寧黔冀 彭彥新 岳凱迪 李亦君



摘 要:絲氨酸蛋白酶級(jí)聯(lián)反應(yīng)介導(dǎo)的黑化是甲殼動(dòng)物重要的免疫反應(yīng),絲氨酸蛋白酶抑制劑(serine proteinase inhibitor,Serpin)是黑化反應(yīng)的重要調(diào)節(jié)因子,而甲殼動(dòng)物表皮Serpin的有關(guān)研究較少.為了探索表皮Serpin在日本沼蝦(Macrobrachium nipponense)免疫反應(yīng)中的功能,基于前期轉(zhuǎn)錄組數(shù)據(jù),利用PCR、RACE和生物信息學(xué)從日本沼蝦表皮克隆并鑒定了1個(gè)新的Serpin基因,命名為MnSerpin,利用RT-qPCR和RNAi等方法,研究了該基因時(shí)空表達(dá)模式、嗜水氣單胞菌(Aeromonas hydrophila)攻毒后表皮MnSerpin的轉(zhuǎn)錄水平以及日本沼蝦死亡率的變化.結(jié)果顯示,MnSerpin cDNA全長(zhǎng)2 181 bp,編碼419個(gè)氨基酸,具有Serpin結(jié)構(gòu)域.MnSerpin在腹背部表皮、鰓、血細(xì)胞、胃、心、肝胰腺等多種組織均有表達(dá);表皮MnSerpin的表達(dá)與蛻皮周期有關(guān),與蛻皮間期(C期)相比,在蛻皮后早期(A期)最高,增加6.06倍(P<0.01).嗜水氣單胞菌攻毒后,表皮MnSerpin的相對(duì)表達(dá)量在6 h達(dá)到了峰值,比對(duì)照組增加3.77倍(P<0.01).在腹背部第二節(jié)的關(guān)節(jié)膜內(nèi)注射3 μg dsRNA溶液,每12 h注射1次,共注射3次,最后一次注射后12 h,干擾效率最高,表皮MnSerpin的相對(duì)表達(dá)量同比下降58%(P<0.01).在干擾效率最高的時(shí)間點(diǎn)攻毒,120 h內(nèi),干擾組蝦的累計(jì)死亡率比未干擾組增加16%(P<0.01).結(jié)果表明,日本沼蝦表皮MnSerpin是重要的免疫因子,MnSerpin的表達(dá)存在組織以及蛻皮周期不同階段的差異,該基因表達(dá)下調(diào)能顯著增加嗜水氣單胞菌感染蝦的死亡率.
關(guān)鍵詞:日本沼蝦(Macrobrachium nipponense);表皮;MnSerpin;RNAi
中圖分類(lèi)號(hào):S97.4文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2024)02-0123-07
無(wú)脊椎動(dòng)物主要依靠天然免疫系統(tǒng)防御病原體入侵,其中包括體液免疫[1].黑化是重要體液免疫反應(yīng)之一,參與傷口愈合和病原體隔離等[2].黑化需要絲氨酸蛋白酶(Serine protease,SP)級(jí)聯(lián)反應(yīng)啟動(dòng)酚氧化酶原(prophenoloxidase,proPO)激活,產(chǎn)生活性酚氧化酶(phenoloxidase,PO),PO催化單酚為醌,醌聚合形成的黑色素消滅病原體,但過(guò)量的黑色素和中間活性產(chǎn)物(醌類(lèi)、超氧化物和PO等)將損傷細(xì)胞和組織[3-4].絲氨酸蛋白酶抑制劑(serine proteinase inhibitor,Serpin)是黑化反應(yīng)的重要調(diào)節(jié)因子,維持生物體動(dòng)態(tài)平衡[5].通常,作為自殺抑制劑,Serpin反應(yīng)中心環(huán)(reactive center loop,RCL)的裂解鍵(P1-P1′)被靶蛋白識(shí)別和切割,導(dǎo)致不可逆的構(gòu)象變化,進(jìn)而與靶蛋白形成共價(jià)復(fù)合物;P1氨基酸殘基決定了Serpin的特異性[6-7].對(duì)凡納濱對(duì)蝦(Litopenaeus vannamei)[8]、煙草天蛾(Manduca sexta)[9]和家蠶(Bombyx mori)[5]等的研究顯示,Serpin負(fù)調(diào)控SP,導(dǎo)致下游的proPO不能激活,抑制黑化.
