999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

帶陡峭位勢的分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng)的基態(tài)變號解

2024-01-01 00:00:00黃小慶廖家鋒

摘 要:本文研究了帶陡峭位勢的分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng)的基態(tài)變號解的存在性,由于系統(tǒng)中的位勢是陡峭位勢,這使得系統(tǒng)的能量泛函緊性缺失。運(yùn)用約束變分法將能量泛函限制在約束集Mλ中,證明能量泛函的下確界可以達(dá)到,采用形變引理,得到了系統(tǒng)有1個基態(tài)變號解,基態(tài)變號解有2個結(jié)點(diǎn)域,并且基態(tài)變號解的能量嚴(yán)格大于基態(tài)解能量的2倍。

關(guān)鍵詞:分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng);約束變分法;基態(tài)變號解;陡峭位勢

中圖分類號:O177.91"" 文獻(xiàn)標(biāo)志碼:A""" 文章編號:1673-5072(2024)05-0488-07

參考文獻(xiàn):

[1] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on N:existence and multiplicity results[J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.

[2] LASKIN N.Fractional quantum mechanics and Lévy path integrals[J].Physics Letters A,2000,268:298-305.

[3] LASKIN N.Fractional Schr?dinger equation[J].Physical Review E,2002,66:56-108.

[4] BINGHAM N H.Financial modelling with jump processes[J].Journal of the American Statistical Association,2006,101:1315-1316.

[5] METZLER R,KLAFTER J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.

[6] CHANG S Y A,DEL MAR GONZALEZ M.Fractional Laplacian in conformal geometry[J].Advances in Mathematics,2011,226(2):1410-1432.

[7] BENCI V,F(xiàn)ORTUNATO D.An eigenvalue problem for the Schr?dinger-Maxwell equations[J].Topological Methods in Nonlinear Analysis,1998,11:283-293.

[8] JIANG Y S,ZHOU H S.Schr?dinger-Poisson system with steep potential well[J].Journal of Differential Equations,2011,251(3):582-608.

[9] KANG J C,LIU X Q,TANG C L.Ground state sign-changing solutions for critical Schr?dinger-Poisson system with steep potential well[J].The Journal of Geometric Analysis,2023,33(2):1-24.

[10]JI C.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system in 3[J].Annali di Matematica Pura ed Applicata ,2019,198(5):1563-1579.

[11]WANG D B,ZHANG H B,MA Y M,et al.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system with potential vanishing at infinity[J].Journal of Applied Mathematics and Computing,2019,61:611-634.

[12]WANG Z P,ZHOU H S.Sign-changing solutions for the nonlinear Schr?dinger-Poisson system in 3[J].Calculus of Variations and Partial Differential Equations,2015,52:927-943.

[13]TENG K M.Existence of ground state solutions for the nonlinear fractional Schr?dinger-Poisson system with critical Sobolev exponent[J].Journal of Differential Equations,2016,261(6):3061-3106.

[14]MIRANDA C.Un’ osservazione su un teorema di Brouwer[J].Bollettino dell’Unione Matematica Italiana,1940,3(2):5-7.

[15]ZHONG X J,TANG C L.Ground state sign-changing solutions for a Schr?dinger-Poisson system with a critical nonlinearity in 3[J].Nonlinear Analysis:Real World Applications,2018,39:166-184.

[16]HOFER H.Variational and topological methods in partially ordered Hilbert spaces[J].Mathematische Annalen,1982,261(4):493-514.

Ground State Sign-changing Solution

for Fractional Schr?dinger-Poisson System with Steep Potential Well

HUANG Xiao-qinga, LIAO Jia-fengab

(a.School of Mathematics amp; Information,b.College of Mathematics Education,China West Normal University,Nanchong Sichuan 637009,China)

Abstract:This paper studies the existence of ground state sign-changing solution for a fractional Schr?dinger-Poisson system with steep potential well.A lack of energy functional tightness is caused by the steep potential well in the system.The constraint variational method is employed to limit the energy functional to the constraint concentration Mλ,which proves that the lower boundary of the energy functional can be reached.With the aid of the deformation lemma,it is found that the system has a ground state sign-changing solution which has two nodal domains,and the energy of the ground state sign-changing solution is strictly more than twice the energy of the ground state solution.

Keywords:fractional Schr?dinger-Poisson system;constrained variation method;ground state sign-changing solution;steep potential well

主站蜘蛛池模板: 国产精品三区四区| swag国产精品| 国产精品自在在线午夜区app| 国产尹人香蕉综合在线电影 | 亚洲中文无码h在线观看| 国产一区在线视频观看| 欧美激情视频二区三区| 日韩小视频网站hq| 日韩人妻少妇一区二区| 一区二区三区国产精品视频| 国产免费福利网站| 国产成人一级| 久久精品无码国产一区二区三区| 久久精品无码专区免费| 成人免费一区二区三区| 韩日无码在线不卡| 天天做天天爱夜夜爽毛片毛片| 国产浮力第一页永久地址| 天天爽免费视频| 在线国产91| 亚洲一本大道在线| 欧美一级在线看| 欧美激情一区二区三区成人| 一区二区自拍| 国产剧情伊人| 成人伊人色一区二区三区| 国产好痛疼轻点好爽的视频| 操美女免费网站| 日韩国产黄色网站| 国产成人区在线观看视频| 久久综合成人| 亚洲男人在线天堂| 狠狠色成人综合首页| 特级做a爰片毛片免费69| 97se亚洲综合在线韩国专区福利| 亚洲色图欧美视频| 91国内在线观看| 香蕉蕉亚亚洲aav综合| 国产拍揄自揄精品视频网站| 伊人无码视屏| 真实国产乱子伦视频| 白浆视频在线观看| 国外欧美一区另类中文字幕| 福利国产在线| 91美女在线| 国产欧美又粗又猛又爽老| 在线永久免费观看的毛片| 亚洲精品第1页| 91成人在线观看| 欧美中出一区二区| 亚洲中文久久精品无玛| 伊人色在线视频| 亚洲国产日韩视频观看| 欧美性猛交一区二区三区| 国产欧美精品一区二区| 国产91久久久久久| 激情無極限的亚洲一区免费| 亚洲综合精品香蕉久久网| 中文字幕 91| 2021国产精品自产拍在线| 成人精品区| 高清国产va日韩亚洲免费午夜电影| 日韩成人在线一区二区| 啪啪永久免费av| 97se亚洲综合在线| 亚洲综合色婷婷| 人妻少妇乱子伦精品无码专区毛片| 亚洲无码一区在线观看| 国产精品尤物在线| 国产91丝袜在线播放动漫| 97超碰精品成人国产| 大香伊人久久| 久久中文电影| 久久久久青草线综合超碰| 欧美黄网在线| 欧美精品色视频| 999精品视频在线| 色噜噜在线观看| 久久香蕉欧美精品| 中国成人在线视频| 熟妇丰满人妻| 激情视频综合网|