999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

復合材料縱橫剪切模量的有限元計算與試驗對比研究

2024-04-17 07:30:09王天琦魏喜龍王威力李剛魏程單鵬宇田忠恩
纖維復合材料 2024年1期

王天琦 魏喜龍 王威力 李剛 魏程 單鵬宇 田忠恩

摘 要 層合板(±45°/90°/0°)是準各向同性層合板,其剛度在板面內各個方向上都相同。使用計算軟件,編寫程序代碼,運用有限元的方法,劃分有限元網格,計算了層合板(±45°/90°/0°)的縱橫剪切模量[1]。將計算結果與復合材料縱橫剪切模量試驗結果進行對比,得到數值模擬和試驗結果之間的誤差為0.89 %,一致性很好,說明該計算方法可用于工程計算模擬。

關鍵詞 復合材料層合板;準各向同性;有限元方法;縱橫剪切模量

Research on Finite Element Method and Testing for

Determination Interlaminar Shear Modulus

of Composite Materials

WANG Tianqi,WEI Xilong,WANG Weili,LI Gang,

WEI Cheng,SHAN Pengyu,TIAN Zhongen

(Harbin FRP Institute Co., Ltd., Harbin 150028)

ABSTRACT Laminated plates (± 45°/90°/0°) are quasi isotropic laminates with the same stiffness in all directions within the plate plane. Using computational software, program code was written, and finite element method was used to divide the finite element mesh and calculate the longitudinal and transverse shear modulus of laminated plates (± 45°/90°/0°)[1]. The calculated results are compared with the transverse and longtitude shear modulus test results, it was found that the error between the numerical simulation and experimental results was 0.89%, indicating good consistency, indicating that this calculation method can be used for engineering calculation simulation.

KEYWORDS composite laminates;quasi-isotropic;finite element method;longitudinal and transverse shear modulus

通訊作者:王天琦,碩士研究生,助理工程師。研究方向為結構力學。E-mail:15145094822@163.com

1 引言

纖維復合材料由于其強度高、耐腐蝕等優點被廣泛應用于航空航天和海洋等領域中。在復合材料的研發過程及工程應用中,經常要對不同的復合材料試件進行多種形式的性能試驗,以獲取所需的材料和結構性能參數。纖維增強復合材料的剪切性能是其基本性能之一,是復合材料設計中必須考慮的重要問題。許多結構鋪層的設計、優化都是以剪切強度、模量數據作為依據。本文采用有限元數值模擬和試驗對比的方法,對聚合物基復合材料層合板縱橫剪切性能進行分析[2]。研究有限元數據模擬方法可在無試驗條件下快速為復合材料結構件提供試驗數據的依據。

2 準各向同性層合板的力學試驗

2.1 復合材料層合板縱橫剪切試件制備

按照GB/T 3355-2014要求制備準各向同性層合板,試樣鋪層為[45°/-45°]5s,試件尺寸如圖1所示。圖1中h表示試樣厚度,為2 mm[3]。試驗中所用到的材料規格及供應廠家如表1所示。

2.2 試驗結果

按照GB/T 3355-2014進行力學試驗,試驗在標準環境下進行,記錄試件的寬度、厚度、試件受到的破壞載荷,并計算剪切強度和剪切模量??v橫剪切試件參數及試驗結果如表2所示。

45°縱橫剪切強度計算如公式(1)所示。

S45°=P45°max2bh(1)

公式(1)中,P45°max為最大破壞載荷,N;b為試件寬度,mm;h為試件厚度, mm。

45°縱橫剪切模量計算如公式(2)所示。

G12=△P45°2bh(△ε2-△ε1)

(2)

公式(2)中,△P45°為載荷-應變曲線上初始直線段的載荷增量,kN;b為試件寬度,mm;h為試件厚度, mm;△ε1為對應于△P45°的縱向應變;△ε2為對應于△P45°的橫向應變[4]。