目前,已經(jīng)在斑節(jié)對(duì)蝦(Penaeus monodon)[10]、中國(guó)明對(duì)蝦(Fenneropenaeus chinensis)[11]、中華絨螯蟹(Eriocheir sinensis)[12]、三疣梭子蟹(Portunus trituberculatus)[13]的血細(xì)胞和日本囊對(duì)蝦(Marsupenaeus japonicus)[14]、紅帝王蟹(Paralithodes camtschaticus)[15]的肝胰腺等組織克隆并鑒定了Serpin,發(fā)現(xiàn)病原菌攻毒后Serpin基因表達(dá)增加.研究發(fā)現(xiàn),甲殼動(dòng)物的表皮組織不僅起到物理屏障的作用,而且具有一些免疫功能[16],但源于表皮組織的Serpin基因還未見(jiàn)報(bào)道.
日本沼蝦(Macrobrachium nipponense)又名青蝦、河蝦,是我國(guó)重要的淡水養(yǎng)殖品系[17].嗜水氣單胞菌(Aeromonas hydrophila)是一種條件致病菌,導(dǎo)致日本沼蝦極高的死亡率[18].為了探索表皮Serpin在日本沼蝦免疫反應(yīng)中的作用,本研究首次從表皮克隆了1個(gè)Serpin基因,命名為MnSerpin,對(duì)其進(jìn)行生物信息學(xué)分析;利用RT-qPCR和RNAi等方法,研究了MnSerpin的時(shí)空表達(dá)模式、嗜水氣單胞菌攻毒以及MnSerpin敲降后表皮MnSerpin的轉(zhuǎn)錄水平和日本沼蝦死亡率的變化,旨在為闡明表皮組織在甲殼動(dòng)物免疫系統(tǒng)中的作用積累資料.
1 材料與方法
1.1 實(shí)驗(yàn)材料
日本沼蝦購(gòu)自河南省原陽(yáng)黃飼漁場(chǎng),選取健康蝦體長(zhǎng)(3.5±0.5) cm置于實(shí)驗(yàn)室玻璃水族箱內(nèi),水溫設(shè)置為(27±1) ℃,早晚投喂1次.1周后,用于實(shí)驗(yàn).選取3尾蝦,解剖鰓、胃、肌肉、心、肝胰腺、血細(xì)胞等組織,分別選取蛻皮間期(C)、蛻皮前早期(D0)、蛻皮前后期(D4)、蛻皮后早期(A)和蛻皮后晚期(B)的3尾蝦,取腹背部表皮組織,液氮速凍,-80 ℃保存?zhèn)溆?參照KIRIRAT等[19]方法,鑒定蝦的蛻皮周期.除了在蛻皮周期的表達(dá)分析外,選取C期蝦作為實(shí)驗(yàn)材料.嗜水氣單胞菌由新鄉(xiāng)醫(yī)學(xué)院實(shí)驗(yàn)室提供.
1.2 總RNA提取以及cDNA合成
按照Mini BEST Universal RNA Extraction Kit(TaKaRa)說(shuō)明書(shū)提取各組織的總RNA,用超微量紫外分光光度計(jì)Nano Drop ONE(賽默飛)檢測(cè)純度和濃度,質(zhì)量分?jǐn)?shù)1%瓊脂糖凝膠電泳檢測(cè).利用PrimeScriptTMOne Step RT-PCR Kit(TaKaRa)合成cDNA第一鏈,-20 ℃保存.
1.3 MnSerpin cDNA的全長(zhǎng)克隆
基于本課題組日本沼蝦C期頭胸甲外骨骼轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中獲得MnSerpin的核心序列,使用Prime primer 5.0軟件設(shè)計(jì)引物MnSerpin-F和MnSerpin-R(附錄表S1),擴(kuò)增核心序列.根據(jù)驗(yàn)證的核心序列設(shè)計(jì)MnSerpin的3′和5′末端的嵌套引物(附錄表S1),利用RACE的方法分別擴(kuò)增3′和5′末端cDNA序列.PCR產(chǎn)物經(jīng)電泳后,按照HiPure Gel Pure DNA Mini Kit(Magen)的方法回收純化,連接pMD19-T載體,轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,篩選陽(yáng)性單克隆菌株送生工生物工程(上海)股份有限公司測(cè)序.根據(jù)測(cè)序結(jié)果,使用DNAMAN軟件拼接獲得MnSerpin的全長(zhǎng)cDNA序列.
