馬怡婷 張?zhí)? 鄧金超



摘 要:研究了一類具有隨機(jī)效應(yīng)的SWEIA艾滋病毒傳播模型.首先,通過(guò)構(gòu)造Lyapunov函數(shù)證明了確定性模型平衡點(diǎn)的全局漸近穩(wěn)定性,利用停頓理論等方法證明了隨機(jī)模型正解的全局存在唯一性與有界性;其次,分析了隨機(jī)模型的解在相應(yīng)確定性模型的無(wú)病平衡點(diǎn)與地方病平衡點(diǎn)附近的震蕩行為,并得到了隨機(jī)模型解的平均持續(xù)與滅絕性的充分條件;最后,通過(guò)數(shù)值模擬進(jìn)一步顯示了模型的動(dòng)力學(xué)行為.
關(guān)鍵詞:隨機(jī)模型;It?公式;震蕩行為;持久性;滅絕性
中圖分類號(hào):O175.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2024)02-0041-10
艾滋?。ˋIDS)是一種對(duì)人類健康危害極大的傳染病,它由人類免疫缺陷病毒(HIV)引起,通過(guò)大規(guī)模破壞人免疫系統(tǒng)中最重要的CD4-T淋巴細(xì)胞,使免疫功能失控,從而喪失抵御疾病的能力.因此,人體易感染各種慢性疾病,引發(fā)并發(fā)癥,并能導(dǎo)致惡性腫瘤,疾病的死亡率較高[1].國(guó)內(nèi)外的多個(gè)學(xué)者對(duì)HIV/AIDS的傳播規(guī)律進(jìn)行了深入研究[2-3].SHOFIANAH等[4]討論了具有垂直傳播與治療且具有兩個(gè)潛伏期的HIV/AIDS傳染病模型的最優(yōu)控制問(wèn)題,利用Pontryagin原理,得到了以最小的控制成本減少感染/癥狀亞群數(shù)量的最有效控制.MARSUDI等[5]研究了一類確定性的HIV/AIDS模型,得到了各類平衡點(diǎn)的全局穩(wěn)定性,并對(duì)參數(shù)進(jìn)行敏感性分析,結(jié)果表明:無(wú)癥狀感染者(艾滋病前期)與易感者的有效接觸率對(duì)HIV/AID的傳播影響最大.但是在現(xiàn)實(shí)中,由于環(huán)境多變,生物會(huì)受到各類隨機(jī)因素的干擾,且大多數(shù)問(wèn)題都具有不確定性,確定性的傳染病模型很難做到對(duì)實(shí)際情況進(jìn)行具體描述.因此,學(xué)者們開(kāi)始重視隨機(jī)數(shù)學(xué)模型[6-9],并取得了很大進(jìn)展[10-12].KHAN等[13]考慮了具有隨機(jī)擾動(dòng)和時(shí)滯的冠狀病毒流行模型,研究結(jié)果表明:布朗運(yùn)動(dòng)與噪聲項(xiàng)對(duì)流行病傳播的影響非常高,若噪聲很大,疾病可能會(huì)減少或消失.HOU等[14]提出了一類隨機(jī)SIHR的 COVID-19流行模型,數(shù)值分析了傳播速率、噪聲強(qiáng)度等參數(shù)對(duì)疾病傳播的影響,并得到結(jié)果:在忽視環(huán)境噪聲影響的情況下,確定性模型的閾值水平被高估.文獻(xiàn)[15]研究了確定性的SWEIA艾滋病毒傳播模型:
為更好地描述HIV傳播的動(dòng)力學(xué)行為,在文獻(xiàn)[15]的基礎(chǔ)上引入隨機(jī)擾動(dòng)因素,建立具有隨機(jī)擾動(dòng)的SWEIA艾滋病毒傳播模型.
1 模型建立
2 全局正解的存在與唯一性與有界性
3 隨機(jī)模型(2)的解在無(wú)病平衡點(diǎn)附近的漸近行為
4 隨機(jī)模型(2)的解在地方病平衡點(diǎn)附近的漸近行為
5 平均持續(xù)性
6 隨機(jī)滅絕性
注 定理7表明,當(dāng)R0>1時(shí),確定性模型(1)的艾滋病還在流行,但隨機(jī)模型(2)的艾滋病已經(jīng)滅絕,說(shuō)明強(qiáng)噪聲可以使疾病滅絕.