根據上述試驗,按照鋪層[45°/-45°]5s制作碳纖維環氧樹脂復合材料層合板,獲得了碳纖維環氧樹脂復合材料試件的基本力學參數,如表3所示。

由表2中可看出,試驗數據有一定的離散,但離散程度不大。

3 準各向同性層合板縱橫剪切模量計算方法

采用經典層合板理論(CLT),四節點舉行層合板有限元計算方法計算變形與應變的關系,得到縱橫剪切模量的計算值。

3.1 經典層合板理論

與均質材料所組成的結構不同,復合材料層合板結構的分析必須立足于對每一單層的分析。由于存在不同的組分層,決定了層合結構的厚度方向具有宏觀非均質性。為了得到層合結構的剛度特性,必須弄清楚各單層的剛度特性;為了對層合結構的強度做出判斷,必須首先對各單層的強度做出判斷。因此,單層的宏觀力學分析是層合結構分析的基礎[5]。

經典層合板理論,基于Kirchhoff假設,即直法線假設和法線長度保持不變,Z向應力可以忽略假設,而建立的薄層合板中面變形方程。當受到外部載荷作用時,層合板將發生面內伸縮或者彎曲變形。層合板坐標如圖2所示[6]。

直線段變形前后關系如圖3所示,圖3中以XZ平面內的變形為例,B是中面上的一點,C是截面上的任意點,β是層合板中面的轉角,如公式(3)所示。

uc=u0-zcsinβ≈uc-zcβ

(3)

公式(3)中,β=w0x,注:在小變形情況下,才有β≈sinβ,根據上式,層合板上任意一點的位移u可以表示,如公式(4)所示。

u=u0-zw0x

(4)

同理在YZ平面內,也可以得到任意一點位移v的表達式如公式(5)所示。

v=v0-zw0y

(5)

另外,經典層合板理論中,任意一點的位移w與其中性面上的面外位移w0相等,如公式(6)所示。

w=w0(x,y)

(6)

公式(6)中,u、v、w分別為沿板厚范圍內x,y,z方向的位移,中面上的點x,y,z方向的位移為u0、v0、w0,其中稱為板的撓度[6]。

后續計算過程,依據上述理論進行。

3.2 變形與應變的關系

為了得到層合板的剛度矩陣和柔度矩陣,并且在有限元方法中運用,引入層合板的應力-應變關系。

為簡化問題,對所研究的層合板作如下假設[7]。

(1)層合板各單層之間粘結良好,可作為一個整體結構板,并且粘結層很薄,其本身不發生形變,即各單層板之間變形連續。

(2)層合板雖由多層單層板疊合而成,但其總厚度仍符合假設,即厚度t與跨度L之比為(150~1100)<tL<18~110

(3)整個層合板是等厚度的。

在上述假設前提下,基于經典層合板理論中位移的表達式如公式(7)所示。

u(x,y,z)=u0(x,y)-zw0x

v(x,y,z)=v0(x,y)-zw0y

(7)

w(x,y,z)=w0(x,y)

引入幾何方程,應變與位移的關系式如公式(8)所示。

εx=ux,εy=vy,εz=wz

γyz=wy+vz,γzx=uz+wx,γxy=yx+uy

(8)

將層合板的變形帶入上式可得如公式(9)所示。

εx=ux=u0x-z2w0x2=εx0+zkx

εy=vy=v0y-z2w0y2=εy0+zky

γxy=uy+vx=u0y+v0x-2z2w0xy=γxy0+zkxy(9)

式中,kx,ky為中面的彎曲撓曲率,即曲率半徑的倒數,kxy為中面的扭曲率,εx0、εy0、γxy0為中面應變[8]。

將總應變整合后形式如下,其中第一部分代表的是面內的應變,第二部分代表的是彎曲引起的應變,

如公式(10)所示[9]。

{ε}={εo}+z{k}

{εo}u0x

v0y

u0y+v0x

(10)

{k}=

2wx2

2wy2

-22wxy

將公式(8)代入單層板應力-應變關系式,可以得到層合板中第k層的應力-應變關系式[10]:

σxσyσz=Q11 Q12 Q16

Q12 Q22 Q26

Q11 Q26 Q66

εxoεyoγxyo+zkxkyzkxy

(11)

式(11)中Q為剛度矩陣,由公式(9)可知,層合板應變由中緬應變和彎曲應變兩部分組成,沿厚度線性分布;而應力除與應變有關外,還與各單層剛度特性有關,若各層剛度不相同,則各層應力不連續分布,但在每一層內是線性分布的[11]。

