王磊 張書源 葛思彤 劉洋



摘 要:研究了具有非線性耦合的復(fù)雜網(wǎng)絡(luò)系統(tǒng)的同步驗(yàn)證問(wèn)題.基于一般的非二次型Lyapunov函數(shù),建立了保守性更弱的有向拓?fù)浣Y(jié)構(gòu)下的非線性網(wǎng)絡(luò)系統(tǒng)的同步判據(jù).對(duì)于多項(xiàng)式網(wǎng)絡(luò)系統(tǒng),將可同步問(wèn)題轉(zhuǎn)化為平方和優(yōu)化問(wèn)題,由此來(lái)高效地求解高階的多項(xiàng)式Lyapunov函數(shù).求解平方和優(yōu)化問(wèn)題隸屬于凸優(yōu)化框架,因此可以在多項(xiàng)式時(shí)間內(nèi)自動(dòng)地實(shí)現(xiàn)系統(tǒng)的同步驗(yàn)證.最后,通過(guò)一個(gè)數(shù)值仿真實(shí)例驗(yàn)證了理論結(jié)果的有效性,同時(shí)說(shuō)明了所提出的方法可以使用一個(gè)較小的耦合強(qiáng)度下界來(lái)確保同步實(shí)現(xiàn).
關(guān)鍵詞:多項(xiàng)式Lyapunov函數(shù);同步驗(yàn)證;復(fù)雜網(wǎng)絡(luò)系統(tǒng);平方和優(yōu)化
中圖分類號(hào):O231.2文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2024)02-0027-06
在過(guò)去的幾十年里,復(fù)雜網(wǎng)絡(luò)系統(tǒng)作為一門跨學(xué)科研究在物理[1]、控制科學(xué)[2]、社會(huì)科學(xué)[3]、經(jīng)濟(jì)學(xué)[4]等領(lǐng)域引起了廣泛的關(guān)注.同步是自然界中常見(jiàn)的集體行為現(xiàn)象,在某種程度上揭示了動(dòng)物群體聚集行為的本質(zhì),如蜂擁現(xiàn)象[5-6].因此,開(kāi)展復(fù)雜網(wǎng)絡(luò)系統(tǒng)的同步研究工作具有重大的科學(xué)意義[7-12].
目前,現(xiàn)有研究工作中大都是在“手動(dòng)”構(gòu)造二次型Lyapunov函數(shù)的基礎(chǔ)上[13-17],致力于研究具有線性耦合的復(fù)雜網(wǎng)絡(luò)系統(tǒng)的同步問(wèn)題.然而,在穩(wěn)定性理論中,有相當(dāng)多的穩(wěn)定性系統(tǒng)不存在二次型Lyapunov函數(shù),而存在更一般的 Lyapunov函數(shù).基于這個(gè)事實(shí),尋找一般的Lyapunov函數(shù)來(lái)證明非線性系統(tǒng)的同步是合理的.例如,基于一般的Lyapunov函數(shù)構(gòu)造,學(xué)者們通過(guò)提出的Lyapunov V-穩(wěn)定性方法研究了復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的全局同步問(wèn)題[18-19].因此,通過(guò)“自動(dòng)”生成一般的非二次型Lyapunov函數(shù)來(lái)實(shí)現(xiàn)具有非線性耦合的復(fù)雜網(wǎng)絡(luò)系統(tǒng)的同步驗(yàn)證是十分必要的.
幸運(yùn)的是,平方和(sum-of-squares,SOS)分解框架提供了一種弱保守的方式計(jì)算穩(wěn)定性系統(tǒng)的多項(xiàng)式Lyapunov函數(shù)[20-25].PAPACHRISTODOULOU等[20]提出了一種Lyapunov函數(shù)算法構(gòu)造的思想,用以研究非線性系統(tǒng)的穩(wěn)定性問(wèn)題.隨后,進(jìn)一步形成了基于SOS分解的系統(tǒng)分析教程[21].ZHANG等[22]提出了一種迭代的SOS優(yōu)化算法求解多項(xiàng)式矩陣不等式,實(shí)現(xiàn)了多項(xiàng)式網(wǎng)絡(luò)系統(tǒng)的穩(wěn)定性驗(yàn)證.近來(lái),學(xué)者們[23-25]利用SOS優(yōu)化方法設(shè)計(jì)程序化算法搜索多項(xiàng)式Lyapunov函數(shù),驗(yàn)證了無(wú)向及有向拓?fù)湎聫?fù)雜網(wǎng)絡(luò)系統(tǒng)的同步判據(jù).