7 數(shù)值模擬
利用MATLAB模擬確定性模型與隨機(jī)模型(2)的解曲線,比較二者解的漸近行為之間的差異.取初值(S(0),W(0),E(0),I(0),A(0))=(1.4,0.9,0.5,0.5,0.5).
(1)分別取參數(shù)Λ=1,μ=0.5,β1=0.05,β2=0.1,β3=0.2,σ=0.3,α=0.1,γ=0.2,ρ=0.3,σ1=0.01,σ2=0.1,σ3=0.1,σ4=0.1,σ5=0.1,此時(shí)R0<1,且滿足定理4的條件,模擬結(jié)果如圖1(a-d)所示.其他參數(shù)不變,取σ1=0.1,σ2=0.5,σ3=5.0,σ4=0.5,σ5=0.5,滿足定理4的條件,模擬結(jié)果如圖1(e-h)所示.從圖1可看到,隨機(jī)模型(2)與確定性模型(1)均收斂于P0,且震蕩幅度與σi(i=1,2,…,5)相關(guān).
(2)分別取參數(shù)Λ=0.4,μ=0.1,β1=0.1,β2=0.3,β3=0.4,σ=0.1,α=0.05,γ=0.2,ρ=0.25,σ1=0.005,σ2=0.004,σ3=0.005,σ4=0.004,σ5=0.003,此時(shí)R0>1,模擬結(jié)果如圖2(a-d)所示.其他參數(shù)不變,取σ1=0.05,σ2=0.04,σ3=0.05,σ4=0.04,σ5=0.03,模擬結(jié)果如圖2(e-h)所示.從圖2可觀察到隨機(jī)模型(2)與確定性模型(1)均收斂于P*,且隨機(jī)模型(2)的解圍繞P*做隨機(jī)震蕩.震蕩幅度與σi(i=1,2,…,5)成正比.
(3)分別取參數(shù)Λ=1,μ=0.1,β1=0.01,β2=0.02,β3=0.05,σ=0.3,α=0.1,γ=0.2,ρ=0.4,σ1=0.005,σ2=1.5,σ3=1.3,σ4=1.5,σ5=0.8,此時(shí)R0>1.取M=m2,θ1=1.2,θ2=1.0,滿足定理7的條件,得到圖3.從圖3中可以看出,此時(shí)雖確定性模型的解仍在地方病平衡點(diǎn)處穩(wěn)定,但隨機(jī)模型(2)中的艾滋病已經(jīng)滅絕,由此可知,當(dāng)隨機(jī)干擾強(qiáng)度足夠大時(shí),可以導(dǎo)致W(t),E(t),I(t)滅絕.
8 結(jié) 論
本文首先研究了具有隨機(jī)效應(yīng)的SWEIA艾滋病毒傳播模型,得到了確定性模型(1)平衡點(diǎn)的全局漸近穩(wěn)定性與隨機(jī)模型(2)正解的全局存在唯一性與有界性.其次,討論了當(dāng)R0<1時(shí),隨機(jī)模型(2)的解在相應(yīng)確定性模型的無(wú)病平衡點(diǎn)附近擾動(dòng),且擾動(dòng)程度與σi(i=1,2,…,5)相關(guān);當(dāng)R0>1時(shí),隨機(jī)模型(2)的解在相應(yīng)確定性模型的地方病平衡點(diǎn)附近擾動(dòng),且擾動(dòng)程度與σi(i=1,2,…,5)成正比.之后,分析了艾滋病傳播的滅絕趨勢(shì),進(jìn)而可以控制隨機(jī)模型(2)中相應(yīng)參數(shù)的大小,達(dá)到控制艾滋病傳播的效果.最后,通過(guò)數(shù)值模擬驗(yàn)證了理論結(jié)果.
參 考 文 獻(xiàn)
[1]王楚雯,胡穎,侯穎.廣西壯族自治區(qū)艾滋病模型及預(yù)測(cè)分析[J].檢驗(yàn)檢疫學(xué)刊,2020,30(2):6-9.
WANG C W,HU Y,HOU Y.Modeling and predictive analysis of AIDs in Guangxi Zhuang autonomous reigion[J].Journal of Inspection and Quarantine,2020,30(2):6-9.
[2]WU P,ZHAO H Y.Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion[J].Nonlinear Analysis:Real World Applications,2021,60:103289.