3.3 四節點矩形層合板有限元計算縱橫剪切模量

有限元法的基本理念是假設將一個連續體分割成數目有限的小體(單元),彼此間只在數目有限的指定點(節點)處互相連結,組成一個單元的集合體以代替原來的連續體,再在節點上引進等效力以代替實際作用于單元上的外力。因此,可以選擇一個簡單的函數來近似地表示位移分量的分布規律,建立位移和節點力之間的關系,把有無限個自由度的連續體理想化為有限個自由度的單元集合體,使問題簡化為適合于數值解法的結構型問題[12]。

基于復合材料層合板理論,結合3.1及3.2中的理論計算結果,建立并劃分的層合板有限元網格如圖4所示,在節點1,2,3上施加了邊界條件-即將所有自由度固定。

圖4 層合板試件有限元數值模擬圖

在節點13和15上,沿x軸施加25 N的力,在節點14上,沿x軸施加50 N的力,施加載荷為100 N。層合板試件厚度如公式(12)所示。

H=n·δ=10·0.24=2.4 mm (12)

式中,δ為單層厚度0.24 mm。

將節點8和節點11之間沿X軸的相對伸長量定義為ε1,沿Y軸的相對伸長量定義為ε2。則沿X軸的剪切強度和相對伸長量如公式(13)~(16)所示。

τ=F2bH=0.83333 MPa(13)

ε1=u(11)-u(8)a=0.0001274(14)

ε2=u(11)-u(8)a=0.000018(15)

γ=ε1-ε2(16)

即剪切模量如公式(17)所示。

G12′=△τ△γ=4035.61MPa (17)

試驗結果與有限元數值模擬結果之間的誤差如公式(18)所示。

ψ=G12′-G12G12=0.89%

(18)

數值模擬中用到的參數如表3所示。

由表2中數據可知,試驗結果與數值模擬得出的層合板剪切模量相差不大,誤差僅在1%以內,存在誤差的主要原因是模擬使用的摩擦參數與試驗實際情況有差別,并且試驗使用的板料厚度也存在一定的偏差,這些因素的綜合影響導致了有限元模擬與試驗值之間的偏差[13]。

4 結語

基于經典層合板理論,運用計算軟件并使用有限元分析方法對復合材料層合板的縱橫剪切試驗進行數值模擬,提出了一個含有前后處理的完整的四節點有限元程序算法,該程序算法可以為模擬層合板的拉伸、壓縮等力學性能提供計算基礎[14]。本文研究分析得到了層合板的縱橫剪切模量,根據數值模擬后的數據顯示,有限元方法在一定程度上可以得到比較準確的預測復合材料層合板的力學性能,能夠指導復合材料層合板鋪層結構[15],有限元數據和試驗數據之間的誤差在1%左右,使用有限元數值模擬方法計算剪切模量的方法是可行的,可以滿足工程需要。

參 考 文 獻

[1]楊涵,周仕剛,薛元德.(±45°/90°/0°)s準各向同性層合板的拉伸強度[J].纖維復合材料, 2010(4):5.DOI:10.3969/j.issn.1003-6423.2010.04.001.

[2]鮑宏琛,劉廣彥.準各向同性纖維增強復合材料層合板的開孔拉伸破壞模擬[J].復合材料學報, 2016, 33(5):7.DOI:10.13801/j.cnki.fhclxb.20160112.005.

[3]劉寶良,夏軍.基于Mindlin理論的復合材料層合板的有限元分析[J].黑龍江科技大學學報, 2004, 14(3):171-173.DOI:10.3969/j.issn.1671-0118.2004.03.010.

[4]朝魯,張鴻慶,唐立民.一個計算微分方程(組)對稱群的Mathematica程序包及其應用[J].計算物理, 1997, 14(003):375-379.DOI:10.1007/BF02947208.

[5]邵明.有限元法在復合材料層合板力學性能中的應用研究[D].浙江大學,2013.

[6]李真,陳秀華,汪海.基于重合網格法的含孔復合材料層合板有限元分析[C]//第17屆全國復合材料學術會議.中國力學學會;中國宇航學會;中國航空學會;中國復合材料學會, 2012. DOI:ConferenceArticle/5af1b392c095d71bc8cb4150.

[7]李斯華李良偉.復合材料層合板的層間應力有限元分析[J].四川建材, 2013, 039(001):63,66.

[8]Жилин П.А. Векторы и тензоры второго ранга в трехмерном пространстве. СПб.: Нестор, 2001. 276 с.

