摘要: Sporamin是一種從甘薯塊根中提取的Kunitz型胰蛋白酶抑制劑,近年來(lái)在癌癥的治療研究中備受關(guān)注.本文綜述了sporamin在抑制不同類(lèi)型癌癥方面的研究進(jìn)展,特別是在結(jié)直腸癌、胰腺癌、舌癌和食管鱗狀細(xì)胞癌中的作用.研究發(fā)現(xiàn),sporamin通過(guò)多種作用機(jī)制影響癌細(xì)胞,包括抑制Wnt/β-catenin信號(hào)通路、抑制VEGF表達(dá)、促進(jìn)癌細(xì)胞凋亡、抑制細(xì)胞外基質(zhì)相關(guān)蛋白水解酶的活性以及調(diào)節(jié)腸道菌群等.尤其是在抑制結(jié)直腸癌的研究中,sporamin顯示出顯著的抗癌活性,表明該蛋白為一種潛在的天然抗癌藥物.盡管sporamin在細(xì)胞和動(dòng)物實(shí)驗(yàn)中表現(xiàn)出諸多積極的抗癌作用,但其臨床應(yīng)用效果尚需進(jìn)一步研究驗(yàn)證.本文綜合分析了當(dāng)前關(guān)于sporamin抗癌作用的研究進(jìn)展,并展望了未來(lái)的研究方向,以期為今后的研究和臨床應(yīng)用提供參考.
關(guān)鍵詞: sporamin;結(jié)直腸癌;胰腺癌;舌癌;食管鱗狀細(xì)胞癌
中圖分類(lèi)號(hào): R73,S531文獻(xiàn)標(biāo)志碼: A doi: 10.3969/j.issn.2095-4298.2024.04..006
Research progress on the anticancer effects
of sporamin in sweetpotato
Zhang Zhengguo Li Wenqiang Sun Chengyu Li Ning Huang Luqiao Fan Shaohua
(1.School of Life Sciences,Jiangsu Normal University,Xuzhou 221116,Jiangsu,China; 2.Xuzhou Clinical College,Xuzhou Medical
University,Xuzhou 221004,Jiangsu,China; 3.Graduate School,Bengbu Medical University,Bengbu 233030,Anhui,China)
Abstract: Sporamin, a Kunitz-type trypsin inhibitor extracted from the tuberous roots of sweetpotato, has garnered significant attention in recent years for its potential in cancer treatment. This review summarizes the research progress on sporamins effects in inhibiting various types of cancer, particularly its roles in the treatment of colorectal cancer, pancreatic cancer, tongue cancer, and esophageal squamous cell carcinoma. Studies have shown that sporamin affects cancer cells through multiple mechanisms, including suppress the activity of" Wnt/β-catenin signaling pathway, inhibiting VEGF expression, promoting apoptosis, blocking the activity of extracellular matrix-related proteases, and regulating the gut microbiota. Notably, researches on colorectal cancer have demonstrated that sporamin exhibits significant anticancer activity, indicating its potential as a natural anticancer agent. Despite the numerous positive anti-cancer results observed in cell and animal experiments for sporamin, further studies are needed to validate its application effects. This review provides a comprehensive analysis of current researches on sporamins anticancer effects and discusses where future researches may reach to inform ongoing studies and potential clinical applications.
Key words: sporamin; colorectal cancer; pancreatic cancer; tongue cancer; esophageal squamous cell carcinoma
甘薯,學(xué)名Ipomoea batatas,也被廣泛稱(chēng)為紅薯或地瓜.甘薯是一種一年生或多年生的蔓生草本雙子葉植物,其塊根富含淀粉,在全球范圍內(nèi),特別在發(fā)展中國(guó)家,是非常重要的食物來(lái)源[1].甘薯塊根中特有的貯藏蛋白——sporamin,屬于Kunitz型胰蛋白酶抑制劑(Kunitz-type trypsin inhibitor, KTI),具有顯著的胰蛋白酶抑制活性[2].研究表明,KTI可以通過(guò)抑制癌細(xì)胞的增殖、黏附、遷移、侵襲或促進(jìn)癌細(xì)胞凋亡等方式抑制癌癥的發(fā)生與發(fā)展[3].作為一種具有顯著胰蛋白酶抑制活性的蛋白,sporamin對(duì)多種癌癥具有抑制作用.本文綜述了sporamin的抑癌作用及其相關(guān)機(jī)制,并對(duì)未來(lái)的研究方向進(jìn)行了展望,以供學(xué)者們參考.
1Sporamin對(duì)結(jié)直腸癌的抑制作用
結(jié)直腸癌(colorectal cancer,CRC),又稱(chēng)大腸癌,是在環(huán)境或遺傳等多種致癌因素作用下,腸黏膜上皮發(fā)生惡性病變.流行病學(xué)調(diào)查結(jié)果顯示,CRC在全球惡性腫瘤發(fā)病率中排名第3,病死率排名第2.2020年,全球惡性腫瘤統(tǒng)計(jì)數(shù)據(jù)顯示,當(dāng)年新增的CRC病例數(shù)接近200萬(wàn),病死人數(shù)高達(dá)93.5萬(wàn),且其發(fā)病率呈逐年遞增趨勢(shì),嚴(yán)重威脅人類(lèi)健康[4].