[3]張婷,張?zhí)?一類具有VCT意識(shí)的HIV/AIDS傳染病模型[J].重慶理工大學(xué)學(xué)報(bào)(自然科學(xué)),2022,36(4):254-261.
ZHANG T,ZHANG T L.A class of HIV/AIDS epidemic model with VCT awareness[J].Journal of Chongqing University of Technology(Natural Science),2022,36(4):254-261.
[4]SHOFIANAH N,F(xiàn)ITRI S,TRISILOWATI,et al.Optimal control of HIV/AIDS epidemic model with two latent stages,vertical transmission and treatment[J].Journal of Physics:Conference Series,2020,1562(1):012017.
[5]MARSUDI,TRISILOWATI,SURYANTO A,et al.Global stability and optimal control of an HIV/AIDS epidemic model with behavioral change and treatment[J].Engineering Letters,2021,29(2):575-591.
[6]BARDINA X,F(xiàn)ERRANTE M,ROVIRA C.A stochastic epidemic model of COVID-19 disease[J].AIMS Mathematics,2020,5(6):7661-7677.
[7]RAZA A,RAFIQ M,BALEANU D,et al.Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a two-sex population[J].IET Systems Biology,2019,13(6):305-315.
[8]張啟敏,曹博強(qiáng),牟曉潔.具有信息干預(yù)的隨機(jī)SIRS傳染病模型正解的存在性與滅絕性[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,46(4):1-7.
ZHANG Q M,CAO B Q,MU X J.The existence of positive solution and extinction of a stochastic SIRS epidemic model with information intervention[J].Journal of Henan Normal University(Natural Science Edition),2018,46(4):1-7.
[9]RIFHAT R,TENG Z D,WANG C X.Extinction and persistence of a stochastic SIRV epidemic model with nonlinear incidence rate[J].Advances in Difference Equations,2021,2021(1):1-21.
[10]ZHANG Y H,MA X S,DIN A.Stationary distribution and extinction of a stochastic SEIQ epidemic model with a general incidence function and temporary immunity[J].AIMS Mathematics,2021,6(11):12359-12378.
[11]郭曉霞,孫樹(shù)林.混合隨機(jī)SIR傳染病模型的動(dòng)力學(xué)分析[J].系統(tǒng)科學(xué)與數(shù)學(xué),2022,42(4):992-1010.
GUO X X,SUN S L.Dynamic analysis of a hybrid stochastic SIR epidemic model[J].Journal of Systems Science and Mathematical Sciences,2022,42(4):992-1010.
[12]胡瑞,黃立冬,李榮庭,等.一類潛伏期與染病期均具有傳染性的隨機(jī)傳染病模型[J].云南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,31(2):213-220.
HU R,HUANG L D,LI R T,et al.A stochastic epidemic model with infectivity in both incubation period and infection period[J].Journal of Yunnan Minzu University(Natural Sciences Edition),2022,31(2):213-220.
[13]KHAN A,IKRAM R,DIN A,et al.Stochastic COVID-19 SEIQ epidemic model with time-delay[J].Results in Physics,2021,30:104775.
[14]HOU T F,LAN G J,YUAN S L,et al.Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate[J].Mathematical Biosciences and Engineering,2022,19(4):4217-4236.
[15]龔道遠(yuǎn),李智明,張宇翔,等.SWEIA艾滋病毒傳染模型及應(yīng)用[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2017,47(6):170-179.
GONG D Y,LI Z M,ZHANG Y X,et al.SWEIA HIV/AIDS epidemic model and application[J].Mathematics in Practice and Theory,2017,47(6):170-179.
Dynamic analysis of an SWEIA HIV infection model with stochastic effects
Ma Yiting, Zhang Tailei, Deng Jinchao
(School of Science, Chang'an University, Xi'an 710064, China)
Abstract: An SWEIA HIV epidemic model with stochastic effects is studied. Firstly, the global asymptotic stability of the equilibrium of the deterministic model is proved by constructing Lyapunov function, and the global existence, uniqueness, and boundedness of the positive solution of the stochastic model are proved by using stopping time theory. Secondly, the oscillation behavior of the solution of the stochastic model around the disease-free equilibrium and endemic equilibrium of the corresponding deterministic model is analyzed, and the sufficient conditions for the mean persistence and extinction of the solution of the stochastic model are obtained. Finally, the numerical simulation further shows the dynamic behavior of the model.
Keywords: stochastic model; It? formula; oscillating behavior; persistence; extinction
[責(zé)任編校 陳留院 趙曉華]