[9]Жилин П.А. Рациональная механика сплошных сред: учеб. пособие. СПб.: Изд-во Политехн. ун-та, 2012. 584 с.

[10]Сорокин Ф.Д. Прямое тензорное представление уравнений больших перемещений гибкого стержня с использованием вектора конечного поворота // Известия РАН. Механика твердого тела. 1994. № 1. C. 164-168.

[11]Кувыркин Г Н, Головин Н Н, Петрикевич Б Б, et al. Разработка теоретических основ и методов оценки несущей способности и прочностной надежности (риска разрушения) термонапряженных элементов конструкций из композитных материалов на основе углерода[R]. Российский фонд фундаментальных исследований, 1994.

[12]Демидов А С, Хомовский Я Н. Особенности расчёта и выбор критериев напряженно-деформированного состояния для тонкостенных конструктивных элементов из углерод-углеродных композитных материалов[J]. Sciences of Europe, 2016 (9-4 (9)): 80-84.

[13]王言磊,郝慶多,歐進萍.復合材料層合板面內剪切實驗方法的評價[J].玻璃鋼/復合材料, 2007(03):6-8.DOI:10.3969/j.issn.1003-0999.2007.03.002.

[14]張紀奎,酈正能,關志東,等.復合材料層合板固化壓實過程有限元數值模擬及影響因素分析[J].復合材料學報,2007, 24(2):6.DOI:10.3321/j.issn:1000-3851.2007.02.022.

[15]許良梁,矯桂瓊,盧智先,等.含分層復合材料層合板剪切屈曲的實驗研究[J].機械強度,2007, 29(4):5.DOI:10.3321/j.issn:1001-9669.2007.04.011.

主站蜘蛛池模板: 全部免费特黄特色大片视频| 亚洲成人精品久久| 日本午夜视频在线观看| 国产高清在线精品一区二区三区 | 久久精品视频亚洲| 国产成人禁片在线观看| 亚洲无码37.| 色亚洲激情综合精品无码视频| 老司机精品久久| 久久亚洲美女精品国产精品| 亚洲欧美色中文字幕| 91福利在线观看视频| 国产亚洲精品va在线| 东京热高清无码精品| 亚洲性一区| 欧美特级AAAAAA视频免费观看| 99ri国产在线| 99久久精品免费视频| 波多野结衣一区二区三区四区| 亚洲色欲色欲www在线观看| 国产精品福利一区二区久久| 中国国产高清免费AV片| 亚洲天堂.com| 亚洲色欲色欲www在线观看| 啪啪永久免费av| 91久久大香线蕉| 亚洲人精品亚洲人成在线| 日本在线国产| 国产欧美视频在线| 亚洲欧美一区在线| 一级毛片免费观看久| 国产成人三级| 粉嫩国产白浆在线观看| 婷婷综合缴情亚洲五月伊| 国产精品白浆无码流出在线看| 国产尤物在线播放| 亚洲日韩精品综合在线一区二区| 色妞永久免费视频| 人妻少妇久久久久久97人妻| 伊人久热这里只有精品视频99| 无码啪啪精品天堂浪潮av| 国产剧情一区二区| 久久黄色小视频| 免费黄色国产视频| 亚洲三级色| 成年av福利永久免费观看| 国产欧美又粗又猛又爽老| 欧美一道本| 91小视频在线观看| 精品人妻一区无码视频| 视频国产精品丝袜第一页| 中字无码精油按摩中出视频| 日韩毛片免费| 伊人久久婷婷| 国产精品久久久精品三级| 99久久精品免费观看国产| 青青草一区| 四虎国产精品永久一区| 亚洲毛片在线看| av一区二区三区在线观看| 国产精品区视频中文字幕| 欧美性色综合网| 性做久久久久久久免费看| 亚洲欧美成人在线视频| 91欧美在线| 一本一道波多野结衣一区二区| 国产黄视频网站| 中文字幕在线视频免费| 久久青草免费91观看| www.狠狠| 亚洲综合久久成人AV| 久久激情影院| 91精品aⅴ无码中文字字幕蜜桃 | 亚洲国产无码有码| 操美女免费网站| 久久精品人人做人人爽电影蜜月 | 在线欧美日韩| 亚洲国产黄色| 国产精品尹人在线观看| 欧美国产视频| 国产97公开成人免费视频| 男女男免费视频网站国产|