14]BRABLETZ S, SCHUHWERK H, BRABLETZ T, et al. Dynamic EMT: A multi-tool for tumor progression[J]. EMBO J, 2021,40(18):e108647.
[15]AIELLO N M, MADDIPATI R, NORGARD R J, et al. EMT subtype influences epithelial plasticity and mode of cell migration[J]. Dev Cell, 2018,45(6):681-695.
[16]LND F, SUGIYAMA N, BILL R, et al. Distinct contributions of partial and full EMT to breast cancer malignancy[J]. Dev Cell, 2021,56(23):3203-3221.
[17]SINKEVICIUS K W, BELLARIA K J, BARRIOS J, et al. E-cadherin loss accelerates tumor progression and metastasis in a mouse model of lung adenocarcinoma[J]. Am J Respir Cell Mol Biol, 2018,59(2):237-245.
[18]YANG X H, SUN F, GAO Y Y, et al. Histone acetyltransferase CSRP2BP promotes the epithelial-mesenchymal transition and metastasis of cervical cancer cells by activating N-cadherin[J]. J Exp Clin Cancer Res, 2023,42(1):268.
[19]WANG W L, CHEN H, GAO W J, et al. Girdin interaction with vimentin induces EMT and promotes the growth and metastasis of pancreatic ductal adenocarcinoma[J]. Oncol Rep, 2020,44(2):637-649.
[20]ZHOU Y M, LIN F R, WAN T, et al. ZEB1 enhances Warburg effect to facilitate tumorigenesis and metastasis of HCC by transcriptionally activating PFKM[J]. Theranostics, 2021,11(12):5926-5938.
[21]PEREZ-OQUENDO M, GIBBONS D L. Regulation of ZEB1 function and molecular associations in tumor progression and metastasis[J]. Cancers, 2022,14(8):1864.
[22]BAO Z, ZENG W, ZHANG D, et al. SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-type immunosuppressed macrophages in colorectal cancer[J]. Int J Biol Sci, 2022,18(7):2867-2881.
[23]MONDAL S, ADHIKARI N, BANERJEE S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview[J]. Eur J Med Chem, 2020,194:112260.
[24]PAN S G, HU Y, HU M J, et al. Platelet-derived PDGF promotes the invasion and metastasis of cholangiocarcinoma by upregulating MMP2/MMP9 expression and inducing EMT via the p38/MAPK signalling pathway[J]. Am J Transl Res, 2020,12(7):3577-3595.
[25]CHEN J H, YUAN W Z, WU L, et al. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway[J]. Oncotarget, 2017,8(6):9961-9973.
(本文編輯 耿波)