1.1通過(guò)抑制Wnt/β-catenin信號(hào)通路來(lái)抑制結(jié)直腸癌Wnt/β-catenin信號(hào)通路與人類(lèi)胚胎的形成、分化及增殖密切相關(guān),該信號(hào)通路的異常激活是CRC發(fā)生過(guò)程中最常見(jiàn)的信號(hào)通路變化之一,對(duì)癌癥的發(fā)生、癌細(xì)胞的增殖、侵襲和轉(zhuǎn)移有重要的影響[5-6].β-catenin是Wnt通路的核心組分,其水平和活性直接影響細(xì)胞行為.作為一種轉(zhuǎn)錄激活因子,β-catenin的積聚可以激活多個(gè)下游靶基因,這些基因涉及細(xì)胞周期調(diào)控、細(xì)胞黏附和遷移等過(guò)程,在CRC的發(fā)生發(fā)展中起到至關(guān)重要的作用[7].因此,任何能夠降低β-catenin水平的藥物都有可能對(duì)CRC具有抑制作用.人體肝臟能夠分泌促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)化的內(nèi)分泌因子,其中就包括β-catenin.Yang等[8]的研究表明,sporamin不僅能夠抑制小鼠異種移植結(jié)腸腫瘤結(jié)節(jié)的生長(zhǎng),還能降低其肝臟中β-catenin的表達(dá)和分泌.因此,sporamin抑制CRC的作用可能是通過(guò)抑制Wnt/β-catenin信號(hào)通路介導(dǎo)的.
1.2通過(guò)抑制VEGF表達(dá)來(lái)抑制結(jié)直腸癌VEGF是在缺氧等多種環(huán)境因素刺激下由腫瘤細(xì)胞和肝細(xì)胞合成的最有效的血管生成因子之一.徐潤(rùn)強(qiáng)等[9]的研究顯示,CRC患者癌組織中VEGF-A的表達(dá)水平明顯高于正常組織,并且這種表達(dá)與腫瘤的TNM(tumor-node-metastasis)分期、分化程度、淋巴結(jié)轉(zhuǎn)移及浸潤(rùn)深度顯著相關(guān).這說(shuō)明VEGF在CRC的發(fā)展和侵襲過(guò)程中發(fā)揮著重要作用.VEGF也是β-catenin通路的下游靶點(diǎn),其表達(dá)通常與腫瘤細(xì)胞中β-catenin的表達(dá)呈正相關(guān),與腫瘤的發(fā)生發(fā)展亦呈正相關(guān)[10].Yang等[8]的研究表明,sporamin能下調(diào)小鼠肝臟中VEGF的表達(dá)和分泌,對(duì)CRC起抗血管生成作用.
1.3通過(guò)促進(jìn)癌細(xì)胞凋亡來(lái)抑制結(jié)直腸癌細(xì)胞凋亡是一種程序化的細(xì)胞死亡過(guò)程,是維持生物體內(nèi)細(xì)胞平衡的自然機(jī)制.癌細(xì)胞通過(guò)各種機(jī)制逃避凋亡,因此,如果能恢復(fù)或增強(qiáng)癌細(xì)胞的凋亡過(guò)程,就可以抑制癌細(xì)胞的擴(kuò)散和癌癥的發(fā)展.細(xì)胞凋亡涉及caspase家族的激活,該家族能夠切割各種細(xì)胞底物,導(dǎo)致一系列生化和形態(tài)學(xué)變化[11-12].當(dāng)細(xì)胞接收到死亡信號(hào)時(shí),促凋亡蛋白會(huì)轉(zhuǎn)運(yùn)至線粒體,加速線粒體孔蛋白通道的打開(kāi),導(dǎo)致細(xì)胞色素c(Cyt c)的釋放,從而觸發(fā)caspase級(jí)聯(lián)激活反應(yīng)[13].Bcl-2是一種位于細(xì)胞膜上的蛋白,通過(guò)控制線粒體膜的通透性來(lái)調(diào)節(jié)細(xì)胞凋亡.抗凋亡蛋白Bcl-2和Bcl-xl駐留在線粒體外膜中,能夠抑制Cyt c的釋放,從而抑制細(xì)胞凋亡[14-15].Huang等[16]的研究顯示,甘薯塊根中的貯藏蛋白sporamin能夠誘導(dǎo)人體NB4白血病細(xì)胞的凋亡,從而表現(xiàn)出細(xì)胞毒性,且sporamin誘導(dǎo)細(xì)胞凋亡可能與Cyt c的釋放、Bcl-2的下調(diào)和caspase-3的激活有關(guān).Li等[17]的研究表明,sporamin在體外能夠明顯抑制人體CRC SW480細(xì)胞的增殖、遷移和侵襲,其抗增殖活性可能是通過(guò)誘導(dǎo)癌細(xì)胞凋亡實(shí)現(xiàn)的.細(xì)胞周期依賴(lài)性激酶抑制因子p21是一個(gè)重要的細(xì)胞周期調(diào)控蛋白,能夠通過(guò)抑制細(xì)胞周期蛋白依賴(lài)性激酶(CDK)-cyclin復(fù)合物和增殖細(xì)胞核抗原(PCNA)的活性,來(lái)抑制細(xì)胞周期的進(jìn)展[18].張苗[19]的研究顯示,sporamin酶解肽能夠通過(guò)誘導(dǎo)人體CRC HT-29細(xì)胞中p21的表達(dá)上調(diào),來(lái)抑制細(xì)胞周期進(jìn)展.此外,還能通過(guò)促進(jìn)HT-29細(xì)胞內(nèi)Bax的表達(dá)上調(diào)、Bcl-2的表達(dá)下調(diào),來(lái)誘導(dǎo)細(xì)胞凋亡.
