999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

帶陡峭位勢的分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng)的基態(tài)變號解

2024-01-01 00:00:00黃小慶廖家鋒

摘 要:本文研究了帶陡峭位勢的分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng)的基態(tài)變號解的存在性,由于系統(tǒng)中的位勢是陡峭位勢,這使得系統(tǒng)的能量泛函緊性缺失。運(yùn)用約束變分法將能量泛函限制在約束集Mλ中,證明能量泛函的下確界可以達(dá)到,采用形變引理,得到了系統(tǒng)有1個基態(tài)變號解,基態(tài)變號解有2個結(jié)點(diǎn)域,并且基態(tài)變號解的能量嚴(yán)格大于基態(tài)解能量的2倍。

關(guān)鍵詞:分?jǐn)?shù)階Schr?dinger-Poisson系統(tǒng);約束變分法;基態(tài)變號解;陡峭位勢

中圖分類號:O177.91"" 文獻(xiàn)標(biāo)志碼:A""" 文章編號:1673-5072(2024)05-0488-07

參考文獻(xiàn):

[1] BARTSCH T,WANG Z Q.Existence and multiplicity results for some superlinear elliptic problems on N:existence and multiplicity results[J].Communications in Partial Differential Equations,1995,20(9-10):1725-1741.

[2] LASKIN N.Fractional quantum mechanics and Lévy path integrals[J].Physics Letters A,2000,268:298-305.

[3] LASKIN N.Fractional Schr?dinger equation[J].Physical Review E,2002,66:56-108.

[4] BINGHAM N H.Financial modelling with jump processes[J].Journal of the American Statistical Association,2006,101:1315-1316.

[5] METZLER R,KLAFTER J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.

[6] CHANG S Y A,DEL MAR GONZALEZ M.Fractional Laplacian in conformal geometry[J].Advances in Mathematics,2011,226(2):1410-1432.

[7] BENCI V,F(xiàn)ORTUNATO D.An eigenvalue problem for the Schr?dinger-Maxwell equations[J].Topological Methods in Nonlinear Analysis,1998,11:283-293.

[8] JIANG Y S,ZHOU H S.Schr?dinger-Poisson system with steep potential well[J].Journal of Differential Equations,2011,251(3):582-608.

[9] KANG J C,LIU X Q,TANG C L.Ground state sign-changing solutions for critical Schr?dinger-Poisson system with steep potential well[J].The Journal of Geometric Analysis,2023,33(2):1-24.

[10]JI C.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system in 3[J].Annali di Matematica Pura ed Applicata ,2019,198(5):1563-1579.

[11]WANG D B,ZHANG H B,MA Y M,et al.Ground state sign-changing solutions for a class of nonlinear fractional Schr?dinger-Poisson system with potential vanishing at infinity[J].Journal of Applied Mathematics and Computing,2019,61:611-634.

[12]WANG Z P,ZHOU H S.Sign-changing solutions for the nonlinear Schr?dinger-Poisson system in 3[J].Calculus of Variations and Partial Differential Equations,2015,52:927-943.

[13]TENG K M.Existence of ground state solutions for the nonlinear fractional Schr?dinger-Poisson system with critical Sobolev exponent[J].Journal of Differential Equations,2016,261(6):3061-3106.

[14]MIRANDA C.Un’ osservazione su un teorema di Brouwer[J].Bollettino dell’Unione Matematica Italiana,1940,3(2):5-7.

[15]ZHONG X J,TANG C L.Ground state sign-changing solutions for a Schr?dinger-Poisson system with a critical nonlinearity in 3[J].Nonlinear Analysis:Real World Applications,2018,39:166-184.

[16]HOFER H.Variational and topological methods in partially ordered Hilbert spaces[J].Mathematische Annalen,1982,261(4):493-514.

Ground State Sign-changing Solution

for Fractional Schr?dinger-Poisson System with Steep Potential Well

HUANG Xiao-qinga, LIAO Jia-fengab

(a.School of Mathematics amp; Information,b.College of Mathematics Education,China West Normal University,Nanchong Sichuan 637009,China)

Abstract:This paper studies the existence of ground state sign-changing solution for a fractional Schr?dinger-Poisson system with steep potential well.A lack of energy functional tightness is caused by the steep potential well in the system.The constraint variational method is employed to limit the energy functional to the constraint concentration Mλ,which proves that the lower boundary of the energy functional can be reached.With the aid of the deformation lemma,it is found that the system has a ground state sign-changing solution which has two nodal domains,and the energy of the ground state sign-changing solution is strictly more than twice the energy of the ground state solution.

Keywords:fractional Schr?dinger-Poisson system;constrained variation method;ground state sign-changing solution;steep potential well

主站蜘蛛池模板: 99在线观看国产| 精品天海翼一区二区| 亚洲成a∧人片在线观看无码| 四虎成人精品在永久免费| 狼友av永久网站免费观看| 激情六月丁香婷婷| 久草美女视频| 国产精品嫩草影院av| 欲色天天综合网| 日韩精品一区二区三区视频免费看| 青青操视频在线| 91视频青青草| 国产精品自在在线午夜| 国产91视频免费| 久久综合久久鬼| 真人高潮娇喘嗯啊在线观看| 精品少妇人妻av无码久久| 伊人成人在线| 久夜色精品国产噜噜| 国模粉嫩小泬视频在线观看| 青草午夜精品视频在线观看| 亚洲欧美成人综合| 国产黄网站在线观看| 国产精品第一区| 国产免费好大好硬视频| 久久久久亚洲AV成人网站软件| 日韩欧美中文在线| 国产手机在线ΑⅤ片无码观看| 国产丝袜丝视频在线观看| 日日拍夜夜操| 毛片久久久| 无码一区中文字幕| 99精品免费欧美成人小视频| 91蜜芽尤物福利在线观看| 在线播放91| 亚洲精品免费网站| 日本亚洲国产一区二区三区| 亚洲无码高清一区二区| 欧美在线天堂| 2048国产精品原创综合在线| 99在线视频网站| 亚洲第一视频免费在线| 国产又大又粗又猛又爽的视频| 久久综合AV免费观看| 亚洲全网成人资源在线观看| 亚洲中文字幕国产av| 日韩欧美在线观看| 亚洲高清日韩heyzo| 伊人激情综合网| 91国语视频| 波多野结衣第一页| 特黄日韩免费一区二区三区| 欧美视频免费一区二区三区| 亚洲人成成无码网WWW| 99久久精品久久久久久婷婷| 色综合中文| 久草青青在线视频| 国产福利大秀91| 色悠久久久久久久综合网伊人| 国产精品亚洲精品爽爽| 日韩成人免费网站| 国产电话自拍伊人| YW尤物AV无码国产在线观看| 久久中文字幕不卡一二区| 伊人狠狠丁香婷婷综合色| 国产精品福利社| 熟妇人妻无乱码中文字幕真矢织江 | 波多野结衣无码AV在线| 久久综合一个色综合网| 国产精品漂亮美女在线观看| 丰满人妻久久中文字幕| 18禁黄无遮挡网站| 久久永久视频| 久久五月天国产自| 天堂网亚洲系列亚洲系列| 亚洲伦理一区二区| 全部毛片免费看| 免费在线看黄网址| 中文字幕色在线| 欧美日韩中文字幕在线| 色综合手机在线| 中文字幕调教一区二区视频|