1.4 生物信息學(xué)分析
利用NCBI ORF finder軟件(https://www.ncbi.nlm.nih.gov/orffinder/)分析開(kāi)放閱讀框;BLAST軟件(https://blast.ncbi.nlm.nih.gov/Blast.cgi)分析氨基酸序列同源性;使用Consvered Domain Search軟件(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)預(yù)測(cè)保守結(jié)構(gòu)域;使用SignalP 5.0軟件(https://services.healthtech.dtu.dk/service.php?SignalP-5.0)預(yù)測(cè)信號(hào)肽;使用ExPASy軟件(https://web.expasy.org/compute_pi/)預(yù)測(cè)蛋白質(zhì)的理論等電點(diǎn)與相對(duì)分子量;通過(guò)Clustal W程序進(jìn)行多序列比對(duì)并利用MEGA 5.1軟件的鄰接法構(gòu)建系統(tǒng)發(fā)育樹(shù).
1.5 MnSerpin時(shí)空表達(dá)
以β-actin作為內(nèi)參基因,利用RT-PCR(Reverse Transcription PCR)的方法檢測(cè)MnSerpin的組織分布,50 μL反應(yīng)體系:2×Es Taq Master Mix 25.0 μL,各組織cDNA模板1.0 μL,上下游引物各2.0 μL,滅菌ddH2O 20.0 μL;采用降落PCR進(jìn)行擴(kuò)增,反應(yīng)條件:94 ℃預(yù)變性5 min;94 ℃變性30 s,58 ℃→48 ℃,退火30 s,72 ℃延伸150 s,共32個(gè)循環(huán);72 ℃終延伸7 min,電泳檢測(cè)不同組織對(duì)應(yīng)的條帶亮度.
利用RT-qPCR(quantitative real-time PCR)的方法檢測(cè)MnSerpin在蛻皮周期的表達(dá)(SYBR Premix Ex TaqTM試劑盒,TaKaRa).20 μL反應(yīng)體系:AceQ qPCR SYBR Green Master Mix 10.0 μL、蛻皮周期各階段表皮cDNA模板2.0 μL、上下游引物各0.8 μL、滅菌ddH2O 6.4 μL.擴(kuò)增條件:95 ℃變性5 min;95 ℃變性10 s,60 ℃復(fù)性30 s,共40個(gè)循環(huán);95 ℃變性15 s,60 ℃復(fù)性60 s,97 ℃變性1 s(融解曲線(xiàn)程序).每個(gè)樣品來(lái)源于3尾蝦,重復(fù)3次,采用2-△△Ct的方法計(jì)算基因的相對(duì)表達(dá)量[8].在SPSS19.0中進(jìn)行統(tǒng)計(jì)分析,結(jié)果顯示為平均值±標(biāo)準(zhǔn)差(n=3),單因素方差分析(ANOVA)和Duncan法進(jìn)行顯著性檢驗(yàn)(P<0.05代表差異顯著,P<0.01代表差異極顯著).
1.6 嗜水氣單胞菌攻毒對(duì)表皮MnSerpin的表達(dá)影響
隨機(jī)挑選蝦100尾,平均分為攻毒組和對(duì)照組,分別在腹背部第二節(jié)的關(guān)節(jié)膜內(nèi)注射2 μL嗜水氣單胞菌菌懸液(2.5×108CFU·mL-1)或PBS,每個(gè)組設(shè)置3個(gè)重復(fù).在注射后0、3、6、12、24、48和72 h,利用RT-qPCR分別測(cè)定表皮MnSerpin轉(zhuǎn)錄水平.