1.4通過(guò)抑制細(xì)胞外基質(zhì)(ECM)相關(guān)蛋白水解酶的活性來(lái)抑制結(jié)直腸癌ECM的重塑在惡性腫瘤轉(zhuǎn)移過(guò)程中發(fā)揮重要作用.惡性腫瘤細(xì)胞能夠分泌絲氨酸蛋白酶和基質(zhì)金屬蛋白酶(MMPs),溶解ECM,進(jìn)而促進(jìn)腫瘤細(xì)胞的浸潤(rùn)和轉(zhuǎn)移[1,20].尿激酶型纖溶酶原激活物(uPA)是一種絲氨酸蛋白酶,在癌癥的遷移、侵襲和轉(zhuǎn)移中起到至關(guān)重要的作用[21].MMPs是一類(lèi)鋅依賴(lài)型的ECM重塑內(nèi)肽酶,幾乎能夠降解所有ECM的成分,參與多種腫瘤的血管生成、增殖、轉(zhuǎn)移和侵襲過(guò)程[22].絲氨酸蛋白酶抑制劑,如尿KTI bikunin和大豆KTI,已被證明能夠在蛋白水平上抑制uPA及其受體uPAR的表達(dá)[23-24].Sporamin作為一種天然植物來(lái)源的絲氨酸蛋白酶抑制劑,在體外實(shí)驗(yàn)中表明能夠抑制胰蛋白酶、糜蛋白酶等絲氨酸蛋白酶,并具有與KTI同源的結(jié)構(gòu)[25].因此,可以推測(cè),sporamin可能與尿KTI bikunin和大豆KTI作用類(lèi)似,能夠抑制uPA及其受體的表達(dá),從而表現(xiàn)出抗癌作用.Li等[17]的研究顯示,sporamin能夠顯著抑制人體CRC SW480細(xì)胞的增殖、遷移和侵襲,其抗侵襲活性可能是通過(guò)抑制uPA信號(hào)通路實(shí)現(xiàn)的.張苗[19]的研究顯示,sporamin酶解肽能夠顯著減弱人體CRC HT-29細(xì)胞的遷移率,當(dāng)其質(zhì)量濃度高于30 μg/mL時(shí),還能對(duì)HT-29細(xì)胞產(chǎn)生較好的去黏附作用.此外,張苗[19]還發(fā)現(xiàn),sporamin酶解肽能夠顯著下調(diào)HT-29細(xì)胞中uPA的表達(dá).因此,sporamin酶解肽抑制CRC遷移的機(jī)制可能與其下調(diào)癌細(xì)胞內(nèi)uPA的表達(dá)有關(guān).李鵬高[1]的研究顯示,sporamin對(duì)人體CRC HT-29細(xì)胞的遷移能力有明顯的抑制作用,且sporamin處理的濃度越高,對(duì)HT-29細(xì)胞遷移能力的抑制作用越強(qiáng).此外,sporamin還能顯著下調(diào)HT-29細(xì)胞中uPA、MMP-2和MMP-9的蛋白水平[1].這表明sporamin抑制CRC遷移的機(jī)制可能是通過(guò)下調(diào)癌細(xì)胞中溶解ECM的相關(guān)蛋白水解酶而實(shí)現(xiàn)的.
1.5可能通過(guò)調(diào)節(jié)腸道菌群來(lái)抑制結(jié)直腸癌腸道菌群,也稱(chēng)為腸道微生物群,是存在于人體消化道內(nèi)的數(shù)量龐大且種類(lèi)復(fù)雜的微生物群落.正常的腸道菌群有利于消化吸收、修復(fù)腸上皮、抵御病原體和維持免疫力.不良的飲食和生活習(xí)慣、抗生素和其他藥物的使用、感染、慢性疾病及環(huán)境因素等都可能影響腸道菌群的穩(wěn)態(tài).腸道菌群失調(diào)會(huì)改變宿主的生理功能,導(dǎo)致各種疾病的發(fā)生[26].腸道菌群失調(diào)與CRC密切相關(guān).在CRC發(fā)生時(shí),腸道黏膜受損,細(xì)胞通透性增加,細(xì)菌移位,影響腸道菌群的結(jié)構(gòu)和數(shù)量,從而加快癌癥的發(fā)展.甚至在CRC發(fā)生前的結(jié)直腸腺瘤階段,腸道菌群就可能已經(jīng)失調(diào),進(jìn)而誘發(fā)CRC[27].國(guó)鴿等[28]的研究顯示,sporamin能影響CRC模型小鼠的腸道菌群結(jié)構(gòu)及數(shù)量.在化學(xué)致癌劑誘導(dǎo)前給予CRC模型小鼠sporamin,能抑制腸道菌群;而在化學(xué)致癌劑誘導(dǎo)后給予sporamin,則能對(duì)腸道菌群起到一定的保護(hù)作用.其機(jī)制可能是化學(xué)致癌劑誘導(dǎo)前,sporamin的胰蛋白酶抑制活性對(duì)腸道黏膜腺體產(chǎn)生一定影響,使腸道內(nèi)環(huán)境不適宜細(xì)菌生長(zhǎng);而在癌變后期,受損的腸黏膜進(jìn)一步抑制細(xì)菌生長(zhǎng).化學(xué)致癌劑誘導(dǎo)后,sporamin蛋白可能通過(guò)調(diào)控CRC模型小鼠的癌癥相關(guān)細(xì)胞因子,發(fā)揮對(duì)腸道菌群的保護(hù)作用[28].目前,sporamin對(duì)腸道菌群影響的具體機(jī)制尚不清楚,需要進(jìn)一步研究.