在本文中,通過(guò)SOS優(yōu)化框架下的多項(xiàng)式Lyapunov函數(shù)算法計(jì)算,將致力于研究具有非線性耦合的復(fù)雜網(wǎng)絡(luò)系統(tǒng)的同步驗(yàn)證問(wèn)題.首先,通過(guò)松弛經(jīng)典的類Lipschitz條件,系統(tǒng)地構(gòu)造一般的Lyapunov函數(shù)并建立保守性更弱的有向拓?fù)浣Y(jié)構(gòu)下非線性網(wǎng)絡(luò)系統(tǒng)的同步判據(jù).然后,通過(guò)多元多項(xiàng)式的SOS分解技術(shù),將非負(fù)性約束用SOS條件替代,通過(guò)求解SOS優(yōu)化問(wèn)題自動(dòng)地尋找多項(xiàng)式Lyapunov函數(shù),從而實(shí)現(xiàn)系統(tǒng)的同步驗(yàn)證.最后,給出一個(gè)仿真實(shí)例來(lái)說(shuō)明所提出方法的有效性.
1 問(wèn)題描述
2 主要結(jié)果
3 數(shù)值仿真
4 結(jié) 論
通過(guò)構(gòu)造一般的Lyapunov函數(shù),本文研究了有向拓?fù)浣Y(jié)構(gòu)下非線性耦合網(wǎng)絡(luò)系統(tǒng)的同步問(wèn)題.對(duì)于多項(xiàng)式網(wǎng)絡(luò)系統(tǒng), 利用SOS優(yōu)化方法自動(dòng)地尋找弱保守的多項(xiàng)式Lyapunov函數(shù),實(shí)現(xiàn)了系統(tǒng)同步驗(yàn)證.最后, 給出了一個(gè)洛倫茲系統(tǒng)的仿真實(shí)例,驗(yàn)證了理論結(jié)果的有效性.在今后的研究中, 將致力于推廣所提出的SOS優(yōu)化方法,研究異構(gòu)多項(xiàng)式和非多項(xiàng)式網(wǎng)絡(luò)系統(tǒng)的同步問(wèn)題.
參 考 文 獻(xiàn)
[1]ARENAS A,D?AZ-GUILERA A,KURTHS J,et al.Synchronization in complex networks[J].Physics Reports,2008,469(3):93-153.
[2]CORNELIUS S P,KATH W L,MOTTER A E.Realistic control of network dynamics[J].Nature Communications,2013,4:1942.
[3]XUAN Q,ZHANG Z Y,F(xiàn)U C B,et al.Social synchrony on complex networks[J].IEEE Transactions on Cybernetics,2018,48(5):1420-1431.
[4]BARAHONA M,PECORA L M.Synchronization in small-world systems[J].Physical Review Letters,2002,89(5):054101.
[5]TANNER H G,JADBABAIE A,PAPPAS G J.Flocking in fixed and switching networks[J].IEEE Transactions on Automatic Control,2007,52(5):863-868.
[6]VICSEK T,CZIR?K A,BEN-JACOB E,et al.Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters,1995,75(6):1226-1229.
[7]PANTELEY E,LOR?A A.Synchronization and dynamic consensus of heterogeneous networked systems[J].IEEE Transactions on Automatic Control,2017,62(8):3758-3773.
[8]LIANG Q,SHE Z,WANG L,et al.Characterizations and criteria for synchronization of heterogeneous networks to linear subspaces[J].SIAM J Control Optim,2017,55(6):4048-4071.
[9]WANG L,CHEN M Z Q,WANG Q G.Bounded synchronization of a heterogeneous complex switched network[J].Automatica,2015,56:19-24.
[10]STILWELL D J,BOLLT E M,ROBERSON D G.Sufficient conditions for fast switching synchronization in time-varying network topologies[J].SIAM Journal on Applied Dynamical Systems,2006,5(1):140-156.
[11]QIN J H,MA Q C,YU X H,et al.On synchronization of dynamical systems over directed switching topologies:an algebraic and geometric perspective[J].IEEE Transactions on Automatic Control,2020,65(12):5083-5098.
