





摘要:研究了2-解析Bergman空間上的Toeplitz算子,借助Mellin變換,得到一個(gè)Toeplitz算子是擬齊次Toeplitz算子的充要條件。借助Toeplitz算子系數(shù)矩陣的性質(zhì),分別給出擬齊次Toeplitz算子以及徑向Toeplitz算子半交換的充要條件。
關(guān)鍵詞:2-解析Bergman空間;Toeplitz算子;半交換子;Mellin變換
中圖分類號(hào):O177.1 " " " " " " " "文獻(xiàn)標(biāo)志碼:A
1 背景介紹
近年來,學(xué)者們已經(jīng)對解析Bergman空間有了深入的研究,得到了許多經(jīng)典的結(jié)果。 -解析Bergman空間是非解析的函數(shù)空間,且與解析函數(shù)有著緊密的聯(lián)系,但又存在本質(zhì)的區(qū)別。對 -解析Bergman空間的研究過程中,可以借助解析函數(shù)空間的相關(guān)結(jié)論,結(jié)合該空間的獨(dú)特空間結(jié)構(gòu),得到較解析函數(shù)空間更一般的結(jié)論,對非解析函數(shù)空間的研究提供重要的參考依據(jù)。在對 -解析函數(shù)空間的研究中,2-解析Bergman空間是更具體的一類函數(shù)空間,其上的算子理論具有重要的研究價(jià)值,本文主要研究Toeplitz算子及其半換位子。
文獻(xiàn)[1]給出了開單位圓盤上的 -解析Bergman空間的再生核。BALK[2]對多解析函數(shù)的性質(zhì)給出了更進(jìn)一步的闡述。在解析函數(shù)組成的空間中,學(xué)者們考慮一類經(jīng)典算子:Toeplitz算子[3]。文獻(xiàn)[4]研究了 -解析Bergman空間的再生核;文獻(xiàn)[5]進(jìn)一步研究了 =2的情形,得到2-解析Bergman空間的概念。借助文獻(xiàn)[6]中Mellin變換的相關(guān)性質(zhì),AHERN等[7]和LOUHICHI等[8]分別研究了Bergman空間上的Toeplitz算子及其算子乘積的性質(zhì)。ZHENG[9]和于濤[10]分別對Bergman空間和加權(quán)Bergman空間上的Toeplitz算子半交換子進(jìn)行了研究。此外,文獻(xiàn)[11]研究了以擬齊次函數(shù)為符號(hào)的Toeplitz算子的交換子和半交換子的有限秩問題。
本文主要研究2-解析Bergman空間上的以徑向函數(shù)及擬齊次函數(shù)為符號(hào)的Toeplitz算子,得到比經(jīng)典Bergman空間上更具有一般性的結(jié)論。在研究Toeplitz算子半交換子的過程中,把該問題轉(zhuǎn)化為算子的乘積問題,并給出具體的充要條件。
參考文獻(xiàn):
[1] KO?ELEV A D. The kernel function of a Hilbert space of functions that are polyanalytic in the disc[J]. Dokl Akad Nauk SSSR, 1977, 232(2): 277-279.
[2] BALK M B. Polyanalytic Functions[M]. Berlin: Akademie Verlag, 1991.
[3] KLEIN E M. More algebraic properties of Toeplitz operators[J]. Mathematische Annalen, 1973, 202(3): 203-207.
[4] ?U?KOVI? ?, LE T. Toeplitz operators on Bergman spaces of polyanalytic functions[J]. Bulletin of the London Mathematical Society, 2012, 44(5): 961-973.
[5] ZHANG B, YANG Y X, LU Y F. Products of Toeplitz operators on the 2-analytic Bergman space[J]. Journal of Function Spaces, 2021, 2021: 1-9.
[6] ?U?KOVI? ?, RAO N V. Mellin transform, monomial symbols, and commuting Toeplitz operators[J]. Journal of Functional Analysis, 1998, 154(1):195-214.
[7] AHERN P, ?U?KOVI? ?. Products of Toeplitz operators on the Bergman space[J]. Illinois Journal of Mathematics, "2001, 45(1):113–121.
[8] LOUHICHI I, STROUSE E, ZAKARIASY L. Products of Toeplitz operators on the Bergman space[J]. Integral Equations and Operator Theory, 2006, 54(4): 525-539.
[9] ZHENG D C. Semi-commutators of Toeplitz operators on the Bergman space[J]. Integral Equations and Operator Theory, 1996, 25(3): 347-372.
[10] 于濤,孫善利. Ap(?)上Toeplitz算子的半換位子[J]. 數(shù)學(xué)研究與評(píng)論, 2004, 24(1): 7-12.
[11] ?U?KOVI? ?, LOUHICHI I. Finite rank commutators and semicommutators of quasihomogeneous Toeplitz operators[J]. Complex Analysis and Operator Theory, 2008, 2(3): 429-439.
[12] LOUHICHI I, ZAKARIASY L. On Toeplitz operators with quasihomogeneous symbols[J]. Archiv Der Mathematik, 2005, 85(3): 248-257.
[13] REMMERT R. Classical Topics in Complex Fnction Theory[M]. New York: Springer, 1998.
Toeplitz Operators on the 2-Analytic Bergman Space
YU Bairui, ZHANG Bo, HU Jian
(School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China)
Abstract: We study Toeplitz operators on the 2-analytic Bergman space. We obtain some sufficient and necessary conditions of a "Toeplitz operator is also a quasihomogeneous Toeplitz operator. By the properties of the coefficient matrix of Toeplitz operators, we study the semicommutators of quasihomogeneous Toeplitz operators and radial Toeplitz operators and obtain some corresponding sufficient and necessary conditions.
Key words: 2-analytic Bergman space; Toeplitz operator; semicommutator; Mellin transform