1.6抑制結(jié)直腸癌的其他可能途徑
ERCC5編碼的蛋白是參與紫外線誘導(dǎo)DNA損傷修復(fù)的內(nèi)切酶[29].ERCC5基因的突變會(huì)導(dǎo)致DNA修復(fù)缺陷、基因組不穩(wěn)定和轉(zhuǎn)錄調(diào)節(jié)異常,且rs17655多態(tài)性是CRC發(fā)生的危險(xiǎn)因素[30].NPY4R是NPY受體家族成員,可能通過(guò)腫瘤內(nèi)部神經(jīng)纖維或腫瘤細(xì)胞自身分泌的內(nèi)源性NPY被激活,從而調(diào)節(jié)腫瘤細(xì)胞的增殖和血供[31].癌胚抗原相關(guān)細(xì)胞黏附分子20(CEACAM20)是免疫球蛋白超家族的腸微絨毛特異性跨膜蛋白,主要在腸上皮細(xì)胞表達(dá),其單個(gè)錯(cuò)義突變與CRC有關(guān),并在腸道微生物調(diào)節(jié)中發(fā)揮作用[32-34],進(jìn)而影響CRC的發(fā)生發(fā)展.PAK6為PAK家族成員,它調(diào)節(jié)細(xì)胞形態(tài)改變、運(yùn)動(dòng)、分裂和存活,在結(jié)腸癌、前列腺癌、肝細(xì)胞癌等癌癥中過(guò)度表達(dá),是潛在的腫瘤標(biāo)志物和治療靶點(diǎn)[35-40].叉頭盒蛋白N1(FOXN1)是FOX家族轉(zhuǎn)錄因子的成員,參與胚胎發(fā)育、新陳代謝和癌癥等過(guò)程,能夠抑制細(xì)胞增殖和侵襲,并抑制β-catenin的轉(zhuǎn)錄,提示FoxN1與Wnt信號(hào)通路存在關(guān)聯(lián)[41-42].Yang等[43]的研究發(fā)現(xiàn),sporamin有助于改變?nèi)梭wLoVo CRC細(xì)胞的基因表達(dá)譜,顯著上調(diào)LoVo癌細(xì)胞內(nèi)ERCC5 mRNA的表達(dá),同時(shí)下調(diào)NPY4R、CEACAM20、PAK6和FOXN1 mRNA的表達(dá).該研究提示,上述基因可能是sporamin抑制CRC的作用靶點(diǎn),但仍需開(kāi)展進(jìn)一步的體內(nèi)外實(shí)驗(yàn)進(jìn)行驗(yàn)證,并闡述這些基因受到調(diào)控后抑制CRC的具體機(jī)制.
超重和肥胖是誘發(fā)CRC的重要危險(xiǎn)因素之一,一項(xiàng)meta分析[44]顯示,BMI每增加5 kg/m2,男性和女性患CRC的風(fēng)險(xiǎn)分別顯著增加13%和17%.肥胖通過(guò)誘導(dǎo)胰島素抵抗、高胰島素血癥、慢性炎癥以及影響生長(zhǎng)因子、脂肪細(xì)胞因子和類(lèi)固醇激素等水平來(lái)影響CRC的發(fā)生和發(fā)展[45].此外,肥胖還可能影響CRC的復(fù)發(fā)、治療結(jié)果和生存率.前脂肪細(xì)胞存在于成熟的脂肪組織中,能不斷增殖并分化為成熟的脂肪細(xì)胞.當(dāng)過(guò)多的前脂肪細(xì)胞被募集并分化為脂肪細(xì)胞時(shí),肥胖隨之而來(lái)[46].Xiong等[47]的研究顯示,sporamin能明顯抑制3T3-L1前脂肪細(xì)胞的分化和增殖.因此,sporamin抗CRC的作用可能在一定程度上依賴(lài)于它對(duì)前脂肪細(xì)胞分化和增殖的抑制.
2Sporamin對(duì)胰腺癌的抑制作用
胰腺癌是最具有侵襲性的腫瘤之一,患者生存期短,死亡率高.Qian等[48]的研究顯示,sporamin能抑制胰腺癌PANC-1細(xì)胞的生長(zhǎng),并誘導(dǎo)PANC-1細(xì)胞凋亡.絲裂原活化蛋白激酶(MAPK)家族包括ERK、JNK和p38 MAPK,它們?cè)诩?xì)胞增殖、分化、存活和凋亡等多種生物學(xué)過(guò)程中發(fā)揮重要作用[49-50].Qian等[48]的研究還發(fā)現(xiàn),在sporamin誘導(dǎo)PANC-1細(xì)胞凋亡的過(guò)程中,sporamin能夠以濃度依賴(lài)的方式上調(diào)磷酸化ERK1/2、磷酸化JNK1/2和磷酸化p38 MAPK的蛋白水平,且呈濃度依賴(lài)性.此外,在sporamin處理的PANC-1細(xì)胞中,MAPK抑制劑處理能夠增強(qiáng)對(duì)細(xì)胞增殖活性的抑制和對(duì)細(xì)胞凋亡的誘導(dǎo).Qian等[48]的研究表明,sporamin不僅能夠通過(guò)誘導(dǎo)細(xì)胞凋亡抑制胰腺癌,還與MAPK抑制劑具有協(xié)同作用,將sporamin與MAPK抑制劑進(jìn)行聯(lián)合使用可能是治療胰腺癌的有效方法.
已有研究表明,抗凋亡因子Bcl-2和Bcl-xl能夠抑制細(xì)胞凋亡,而B(niǎo)ax則與Bcl-2相互競(jìng)爭(zhēng),促進(jìn)細(xì)胞凋亡[51-52].NF-κB是一種在多種生物學(xué)過(guò)程中起重要作用的轉(zhuǎn)錄因子,涉及免疫反應(yīng)、炎癥反應(yīng)、細(xì)胞生存和凋亡等多種過(guò)程.它能夠通過(guò)調(diào)控Bcl-2、Bcl-xl等生長(zhǎng)因子來(lái)抑制腫瘤細(xì)胞凋亡[53-55].Qian等[56]的研究顯示,sporamin能夠抑制胰腺癌PANC-1和BxPC-3細(xì)胞的活力和增殖,并誘導(dǎo)細(xì)胞凋亡.此外,他們還發(fā)現(xiàn),sporamin能夠抑制胰腺癌細(xì)胞中的NF-κB活性,下調(diào)Bcl-2和Bcl-xl的表達(dá),上調(diào)Bax的表達(dá).這表明,誘導(dǎo)腫瘤細(xì)胞凋亡是sporamin發(fā)揮抑癌作用的重要機(jī)制,且可能受到NF-κB信號(hào)通路的調(diào)控.
