邵朱蕓, 童曙康, 柏逸超, 吳子丞
(上海海事大學 海洋科學與工程學院,上海 201306)
近年來,郵船業在旅游行業中出現較大增長,2019年全球郵船乘客超過3 000萬人次。由于長期受到歐洲國家的技術封鎖,因此我國在郵船的創新設計與高端建造技術方面仍存在許多短板。根據國際船舶網相關報道,2020年12月29日招商局集團自主研發的52 000 t中型郵船設計方案通過英國勞氏船級社的原則性認可,為后續中型郵船研究和交付奠定堅實的基礎,體現郵船總體設計具有一定的自我設計能力,為我國實現國產化的高端郵船邁出重要的一步。
根據國際船舶網相關報道,2013年美國Reuben Lasker號漁業調查船在威斯康星州碼頭采用滑道下水時船身側向翻倒,船體受到嚴重損壞并出現人員受傷。2014年韓國世越號客船在航行中傾翻并沉沒,沉船報告提及船體缺乏穩性是其沉沒的最大原因。2016年印度海軍的貝特瓦號導彈護衛艦在孟買港駛出船塢時傾覆。船舶航行安全問題牽涉浮性和穩性等多重動態,并與船舶靜力學、船舶建造和船舶原理等學科息息相關。
黃武剛[1]根據時域模擬得到船舶參數共振和純穩性的喪失原理。陳明敏等[2]采用MAXSURF軟件分析船舶大傾角穩性,并采用油船實例分析比較軟件與實際之間的計算誤差值,有力證明將MAXSURF軟件用于計算船舶大傾角穩性具有由實際數據支撐的可行性。張棘[3]通過對實船初穩心進行計算,提出甲板上浪水靜態化處理模型和按裝貨計算其對船舶穩性影響的方法。王永功等[4]分析對比采用譜分析和時域分析兩種方法的風浪聯合作用下的波浪穩性,進行兩種方法預報結果對比。張志敏等[5]針對大型船舶的穩性校核和控制問題,分別從風浪環境作用力、船舶運動模型和船體穩性恢復力矩建模方面進行研究。
以52 000 t中型維京郵船(簡稱“維京郵船”)為研究對象,采用MAXSURF軟件對中型郵船大傾角穩性進行校核。
維京郵船的浮態和穩性均需要滿足英國勞氏船級社的規范要求。根據《2008年國際完整穩性規則》(IS Code 2008)對船舶穩性的要求,對其完整穩性進行判定[6]。
數據計算時的質心定義:縱坐標原點位于0號肋位,以艏部方向為正;橫坐標原點位于船體中心線,以左舷方向為正;垂向坐標原點位于基線,以向上方向為正。維京郵船數據計算時的質心定義如圖1所示。

圖1 維京郵船數據計算時的質心定義
維京郵船空船質量根據實際3類質量(船體鋼料質量、木作舾裝質量、機電設備質量)進行計算,其他質量可根據實時更改或規范要求進行修改。
中型郵船空船質量為
(1)
WLW=Wh+Wf+Wm
(2)
式(1)和式(2)中:Wsa為船舶總質量;WLW為空船質量;Wi為船舶載重量;Wh為船體鋼料質量;Wf為木作舾裝質量;Wm為機電設備質量。
中型郵船質心坐標為
(3)
采用MAXSURF軟件對維京郵船進行穩性數值模擬計算,并對計算結果進行分析。維京郵船主尺度如表1所示。

表1 維京郵船主尺度 m
維京郵船空船質量清單如表2所示。根據船舶所有人要求,對計算得到的空船質量和質心以6.0%的修正值進行修正。

表2 維京郵船空船質量清單
計算工況分為2類3種:第1類為平浪,工況1,較安全;第2類為正弦浪,波長為垂線間長204.900 m,波高為8.689 m,較危險,工況2為波谷位于船中,工況3為波峰位于船中。
選取橫傾角為-5°~60°的維京郵船的復原力臂、復原力臂曲線下的面積、縱傾(艏傾為正、艉傾為負)、形狀穩性力臂和橫傾吃水等數據進行計算。
2.2.1 工況1大傾角穩性校核
工況1大傾角穩性數據如表3所示。

表3 工況1大傾角穩性數據
工況1穩性曲線如圖2所示。由工況1穩性曲線得到:在橫傾角為0°時,橫穩心高為3.312 m;在橫傾角為26.8°時,出現最大復原力臂為 1.029 m。

圖2 工況1穩性曲線
2.2.2 工況2大傾角穩性校核
工況2大傾角穩性數據如表4所示。

表4 工況2大傾角穩性數據
工況2穩性曲線如圖3所示。由工況2穩性曲線得到:在橫傾角為0°時,橫穩心高為5.420 m;在橫傾角為25.5°時,出現最大復原力臂為1.479 m。

圖3 工況2穩性曲線
2.2.3 工況3大傾角穩性校核
工況3大傾角穩性數據如表5所示。

表5 工況3大傾角穩性數據
工況3穩性曲線如圖4所示。由工況3穩性曲線得到:在橫傾角為0°時,橫穩心高為0.886 m;在橫傾角為38.2°時,出現最大復原力臂為0.589 m。

圖4 工況3穩性曲線
校核內容如表6所示,可判定維京郵船穩性滿足規范要求。

表6 穩性校核內容
為清晰體現維京郵船在規則波中的復原力矩規律,對波長船長比和波高進行變量分析。
在波高均為8.000 m的情況下,分別計算在波長為102.500 m、205.000 m、307.500 m和410.000 m時所對應的復原力矩隨波長船長比的變化。復原力矩隨波長船長比的變化如圖5所示。由圖5可知:在工況2和工況3條件下,復原力矩隨波高的變化趨勢一致,均為上升-達到峰值-下降;在工況3條件下,且在波長等于船長時,復原力矩明顯下降。

圖5 復原力矩隨波長船長比的變化
在波長船長比為1.0的情況下,分別計算在波高為4.000 m、6.000 m、8.000 m、10.000 m和12.000 m時所對應的復原力矩隨波高的變化。工況2復原力矩隨波高變化如圖6所示。由圖6可知:在工況2和工況3條件下,復原力矩隨波高的變化趨勢一致,均為上升-達到峰值-下降;工況2條件下的復原力矩達到峰值的橫傾角小于工況3條件下的復原力矩。

圖6 復原力矩隨波高的變化
采用MAXSURF軟件分別計算設定的3種工況條件下的大傾角穩性,根據維京郵船實際采用的穩性規范,判斷每種工況條件下的穩性均可滿足要求。考慮波浪對維京郵船穩性的影響,通過改變波長船長比和波高兩個參數,繪制在工況2和工況3條件下波浪對穩性的影響曲線。通過尋找復原力矩在波浪變化下的規律,證實在工況3條件下,且在波長等于船長時,復原力臂最小,維京郵船穩性處于最危險的狀態。
對于中型郵船,在設計初期隨空船質量和質心的變化,可得到不同質量下的穩性數據;在確定空船質量和質心后添加不同的壓載質量,通過MAXSURF軟件直接計算,可得到不同工況條件下的質量和質心。分別在工況1、工況2和工況3條件下進行大傾角穩性校核,并繪制波浪對穩性的影響曲線,得到波浪對穩性的影響規律,證明維京郵船穩性滿足規范要求。.