[12]HE W L,CHEN G R,HAN Q L,et al.Multiagent systems on multilayer networks:synchronization analysis and network design[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,47(7):1655-1667.
[13]PECORA L M,CARROLL T L.Master stability functions for synchronized coupled systems[J].Physical Review Letters,1998,80(10):2109-2112.
[14]BELYKH V N,BELYKH I V,HASLER M.Connection graph stability method for synchronized coupled chaotic systems[J].Physica D:Nonlinear Phenomena,2004,195(1/2):159-187.
[15]DELELLIS P,DI BERNARDO M,RUSSO G.On QUAD,lipschitz,and contracting vector fields for consensus and synchronization of networks[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2011,58(3):576-583.
[16]WEN G H,DUAN Z S,CHEN G R,et al.Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2014,61(2):499-511.
[17]ZHANG Z,YAN W S,LI H P.Distributed optimal control for linear multiagent systems on general digraphs[J].IEEE Transactions on Automatic Control,2021,66(1):322-328.
[18]XIANG J,CHEN G R.On the V-stability of complex dynamical networks[J].Automatica,2007,43(6):1049-1057.
[19]ZHAO J,HILL D J,LIU T.Stability of dynamical networks with non-identical nodes:a multiple V-Lyapunov function method[J].Automatica,2011,47(12):2615-2625.
[20]PAPACHRISTODOULOU A,PRAJNA S.On the construction of Lyapunov functions using the sum of squares decomposition[C]//Proceedings of the 41st IEEE Conference on Decision and Control.[s.l.]:IEEE,2003:3482-3487.
[21]PAPACHRISTODOULOU A,PRAJNA S.A tutorial on sum of squares techniques for systems analysis[C]//Proceedings of the 2005,American Control Conference.[s.l.]:IEEE,2005:2686-2700.
[22]ZHANG S Y,SONG S Z,WANG L,et al.Stability verification for heterogeneous complex networks via iterative SOS programming[J].IEEE Control Systems Letters,2023,7:559-564.
[23]LIANG Q Y,SHE Z K,WANG L,et al.General Lyapunov functions for consensus of nonlinear multiagent systems[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2017,64(10):1232-1236.
[24]ZHANG S Y,WANG L,LIANG Q Y,et al.Polynomial Lyapunov functions for synchronization of nonlinearly coupled complex networks[J].IEEE Transactions on Cybernetics,2022,52(3):1812-1821.
[25]LIANG Q Y,ONG C J,SHE Z K.Sum-of-squares-based consensus verification for directed networks with nonlinear protocols[J].International Journal of Robust and Nonlinear Control,2020,30(4):1719-1732.
[26]GODSIL C,ROYLE G.Algebraic Graph Theory[M].New York:Springer-Verlag,2001.
[27]YU W W,CHEN G R,CAO M.Consensus in directed networks of agents with nonlinear dynamics[J].IEEE Transactions on Automatic Control,2011,56(6):1436-1441.
[28]LIU X W,CHEN T P.Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix[J].Physica A:Statistical Mechanics and Its Applications,2008,387(16/17):4429-4439.
[29]LOFBERG J.YALMIP:a toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation(IEEE Cat.No.04CH37508).[s.l.]:IEEE,2005:284-289.
[30]MOSEK A.The MOSEK optimization toolbox for MATLAB manual[EB/OL].[2022-11-19].https://docs.mosek.com/7.0/toolbox/index.html.
Synchronization verification for complex networked systems with directed graph
Wang Lei, Zhang Shuyuan, Ge Sitong, Liu Yang
(School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)
Abstract: In this article, we study the problem of synchronization verification for complex networked systems with nonlinear coupling. Based on general form of Lyapunov functions, a less conservative synchronization criterion is proposed for the nonlinear networked systems with directed graph. Then, the synchronization problem for polynomial networked systems can be transformed into a sum-of-squares optimization problem, which falls within the convex optimization framework, yielding polynomial Lyapunov functions efficiently to realize the automatic synchronization verification in polynomial time. Finally, the effectiveness of the theoretical results is demonstrated by a simulation example, where the synchronization of Lorenz system is achieved by using a smaller lower bound of coupling strength.
Keywords: polynomial Lyapunov functions; synchronization verification; complex networked systems; sum-of-squares optimization
[責(zé)任編校 陳留院 趙曉華]