Notch4蛋白在細(xì)胞增殖、分化、凋亡和多種人類(lèi)腫瘤的侵襲過(guò)程中發(fā)揮重要作用[57].Long等[58]的研究表明,在肺癌、宮頸癌、前列腺癌、胰腺癌、結(jié)腸癌和腎癌的生物標(biāo)志物研究中,Notch4可作為免疫檢查點(diǎn)治療的潛在預(yù)測(cè)標(biāo)志物.陳依依等[59]的研究顯示,sporamin能顯著降低人體胰腺癌PANC-1和MiaPaCa-2細(xì)胞的增殖、遷移和侵襲能力,并下調(diào)這些細(xì)胞中Notch4蛋白的水平,且這些效應(yīng)均呈濃度依賴(lài)性.這表明,sporamin通過(guò)下調(diào)Notch4蛋白水平來(lái)抑制胰腺癌細(xì)胞的增殖、遷移和侵襲.
3Sporamin對(duì)舌癌的抑制作用
在過(guò)去的幾十年里,由于吸煙人數(shù)減少,口腔癌的總體發(fā)生率有所下降.然而,有研究發(fā)現(xiàn),舌癌的發(fā)病率卻在上升.這一趨勢(shì)引起了學(xué)者們的關(guān)注,因?yàn)樯喟┳鳛榭谇话┑囊环N,其上升的發(fā)病率反映了不同的風(fēng)險(xiǎn)因素和病理機(jī)制[60-61].Akt,又稱(chēng)為蛋白激酶B,是細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)中的關(guān)鍵激酶,通常與細(xì)胞生存、增殖、分化和凋亡的調(diào)控相關(guān).糖原合成酶激酶3(GSK-3)是Akt下游的蛋白激酶,其活性受到Akt的抑制.有研究報(bào)道[62],Akt/GSK-3信號(hào)通路能夠通過(guò)細(xì)胞內(nèi)蛋白水解誘導(dǎo)細(xì)胞凋亡.Akt通常在多種癌癥中處于活躍狀態(tài),導(dǎo)致下游的GSK-3被磷酸化而失活,此外,GSK-3還與Wnt/β-catenin信號(hào)通路存在相互作用[63-64].Yao等[65]的研究發(fā)現(xiàn),sporamin處理后的舌癌Tca8113細(xì)胞在Hoechst 33342染色下呈現(xiàn)出明顯的凋亡形態(tài),流式細(xì)胞儀顯示出明顯的凋亡峰,并有顯著的增殖抑制作用,該研究提示sporamin能夠誘導(dǎo)Tca8113細(xì)胞凋亡并表現(xiàn)出抗增殖作用;還證明了Akt和GSK-3的磷酸化顯著介導(dǎo)Akt通路的抗凋亡作用,而sporamin能顯著抑制胰腺癌細(xì)胞中Akt和GSK-3的磷酸化水平.Bad是Bcl-2家族成員之一,能夠通過(guò)與Bcl-2家族的抗凋亡蛋白(如Bcl-xl)結(jié)合,抑制其抗凋亡功能,并使得促凋亡的Bcl-2家族成員Bax和Bak聚集,導(dǎo)致Cyt c等從線粒體釋放到細(xì)胞質(zhì),最終導(dǎo)致caspase激活和細(xì)胞凋亡[66-69].一旦Bad被Akt磷酸化,Bad則會(huì)被胞質(zhì)磷酸絲氨酸結(jié)合蛋白14-3-3隔離在細(xì)胞質(zhì)中,阻止它與Bcl-2和Bcl-xl結(jié)合在線粒體形成異源二聚體[69].Yao等[65]的研究還發(fā)現(xiàn),sporamin處理的Tca8113細(xì)胞中,磷酸化的Bad表達(dá)水平顯著下調(diào).總之,Yao等[65]的實(shí)驗(yàn)證明了sporamin可能通過(guò)抑制Akt/GSK-3信號(hào)通路誘導(dǎo)舌癌Tca8113細(xì)胞凋亡,從而具有細(xì)胞毒性.
4Sporamin對(duì)食管鱗狀細(xì)胞癌的抑制作用
食管癌是全球第八大常見(jiàn)癌癥,患者死亡率高、確診后預(yù)后差,5年生存率低于25%,最常見(jiàn)的類(lèi)型是食管鱗狀細(xì)胞癌(ESCC)[70].NF-κB能夠保護(hù)腫瘤細(xì)胞免于死亡,從而促進(jìn)食管腫瘤的發(fā)生[71].Qian等[72]的研究顯示,sporamin能夠抑制人體ESCC細(xì)胞的活力和增殖,且抑制效應(yīng)呈時(shí)間和濃度依賴(lài)性.此外,Qian等[72]還發(fā)現(xiàn),用sporamin處理后的ESCC細(xì)胞出現(xiàn)明顯的凋亡特征,且NF-κB的活化受到抑制,Bcl-2和Bcl-xl蛋白水平下調(diào),Bax蛋白水平上調(diào),這表明sporamin誘導(dǎo)ESCC細(xì)胞凋亡可能是通過(guò)NF-κB信號(hào)通路介導(dǎo)的.有研究顯示[73-74],NF-κB可能通過(guò)Akt信號(hào)通路被激活.Qian等[72]的研究還發(fā)現(xiàn),sporamin并不影響Akt的蛋白水平和磷酸化水平,這表明sporamin可能通過(guò)Akt非依賴(lài)的機(jī)制抑制ESCC細(xì)胞的生長(zhǎng).