1.7 dsRNA對(duì)MnSerpin的干擾效率
參照Z(yǔ)HUANG等[4]方法,根據(jù)Mnserpin的cDNA序列,設(shè)計(jì)含有T7啟動(dòng)子及保護(hù)堿基的MnSerpin的dsRNA特異性引物(附錄表S1),通過(guò)RT-PCR擴(kuò)增Mnserpin片段,制備合成dsRNA的質(zhì)粒模板后,利用in vitro Transcription T7 Kit(TaKaRa)合成dsRNA,經(jīng)純化用于RNAi Mnserpin的表達(dá).隨機(jī)挑選蝦100尾,平均分為干擾組和對(duì)照組,分別于腹背部第二節(jié)的關(guān)節(jié)膜內(nèi)注射3 μg dsRNA溶液或等體積的PBS.每個(gè)組設(shè)置3個(gè)重復(fù).每12 h注射1次,共注射3次,以加強(qiáng)敲除效率.在最后一次注射后0、3、6、12、24、48、72 h取表皮,利用RT-qPCR分別測(cè)定MnSerpin轉(zhuǎn)錄水平.
1.8 MnSerpin干擾后嗜水氣單胞菌攻毒對(duì)日本沼蝦死亡率的影響
隨機(jī)挑選蝦150尾,平均分為對(duì)照組、攻毒+未干擾組和攻毒+干擾組.攻毒+干擾組在第3次注射dsRNA溶液后12 h,注射2 μL嗜水氣單胞菌菌懸液(2.5×108CFU·mL-1);對(duì)照組、攻毒+未干擾組在第3次注射等體積PBS后12 h,分別注射2 μLPBS或嗜水氣單胞菌菌懸液(2.5×108CFU·mL-1).每組設(shè)置3個(gè)重復(fù),在最后一次注射后0、6、12、24、48、72、96、120 h分別計(jì)算各組日本沼蝦的累計(jì)死亡率.
2 結(jié)果
2.1 MnSerpin的克隆和生物信息學(xué)分析
MnSerpin的cDNA全長(zhǎng)2 181 bp(GenBank登錄號(hào):OP626166),包括102 bp的5′UTR,819 bp的3′UTR和1 260 bp的ORF,共編碼419個(gè)氨基酸.理論上蛋白質(zhì)的分子量和等電點(diǎn)分別為45.99 kDa和5.29.該蛋白含有一個(gè)21個(gè)氨基酸殘基組成的信號(hào)肽和保守的Serpin結(jié)構(gòu)域,其中含有P1為Y的RCL(附錄圖S1和S2).
經(jīng)BLASTP比對(duì),MnSerpin的氨基酸序列和其他甲殼動(dòng)物Serpin的同源性在43.22%~50.24%,如斑節(jié)對(duì)蝦(P. monodon,XP_037790831.1)為50.24%,凡納濱對(duì)蝦(P. vannamei,ROT82825.1)為49.76%(附錄圖S2).基于氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù),發(fā)現(xiàn)日本沼蝦與中國(guó)對(duì)蝦(Penaeus chinensis,ABC33916.1)Serpin聚為一小支,屬于甲殼動(dòng)物的一大支(圖1).
2.2 MnSerpin的時(shí)空表達(dá)分析
MnSerpin在腹背部表皮、鰓、胃、心、肝胰腺、血細(xì)胞等多種組織均有表達(dá),但肌肉組織不表達(dá)(圖2).以C期為對(duì)照,表皮MnSerpin在D0期、D4期、A期和B期的表達(dá)量極顯著增加(P<0.01),其中在A期最高,增加6.06倍,具體結(jié)果見(jiàn)圖3.
2.3 嗜水氣單胞菌攻毒對(duì)表皮MnSerpin表達(dá)的影響
嗜水氣單胞菌對(duì)表皮MnSerpin的誘導(dǎo)效應(yīng)出現(xiàn)在攻毒后6~48 h.如圖4,與同時(shí)刻對(duì)照組相比,攻毒后6~48 h,MnSerpin的相對(duì)表達(dá)量極顯著增加,6 h達(dá)到峰值,升高了3.77倍(P<0.01).
2.4 dsRNA對(duì)MnSerpin的干擾效率
注射dsRNA能顯著降低MnSerpin的表達(dá).與相應(yīng)的對(duì)照組比,6~72 h,干擾組MnSerpin的轉(zhuǎn)錄水平極顯著降低,12 h獲得最大干擾率為58%(P<0.01,圖5).
