林府標(biāo) 楊欣霞 張千宏



摘 要:找到Rosenau方程的顯式精確解十分困難,研究方法常采用數(shù)值離散求解技術(shù).首先,采用李群分析法給出了Rosenau方程的對稱群、約化常微分方程和群不變解;其次,構(gòu)造了一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法,利用此方法找到了Rosenau方程的顯式行波解,分析了解的動力學(xué)行為;最后,所獲得的顯式行波解既證明了Rosenau方程顯式精確解的存在性,又可用于驗證數(shù)值解的精度、檢驗數(shù)值離散方案的優(yōu)劣,為工程領(lǐng)域的實際應(yīng)用提供理論依據(jù)和參考.
關(guān)鍵詞:Rosenau方程;顯式行波解;動力學(xué)行為
中圖分類號:O175.4;O175.29文獻標(biāo)志碼:A文章編號:1000-2367(2024)02-0033-08
在探究離散系統(tǒng)稠密性的動態(tài)性時,為了克服KdV方程不能準(zhǔn)確預(yù)測坡度和高振幅波性態(tài)的缺點,ROSENAU[1-2]提出了五階非線性偏微分Rosenau方程
Lu= ut+uxxxxt+ux+upux=0, ???(1)
其中,t表示時間,x代表平衡水平面上沿波傳播方向上的坐標(biāo),p為非零常數(shù).當(dāng)p=1時,方程(1)稱為Rosenau方程,當(dāng)p≠1時,方程(1)稱為廣義Rosenau方程.為了進一步考慮動力學(xué)系統(tǒng)中非線性波及耗散現(xiàn)象,PARK[3]討論了含黏性項-uxx的Rosenau-Burgers方程
ut+uxxxxt-μuxx+ux+uux=0 ???(2)
的解的存在性和唯一性,其中,μ代表非負黏性系數(shù).方程(1)和(2)在研究緊離散動力學(xué)系統(tǒng)、 模擬無線電及計算機領(lǐng)域、 波與波相撞、波與障礙物或墻相互作用等方面具有重要應(yīng)用.但鑒于方程(1)和(2)精確解的缺乏,初值和邊值問題解的存在唯一性、 柯西問題的適定性、 算法的收斂性和穩(wěn)定性、誤差估計、解的漸近性、永久性、動力學(xué)行為性質(zhì)等常借助于數(shù)值離散及實驗技術(shù)進行研究[4-13].
雖然歷經(jīng)多年的研究和探索,構(gòu)造非線性偏微分方程的精確解,已找到了許多方法與技巧[14],如李群分析法[15],Tanh函數(shù)法和廣義Tanh函數(shù)法[14],齊次平衡法[14,16]等.但鑒于諸多新方程不斷從各個學(xué)科領(lǐng)域中涌現(xiàn),在非線性科學(xué)和工程技術(shù)領(lǐng)域,至今仍然存在眾多的方程很難找到精確解[14].就現(xiàn)有文獻[1-13]來看,尋求方程(1)和(2)的精確解及方法,仍是一個亟待探索和解決的問題.
論文擬不僅對方程(1)和(2)作經(jīng)典李群分析,而且構(gòu)造一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法.針對方程(1)的結(jié)構(gòu)和特征及性質(zhì),利用此方法探索方程(1)的顯式行波解及孤立波解.對找到的行波解,分析解的相關(guān)動力學(xué)行為及性質(zhì).希望所獲得的解可用于驗證數(shù)值解的正確性和精度,以及檢驗數(shù)值離散方案的優(yōu)劣,也為精確描述、解釋、模擬及應(yīng)用許多自然科學(xué)現(xiàn)象提供理論依據(jù)和策略.
1 李群分析法
2 exp(-φ(ξ))展式法
3 顯式行波解
4 解的動力學(xué)行為
5 結(jié)束語
找到了方程(1)和(2)的對稱群和群不變解.構(gòu)造了一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法.采用該方法獲得了方程(1)的行波解,文獻[1-13]均未報道過這些解.找到的解表明了文獻[4]中方程(1)的解的存在性理論證明的正確性,而且對進一步研究和尋找方程(1)的精確解,既有理論價值又有實際意義,也為數(shù)值解提供了理論依據(jù)和參考.構(gòu)造的exp(-φ(ξ))展式法可用于求解其他非線性偏微分方程,如廣義Rosenau方程ut+αux+βxxxxt+γpux=0,變系數(shù)的Burgers方程ut+αuxx+βux=0和KdV方程ut+αuxxx+βux=0,其中α,β,γ,p為常數(shù).如何構(gòu)造行之有效的精確求解方法,挖掘出方程(1)和(2)中蘊藏著的更多類型的精確解,值得在今后的研究中進一步探索和創(chuàng)新.