5總結(jié)與展望
本文詳細(xì)探討了sporamin在結(jié)直腸癌、胰腺癌、舌癌和食管鱗狀細(xì)胞癌中的抑癌作用及其潛在機(jī)制.作為一種天然抗癌物質(zhì),sporamin可以通過(guò)多種機(jī)制發(fā)揮作用,包括抑制Wnt/β-catenin信號(hào)通路、抑制VEGF表達(dá)、促進(jìn)癌細(xì)胞凋亡、抑制細(xì)胞外基質(zhì)相關(guān)蛋白水解酶活性以及調(diào)節(jié)腸道菌群等.此外,sporamin與癌細(xì)胞的MAPK和NF-κB信號(hào)通路之間的相互作用也是其重要的作用機(jī)制之一.值得注意的是,在Qian等[48]的研究中,sporamin不僅能夠抑制胰腺癌細(xì)胞的增殖并誘導(dǎo)其凋亡,還能上調(diào)MAPK家族中ERK1/2、JNK1/2和p38 MAPK的磷酸化蛋白水平.MAPK家族蛋白的激活能夠保護(hù)胰腺癌細(xì)胞免受spormain誘導(dǎo)的凋亡,這其中的作用機(jī)制尚不清楚,可能涉及sporamin在誘導(dǎo)胰腺癌細(xì)胞凋亡時(shí)啟動(dòng)的癌細(xì)胞自我保護(hù)機(jī)制,需進(jìn)一步研究.sporamin在抗CRC作用中的表現(xiàn)尤為突出,對(duì)胰腺癌、舌癌和食管鱗狀細(xì)胞癌的作用也為學(xué)者們提供了重要參考.
盡管現(xiàn)有研究表明,sporamin在細(xì)胞和動(dòng)物實(shí)驗(yàn)中對(duì)多種癌細(xì)胞具有顯著的抑制效果,但它在臨床應(yīng)用中的有效性和安全性仍需通過(guò)進(jìn)一步研究來(lái)證實(shí).未來(lái)的研究應(yīng)重點(diǎn)揭示sporamin在人體內(nèi)的具體抑癌機(jī)制,特別是對(duì)不同信號(hào)通路和基因表達(dá)的調(diào)控作用及不同信號(hào)通路間的相互作用.例如,研究sporamin在不同癌癥模型中對(duì)NPY4R、CEACAM20、PAK6和FOXN1等基因表達(dá)的影響,以及對(duì)Wnt/β-catenin與Akt/GSK-3信號(hào)通路相互作用的影響.這將為理解其抗癌原理并開(kāi)發(fā)更為有效的治療策略提供理論基礎(chǔ).在進(jìn)行人體臨床試驗(yàn)前,研究者應(yīng)通過(guò)大量動(dòng)物模型實(shí)驗(yàn)驗(yàn)證sporamin的抗癌安全性和有效性,包括對(duì)不同劑量、不同給藥途徑和長(zhǎng)期使用的安全性進(jìn)行評(píng)估.在設(shè)計(jì)臨床試驗(yàn)時(shí),應(yīng)充分考慮sporamin的藥代動(dòng)力學(xué)和藥效學(xué)特性,選擇合適的患者群體和對(duì)照組,確保實(shí)驗(yàn)數(shù)據(jù)的科學(xué)性與可靠性.對(duì)接受sporamin治療的患者進(jìn)行長(zhǎng)期隨訪研究,評(píng)估其長(zhǎng)期療效和安全性,為它在臨床中的推廣應(yīng)用提供科學(xué)依據(jù).此外,探索sporamin與其他抗癌藥物或治療手段的聯(lián)合應(yīng)用效果,可能為提高治療效果、減少副作用提供新的途徑.例如,與傳統(tǒng)化療藥物、靶向治療藥物或免疫治療手段的聯(lián)合應(yīng)用可能產(chǎn)生協(xié)同效應(yīng),提高治療效果.
綜上所述,sporamin作為一種來(lái)源于甘薯的天然抗癌物質(zhì),具有良好的研究前景和應(yīng)用潛力.未來(lái)需要深入探索其抗癌機(jī)制,并開(kāi)展系統(tǒng)的臨床前研究和臨床研究,以期為癌癥患者提供一種安全、經(jīng)濟(jì)且有效的治療新選擇.
參考文獻(xiàn):
[1]李鵬高.甘薯貯藏蛋白的抗癌活性及其機(jī)制研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2012.
[2]李鵬高.甘薯sporamin蛋白對(duì)結(jié)直腸癌的抑制作用研究進(jìn)展[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),2015,6(10):3895.
[3]鄭文駿,毛智翔,黃琳娟,等.胰蛋白酶抑制劑在腫瘤治療中的研究進(jìn)展[J].檢驗(yàn)醫(yī)學(xué)與臨床,2018,15(16):2508.
[4]Ionescu V A,Gheorghe G,Bacalbasa N,et al.Colorectal cancer:from risk factors to oncogenesis[J].Medicina,2023,59(9):1646.
[5]焉秀章,夏文龍,夏俊偉,等.Wnt/β-catenin信號(hào)通路在結(jié)直腸癌中的研究進(jìn)展[J].中國(guó)實(shí)驗(yàn)診斷學(xué),2021,25(12):1856.
[6]Zhao H,Ming T Q,Tang S,et al.Wnt signaling in colorectal cancer:pathogenic role and therapeutic target[J].Mol Cancer,2022,21(1):144.
[7]Disoma C,Zhou Y Z,Li S N,et al.Wnt/β-catenin signaling in colorectal cancer:is therapeutic targeting even possible?[J].Biochimie,2022,195:39.
[8]Yang C,Zhang J J,Zhang X P,et al.Sporamin suppresses growth of xenografted colorectal carcinoma in athymic BALB/c mice by inhibiting liver β-catenin and vascular endothelial growth factor expression[J].World J Gastroenterol,2019,25(25):3196.
[9]徐潤(rùn)強(qiáng),劉宇平,張海良,等.VEGF-A及PI3K/AKT通路在結(jié)直腸癌中的表達(dá)及臨床意義[J].中國(guó)醫(yī)學(xué)創(chuàng)新,2021,18(3):1.