2.5 MnSerpin干擾后嗜水氣單胞菌攻毒對(duì)日本沼蝦死亡率的影響
dsRNA干擾后嗜水氣單胞菌攻毒可導(dǎo)致日本沼蝦死亡率明顯增加.攻毒后120 h,攻毒+未干擾組日本沼蝦的累計(jì)死亡率為58%,而對(duì)照組僅為2%.攻毒后24 h,攻毒+干擾組日本沼蝦累計(jì)死亡率開(kāi)始顯著增加,至120 h,比攻毒+未干擾組增加16%(P<0.01,圖6).
3 討 論
在本研究中,日本沼蝦表皮MnSerpin有21個(gè)氨基酸殘基組成的信號(hào)肽和含有RCL的保守Serpin結(jié)構(gòu)域,符合典型Serpin家族結(jié)構(gòu)特征,與三疣梭子蟹[13]、中華絨螯蟹[20]和中國(guó)明對(duì)蝦[11]等Serpin研究一致.從系統(tǒng)進(jìn)化樹(shù)分析可知,MnSerpin的氨基酸序列與中國(guó)對(duì)蝦Serpin聚為一小支,親緣關(guān)系最近.MnSerpin mRNA的組織分布較廣,除了表皮,還包括鰓、胃等多種組織,與凡納濱對(duì)蝦[8]、三疣梭子蟹[13]和中華絨螯蟹[21]的Serpin組織表達(dá)特征類(lèi)似.在蛻皮周期中,表皮MnSerpin在蛻皮前晚期和蛻皮后早期呈高表達(dá),推測(cè)可能與表皮上皮細(xì)胞活性的變化有關(guān)[22].
據(jù)報(bào)道,不同甲殼動(dòng)物Serpin對(duì)病原微生物的應(yīng)答反應(yīng)并不一致.哈維氏弧菌(Vibrio harveyi)攻毒后48 h內(nèi),斑節(jié)對(duì)蝦血細(xì)胞Serpin基因轉(zhuǎn)錄水平?jīng)]有增加[23];凡隆氣單胞菌(Aeromonas veronii)攻毒后6~72 h內(nèi),紅螯螯蝦(Cherax quadricarinatus)肝胰腺Serpin轉(zhuǎn)錄水平極顯著增加;鰻弧菌(Vibrio anguillarum)等攻毒后48 h內(nèi),凡納濱對(duì)蝦5種Serpin在血細(xì)胞或肝胰腺等組織表達(dá)量增加[24-25],本文也獲得了與凡納濱對(duì)蝦相似的結(jié)果(圖4),表明表皮MnSerpin可能參與了機(jī)體應(yīng)對(duì)嗜水氣單胞菌感染的免疫應(yīng)答.細(xì)菌等病原微生物可以誘導(dǎo)黑化,引起絲氨酸蛋白酶的增加.據(jù)報(bào)道,dsRNA抑制凡納濱對(duì)蝦肝胰腺Serpin表達(dá)后鰻弧菌攻毒,絲氨酸蛋白酶和蝦的累積死亡率顯著增加[8],本文也獲得了類(lèi)似的結(jié)果,敲降表皮MnSerpin的轉(zhuǎn)錄水平,嗜水氣單胞菌攻毒明顯增加了日本沼蝦的死亡率(圖6),推測(cè)MnSerpin表達(dá)的抑制導(dǎo)致絲氨酸蛋白酶過(guò)表達(dá),產(chǎn)生過(guò)量黑化中間產(chǎn)物等增加了對(duì)宿主的損害.
綜上,本文首次從日本沼蝦表皮克隆了MnSerpin cDNA全長(zhǎng)序列,MnSerpin在不同組織均有表達(dá),在A期表皮表達(dá)量最高;嗜水氣單胞菌攻毒能顯著增加C期表皮MnSerpin轉(zhuǎn)錄水平,敲降MnSerpin的轉(zhuǎn)錄水平再攻毒能明顯提高日本沼蝦的死亡率.源自表皮的MnSerpin是日本沼蝦重要的免疫因子.
附錄見(jiàn)電子版(DOI:10.16366/j.cnki.1000-2367.2022.10.29.0001).