參 考 文 獻
[1]ROSENAU P.A quasi-continuous description of a nonlinear transmission line[J].Physica Scripta,1986,34:827-829.
[2]ROSENAU P.Dynamics of dense discrete systems high order effects[J].Progress of Theoretical Physics,1988,79(5):1028-1042.
[3]PARK M A.On the Rosenau equation in multidimensional space[J].Nonlinear Analysis:Theory,Methods & Applications,1993,21(1):77-85.
[4]PARK M A.On the Rosenau equation[J].Computation and Applied Mathematics,1990,9:145-152.
[5]ZHOU D Q,MU C L.Control and stabilization of the Rosenau equation posed on a periodic domain[J].Journal of Systems Science and Complexity,2018,31(4):889-906.
[6]SHI D Y,JIA X.Nonconforming Quasi-Wilson finite element approximation for the nonlinear Rosenau equation[J].Applied Mathematics Letters,2021,119:1-8.
[7]ERBAY H A,ERBAY S,ERKIP A.Numerical computation of solitary wave solutions of the Rosenau equation[J].Wave Motion,2020,98:1-10.
[8]何挺,胡兵,徐友才.廣義Rosenau方程的有限元方法[J].四川大學(xué)學(xué)報(自然科學(xué)版),2016,53(1):1-6.
HE T,HU B,XU Y C.Finite element method for the generalized Rosenau equation[J].Journal of Sichuan University (Natural Science Edition),2016,53(1):1-6.
[9]WANG M,LI D S, CUI P.A conservative finite difference scheme for the generalized Rosenau equation[J].International Journal of Pure and Applied Mathematics,2011,71(4):539-549.
[10]HUSSAIN M,HAQ S.Numerical simulation of solitary waves of Rosenau-KdV equation by Crank-Nicolson meshless spectral interpolation method[J].The European Physical Journal Plus,2020,135(98):1-22.
[11]高啟存,阿不都熱西提·阿布都外力.非齊次Rosenau-Burgers方程的三種數(shù)值方法比較[J].數(shù)學(xué)的實踐與認識,2021,51(6):246-256.
GAO Q C,ABUDUREXITI A.Comparison on the three numerical methods for nonhomogeneeous Rosenau-Burgers equation[J].Mathematics in Practice and Theory, 2021,51(6):246-256.
[12]OMRANI K,DEBEBRIA H,BAYARASSOU K.On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation[J].Engineering with Computers,2020:827-829.
[13]ZHANG J,LIU Z X,LIN F B,et al.Asymptotic analysis and error estimate for Rosenau-Burgers equation[J].Mathematical Problems in Engineering,2019,1-8.
[14]范恩貴.可積系統(tǒng)與計算機代數(shù)[M].北京:科學(xué)出版社,2004.
[15]OVSIANNIKOV L V.Group Analysis of Differential Equations[M].New York:Academic Press,1982.
[16]WANG M L,ZHOU Y B,LI Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Physics Letters A,1996,216(1-5):67-75.
[17]吳文俊.數(shù)學(xué)機械化[M].北京:科學(xué)出版社,2003.
Explicit travelling wave solutions and dynamic behaviors of the Rosenau equation
Lin Fubiao, Yang Xinxia, Zhang Qianhong
(School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China)
Abstract: It is typically difficult to obtain explicit exact solutions of the Rosenau equation, it was usually intensively investigated by use of the numerical schemes and techniques. Firstly, symmetric groups, reduced ordinary differential equations and group invariant solutions of the? Rosenau equation were given by the method of classical Lie group analysis. Secondly, an exp(-φ(ξ))-expansion method for solving analytically? nonlinear partial differential equation was constructed. Moreover, explicit travelling wave solutions of the Rosenau equation were found by using the exp(-φ(ξ))-expansion method, the corresponding dynamic behaviors of solutions were also analyzed. Finally, on the one hand, the existence of solutions of the Rosenau equation was demonstrated by these obtained explicit travelling wave solutions. These obtained exact solutions can be used to verify accuracy of numerical solution, test advantages and disadvantages of numerical discrete scheme, and study dynamic behaviors of solutions. In addition, it also provides a theoretical basis for the practical application in the field of engineering.
Keywords: Rosenau equation; explicit travelling wave solution; dynamic behavior
[責(zé)任編校 陳留院 趙曉華]