[10]Dlek F H,Topak N,Tokyol ,et al.β-Catenin and its relation to VEGF and cyclin D1 expression in PT3 rectosigmoid cancers[J].Turk J Gastroenterol,2010,21(4):365.
[11]Nicholson D W.Caspase structure,proteolytic substrates,and function during apoptotic cell death[J].Cell Death Differ,1999,6(11):1028.
[12]Earnshaw W C,Martins L M,Kaufmann S H.Mammalian caspases:structure,activation,substrates,and functions during apoptosis[J].Annu Rev Biochem,1999,68:383.
[13]Shimizu S,Narita M,Tsujimoto Y.Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J].Nature,1999,399(6735):483.
[14]Lindsay J,Esposti M D,Gilmore A P.Bcl-2 proteins and mitochondria-specificity in membrane targeting for death[J].Biochim Biophys Acta,2011,1813(4):532.
[15]Ola M S,Nawaz M,Ahsan H.Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J].Mol Cell Biochem,2011,351(1/2):41.
[16]Huang G J,Sheu M J,Chen H J,et al.Growth inhibition and induction of apoptosis in NB4 promyelocytic leukemia cells by trypsin inhibitor from sweet potato storage roots[J].J Agric Food Chem,2007,55(7):2548.
[17]Li P G,Mu T H,Deng L.Anticancer effects of sweet potato protein on human colorectal cancer cells[J].World J Gastroenterol,2013,19(21):3300.
[18]Abbas T,Dutta A.p21 in cancer:intricate networks and multiple activities[J].Nat Rev Cancer,2009,9(6):400.
[19]張苗.甘薯蛋白酶解肽的抗氧化及結(jié)腸癌活性研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2012.
[20]Winkler J,Abisoye-Ogunniyan A,Metcalf K J,et al.Concepts of extracellular matrix remodelling in tumour progression and metastasis[J].Nat Commun,2020,11(1):5120.
[21]Santibanez J F.Urokinase type plasminogen activator and the molecular mechanisms of its regulation in cancer[J].Protein Pept Lett,2017,24(10):936.
[22]Ozkan E,Bakar-Ates F.The trinity of matrix metalloproteinases,inflammation,and cancer:a literature review of recent updates[J].Antiinflamm Antiallergy Agents Med Chem,2020,19(3):206.
[23]Kobayashi H,Suzuki M,Kanayama N,et al.Genetic down-regulation of phosphoinositide 3-kinase by bikunin correlates with suppression of invasion and metastasis in human ovarian cancer HRA cells[J].J Biol Chem,2004,279(8):6371.
[24]Inagaki K,Kobayashi H,Yoshida R,et al.Suppression of urokinase expression and invasion by a soybean Kunitz trypsin inhibitor are mediated through inhibition of Src-dependent signaling pathways[J].J Biol Chem,2005,280(36):31428.
[25]Shewry P R.Tuber storage proteins[J].Ann Bot,2003,91(7):755.
[26]Cheng Y W,Ling Z X,Li L J.The intestinal microbiota and colorectal cancer[J].Front Immunol,2020,11:615056.
[27]李洪,楊藝釩,伍勇.腸道菌群與結(jié)直腸癌關(guān)系的研究進(jìn)展\[J\].中華預(yù)防醫(yī)學(xué)雜志,2022,56(6):864.
[28]國(guó)鴿,張曉鵬,張杰,等.甘薯Sporamin蛋白對(duì)結(jié)直腸癌ICR小鼠腸道細(xì)菌的影響[J].毒理學(xué)雜志,2018,32(3):228.
[29]Samec S,Jones T A,Corlet J,et al.The human gene for xeroderma pigmentosum complementation group G (XPG) maps to 13q33 by fluorescence in situ hybridization[J].Genomics,1994,21(1):283.
[30]Zeng Y,Wei L,Wang Y J,et al.Genetic association between ERCC5 rs17655 polymorphism and colorectal cancer risk:evidence based on a meta-analysis[J].Asian Pac J Cancer Prev,2015,16(13):5565.
[31]Krner M,Reubi J C.NPY receptors in human cancer:a review of current knowledge[J].Peptides,2007,28(2):419.
[32]Huskey A L W,Merner N D.An investigation into the role of inherited CEACAM gene family variants and colorectal cancer risk[J].BMC Res Notes,2022,15(1):26.
[33]Kitamura Y,Murata Y,Park J H,et al.Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium[J].Genes Cells,2015,20(7):578.
[34]Murata Y,Kotani T,Supriatna Y,et al.Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium[J].Proc Natl Acad Sci U S A,2015,112(31):E4264.
[35]Li T T,Li Y,Liu T,et al.Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex[J].Theranostics,2020,10(6):2571.
[36]Chen H W,Miao J L,Li H C,et al.Expression and prognostic significance of p21-activated kinase 6 in hepatocellular carcinoma[J].J Surg Res,2014,189(1):81.
[37]Yang Q,Zhao Y C,Chen Y S,et al.PAK6 promotes cervical cancer progression through activation of the Wnt/β-catenin signaling pathway[J].Oncol Lett,2020,20(3):2387.
[38]Chen J,Lu H J,Yan D W,et al.PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy[J].Oncotarget,2015,6(1):355.
[39]Wen X Q,Li X J,Liao B,et al.Knockdown of p21-activated kinase 6 inhibits prostate cancer growth and enhances chemosensitivity to docetaxel[J].Urology,2009,73(6):1407.
[40]Zhang M,Siedow M,Saia G,et al.Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells[J].Prostate,2010,70(8):807.
[41]Ji X J,Ji Y,Wang W Q,et al.Forkhead box N1 inhibits the progression of non-small cell lung cancer and serves as a tumor suppressor[J].Oncol Lett,2018,15(5):7221.
[42]Koch S.Regulation of Wnt signaling by FOX transcription factors in cancer[J].Cancers,2021,13(14):3446.