參 考 文 獻(xiàn)
[1]YANG H,JI T W,XIONG H R,et al.A trypsin-like serine protease domain of masquerade gene in crayfish Procambarus clarkii could activate prophenoloxidase and inhibit bacterial growth[J].Developmental and Comparative Immunology,2021,117:103980.
[2]CERENIUS L,S?DERH?LL K.Immune properties of invertebrate phenoloxidases[J].Developmental and Comparative Immunology,2021,122:104098.
[3]ZHANG D M,WAN W S,KONG T T,et al.A clip domain serine protease regulates the expression of proPO and hemolymph clotting in mud crab,Scylla paramamosain[J].Fish & Shellfish Immunology,2018,79:52-64.
[4]ZHUANG X N,LUAN Y Y,LV T R,et al.PAP1 activates the prophenoloxidase system against bacterial infection in Musca domestica[J].Developmental & Comparative Immunology,2021,124:104184.
[5]WANG L L,LIU H W,F(xiàn)U H Y,et al.Silkworm serpin32 functions as a negative-regulator in prophenoloxidase activation[J].Developmental and Comparative Immunology,2019,91:123-131.
[6]ESZTERBAUER E,SZEG?D,URSU K,et al.Serine protease inhibitors of the whirling disease parasite Myxobolus cerebralis(Cnidaria,Myxozoa):expression profiling and functional predictions[J].PLoS One,2021,16(3):e0249266.
[7]LIU Y J,HOU F J,QIAN Z Y,et al.Functional characterization of the clade B serine protease inhibitor SerpinB3 in the Pacific white shrimp Litopenaeus vannamei[J].Developmental & Comparative Immunology,2018,85:10-17.
[8]LIU Y J,SUN Y H,WANG Q A,et al.Identification and functional characterizations of serpin8,a potential prophenoloxidase-activating protease inhibitor in Pacific white shrimp,Litopenaeus vannamei[J].Fish & Shellfish Immunology,2017,60:492-501.
[9]WANG Y,YANG F,CAO X L,et al.Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm,Manduca sexta[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(38):23581-23587.
[10]HOMVISES T,TASSANAKAJON A,SOMBOONWIWAT K.Penaeus monodon SERPIN,PmSERPIN6,is implicated in the shrimp innate immunity[J].Fish & Shellfish Immunology,2010,29(5):890-898.
[11]LIU Y,LI F,WANG B,et al.A Serpin from Chinese shrimp Fenneropenaeus chinensis is responsive to bacteria and WSSV challenge[J].Fish & Shellfish Immunology,2009,26(3):345-351.
[12]蓋云超.中華絨螯蟹(Eriocheir sinensis)cDNA文庫(kù)的構(gòu)建、EST分析及其酚氧化酶系統(tǒng)關(guān)鍵基因的研究[D].青島:中國(guó)科學(xué)院海洋研究所,2009.
GAI Y C.Construction of cDNA library of Eriocheir sinensis,EST analysis and study on key genes of phenoloxidase system[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2009.
[13]WANG S Y,CUI Z X,LIU Y A,et al.Identification and characterization of a serine protease inhibitor(PtSerpin)in the swimming crab Portunus trituberculatus[J].Fish & Shellfish Immunology,2012,32(4):544-550.
[14]ZHAO Y R,XU Y H,JIANG H S,et al.Antibacterial activity of serine protease inhibitor 1 from kuruma shrimp Marsupenaeus japonicus[J].Developmental and Comparative Immunology,2014,44(2):261-269.
[15]KOSTIN N N,BOBIK T V,SHURDOVA E M,et al.Cloning and characterization of serpin from red king crab Paralithodes camtschaticus[J].Fish & Shellfish Immunology,2018,81:99-107.
[16]WANG W F,YANG H,LIU F,et al.A novel effect of imidazole derivative KK-42 on increasing survival of Aeromonas hydrophila challenged prawn Macrobrachium nipponense[J].Fish & Shellfish Immunology,2013,34(1):167-172.
[17]杜娟,張俊芳,岳凱迪,等.咪唑類(lèi)物質(zhì)KK-42對(duì)日本沼蝦表皮礦化的影響[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,51(1):144-148.
DU J,ZHANG J F,YUE K D,et al.Effect of imidazole derivative KK-42 on mineralization of the cuticle in Macrobrachium nipponense[J].Journal of Henan Normal University(Natural Science Edition),2023,51(1):144-148.