[43]Yang C,Chen S J,Chen B W,et al.Gene expression profile of the human colorectal carcinoma LoVo cells treated with sporamin and thapsigargin[J].Front Oncol,2021,11:621462.
[44]Hidayat K,Yang C M,Shi B M.Body fatness at an early age and risk of colorectal cancer[J].Int J Cancer,2018,142(4):729.
[45]Jochem C,Leitzmann M.Obesity and colorectal cancer[J].Recent Results Cancer Res,2016,208:17.
[46]Sarantopoulos C N,Banyard D A,Ziegler M E,et al.Elucidating the preadipocyte and its role in adipocyte formation:a comprehensive review[J].Stem Cell Rev Rep,2018,14(1):27.
[47]Xiong Z D,Li P G,Mu T H.The differentiation- and proliferation-inhibitory effects of sporamin from sweet potato in 3T3-L1 preadipocytes[J].Agric Sci China,2009,8(6):671.
[48]Qian C J,Qi Y X,Zhong S,et al.Mitogen-activated protein kinase inhibition enhances the antitumor effects of sporamin in human pancreatic cancer cells[J].Oncol Lett,2018,16(1):1237.
[49]Zhang W,Liu H T.MAPK signal pathways in the regulation of cell proliferation in mammalian cells[J].Cell Res,2002,12(1):9.
[50]Kolch W.Meaningful relationships:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions[J].Biochem J,2000,351(Pt 2):289.
[51]Volkmann N,Marassi F M,Newmeyer D D,et al.The rheostat in the membrane:BCL-2 family proteins and apoptosis[J].Cell Death Differ,2014,21(2):206.
[52]Low I C C,Kang J,Pervaiz S.Bcl-2:a prime regulator of mitochondrial redox metabolism in cancer cells[J].Antioxid Redox Signal,2011,15(12):2975.
[53]Xiong Y,Ma X Y,Zhang Z R,et al.Apoptosis induced by β,β-dimethylacrylshikonin is associated with Bcl-2 and NF-κB in human breast carcinoma MCF-7 cells[J].Oncol Lett,2013,6(6):1789.
[54]Arlt A,Müerkster S S,Schfer H.Targeting apoptosis pathways in pancreatic cancer[J].Cancer Lett,2013,332(2):346.
[55]Karin M,Lin A.NF-kappa B at the crossroads of life and death[J].Nat Immunol,2002,3(3):221.
[56]Qian C J,Chen X Y,Qi Y X,et al.Sporamin induces apoptosis and inhibits NF-κB activation in human pancreatic cancer cells[J].Tumour Biol,2017,39(7):1010428317706917.
[57]Li H X,Zhang Q,Duan Q Q,et al.NOTCH4 mutation as predictive biomarker for immunotherapy benefits in NRAS wildtype melanoma[J].Front Immunol,2022,13:894110.
[58]Long J Y,Wang D X,Yang X,et al.Identification of NOTCH4 mutation as a response biomarker for immune checkpoint inhibitor therapy[J].BMC Med,2021,19(1):154.
[59]陳依依,曾菊萍,陳曉英,等.Sporamin對(duì)人胰腺癌細(xì)胞增殖、遷移和侵襲以及Notch4蛋白表達(dá)的影響[J].中國(guó)腫瘤生物治療雜志,2016,23(6):779.
[60]Ng J H,Iyer N G,Tan M H,et al.Changing epidemiology of oral squamous cell carcinoma of the tongue:a global study[J].Head Neck,2017,39(2):297.
[61]Kim Y J,Kim J H.Increasing incidence and improving survival of oral tongue squamous cell carcinoma[J].Sci Rep,2020,10(1):7877.
[62]Chen X L,Ren K H,He H W,et al.Involvement of PI3K/AKT/GSK3β pathway in tetrandrine-induced G1 arrest and apoptosis[J].Cancer Biol Ther,2008,7(7):1073.
[63]Duda P,Akula S M,Abrams S L,et al.Targeting GSK3 and associated signaling pathways involved in cancer[J].Cells,2020,9(5):1110.
[64]Revathidevi S,Munirajan A K.Akt in cancer:mediator and more[J].Semin Cancer Biol,2019,59:80.
[65]Yao J,Qian C J.Sporamin induce apoptosis in human tongue carcinoma cells by down-regulating Akt/GSK-3 signaling[J].Fundam Clin Pharmacol,2011,25(2):229.
[66]Yang E,Korsmeyer S J.Molecular thanatopsis:a discourse on the BCL2 family and cell death[J].Blood,1996,88(2):386.
[67]Datta S R,Dudek H,Tao X,et al.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery[J].Cell,1997,91(2):231.
[68]Zha J,Harada H,Yang E,et al.Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J].Cell,1996,87(4):619.
[69]Zhao S,Konopleva M,Cabreira-Hansen M,et al.Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias[J].Leukemia,2004,18(2):267.
[70]Then E O,Lopez M,Saleem S,et al.Esophageal cancer:an updated surveillance epidemiology and end results database analysis[J].World J Oncol,2020,11(2):55.
[71]Abdel-Latif M M M,Kelleher D,Reynolds J V.Potential role of NF-κB in esophageal adenocarcinoma:as an emerging molecular target[J].J Surg Res,2009,153(1):172.
[72]Qian C J,Qi Y X,Chen X Y,et al.Sporamin suppresses growth of human esophageal squamous cell carcinoma cells by inhibition of NF-κB via an AKT-independent pathway[J].Mol Med Rep,2017,16(6):9620.
[73]Manning B D,Cantley L C.AKT/PKB signaling:navigating downstream[J].Cell,2007,129(7):1261.
[74]Choi Y J,Moon K M,Chung K W,et al.The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging[J].Oncotarget,2016,7(33):52685.
[責(zé)任編輯: 史成娣溫倩芝]