[18]CHEN Q Y,ZHANG Z R,TANG H Y,et al.Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles[J].Journal of Invertebrate Pathology,2021,182:107584.
[19]KIRIRAT P,PROMWIKORN W,THAWEETHAMSEWEE P.Index of molt staging in the black tiger shrimp(Penaeus monodon)[J].Songklanakarin Journal of Science and Technology,2004,26(5):765-772.
[20]WANG L L,MA Z P,YANG J L,et al.Identification and characterization of a serine protease inhibitor Esserpin from the Chinese mitten crab Eriocheir sinensis[J].Fish & Shellfish Immunology,2013,34(6):1576-1586.
[21]LI Q,LIU L H,WANG Y,et al.Characterization and expression analysis of serpins in the Chinese mitten crab Eriocheir sinensis[J].Gene,2016,575(2):632-640.
[22]ZHENG Y P,HE W Y,B?LIVEAU C,et al.Cloning,expression and characterization of four serpin-1 cDNA variants from the spruce budworm,Choristoneura fumiferana[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2009,154(2):165-173.
[23]LIU Y J,HOU F J,HE S L,et al.Identification,characterization and functional analysis of a serine protease inhibitor(Lvserpin)from the Pacific white shrimp,Litopenaeus vannamei[J].Developmental and Comparative Immunology,2014,43(1):35-46.
[24]LIU Y J,LIU T,HOU F J,et al.Lvserpin3 is involved in shrimp innate immunity via the inhibition of bacterial proteases and proteases involved in prophenoloxidase system[J].Fish & Shellfish Immunology,2016,48:128-135.
[25]LIU Y J,HOU F J,WANG X Z,et al.Recombinant expression and characterization of a serine protease inhibitor(Lvserpin7)from the Pacific white shrimp,Litopenaeus vannamei[J].Fish & Shellfish Immunology,2015,42(2):256-263.
Cloning and preliminary study on immune function of Serpin gene from the epidermis of Macrobrachium nipponense
Ning Qianji, Peng Yanxin, Yue Kaidi, Li Yijun
(College of Life Sciences, Henan Normal University, Xinxiang 453007, China)
Abstract: Melanization mediated by serine protease cascade reaction is an important immune response of crustaceans in which serine proteinase inhibitor(serpin)are important regulators. However, crustacean epidermal serpin is rarely studied. In order to explore the function of epidermal serpin in the immune response of Macrobrachium nipponense, a new serpin gene, named MnSerpin, was firstly cloned and identified from epidermis using PCR and RACE based on previous transcriptome data. Bioinformatics, RT-qPCR and RNAi methods were used to study the gene sequence characteristics, spatial and temporal expression pattern, transcription level of epidermal MnSerpin and mortality of shrimps after Aeromonas hydrophila challenge. The results showed that the full length of MnSerpin cDNA was 2 181 bp, encoding 419 amino acids, which formed a serpin domain. MnSerpin was expressed in abdominal epidermis, gill, hemocyte, stomach, heart and hepatopancreas. The expression level of MnSerpin in epidermis was related to the molting cycle. Compared with the intermolt stage(C stage), it was the highest in the early postmolt stage(A stage)and increased by 6.06 times(P<0.01). After A. hydrophila challenge, the relative expression of MnSerpin in epidermis reached the peak after 6 h, and increased by 3.77 times compared with the control group(P<0.01). 3 μg of dsRNA solution was injected into the abdominal second segment articular membrane every 12 h, 3 injections in total. Compared to control group, RNAi had the highest interference efficiency 12 h after the last injection, where the relative expression of epidermal MnSerpin decreased by 58%(P<0.01). Challenge at the time point with the highest interference efficiency and within 120 h, the cumulative mortality of shrimps increased by 16% compared with the non-RNAi-challenged group(P<0.01). The results showed that MnSerpin from the epidermis of M. nipponense was an important immune factor, its expression was different in tissues and stages of molting cycle, and its down-regulation could significantly increase the mortality of shrimp infected with A.hydrophila.
Keywords: Macrobrachium nipponense; epidermis; MnSerpin; RNAi
[責(zé)任編校 劉洋 楊浦]